Search results for: CMOS temperature sensor
2809 Fault and Theft Recognition Using Toro Dial Sensor in Programmable Current Relay for Feeder Security
Authors: R. Kamalakannan, N. Ravi Kumar
Abstract:
Feeder protection is important in transmission and distribution side because if any fault occurs in any feeder or transformer, man power is needed to identify the problem and it will take more time. In the existing system, directional overcurrent elements with load further secured by a load encroachment function can be used to provide necessary security and sensitivity for faults on remote points in a circuit. It is validated only in renewable plant collector circuit protection applications over a wide range of operating conditions. In this method, the directional overcurrent feeder protection is developed by using monitoring of feeder section through internet. In this web based monitoring, the fault and power theft are identified by using Toro dial sensor and its information is received by SCADA (Supervisory Control and Data Acquisition) and controlled by ARM microcontroller. This web based monitoring is also used to monitor the feeder management, directional current detection, demand side management, overload fault. This monitoring system is capable of monitoring the distribution feeder over a large area depending upon the cost. It is also used to reduce the power theft, time and man power. The simulation is done by MATLAB software.
Keywords: Current sensor, distribution feeder protection, directional overcurrent, power theft, protective relay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7932808 A New Empirical Expression of the Breakdown Voltage for Combined Variations of Temperature and Pressure
Authors: Elyse Sili, Jean Pascal Cambronne
Abstract:
In aircraft applications, according to the nature of electrical equipment its location may be in unpressurized area or very close to the engine; thus, the environmental conditions may change from atmospheric pressure to less than 100 mbar, and the temperature may be higher than the ambient one as in most real working conditions of electrical equipment. Then, the classical Paschen curve has to be replotted since these parameters may affect the discharge ignition voltage. In this paper, we firstly investigate the domain of validity of two corrective expressions on the Paschen-s law found in the literature, in case of changing the air environment and known as Peek and Dunbar corrections. Results show that these corrections are no longer valid for combined variation of temperature and pressure. After that, a new empirical expression for breakdown voltage is proposed and is validated in the case of combined variations of temperature and pressure.Keywords: Gas breakdown, gas density, Paschen curve, temperature effects
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48942807 Comparison of Different Gas Turbine Inlet Air Cooling Methods
Authors: Ana Paula P. dos Santos, Claudia R. Andrade, Edson L. Zaparoli
Abstract:
Gas turbine air inlet cooling is a useful method for increasing output for regions where significant power demand and highest electricity prices occur during the warm months. Inlet air cooling increases the power output by taking advantage of the gas turbine-s feature of higher mass flow rate when the compressor inlet temperature decreases. Different methods are available for reducing gas turbine inlet temperature. There are two basic systems currently available for inlet cooling. The first and most cost-effective system is evaporative cooling. Evaporative coolers make use of the evaporation of water to reduce the gas turbine-s inlet air temperature. The second system employs various ways to chill the inlet air. In this method, the cooling medium flows through a heat exchanger located in the inlet duct to remove heat from the inlet air. However, the evaporative cooling is limited by wet-bulb temperature while the chilling can cool the inlet air to temperatures that are lower than the wet bulb temperature. In the present work, a thermodynamic model of a gas turbine is built to calculate heat rate, power output and thermal efficiency at different inlet air temperature conditions. Computational results are compared with ISO conditions herein called "base-case". Therefore, the two cooling methods are implemented and solved for different inlet conditions (inlet temperature and relative humidity). Evaporative cooler and absorption chiller systems results show that when the ambient temperature is extremely high with low relative humidity (requiring a large temperature reduction) the chiller is the more suitable cooling solution. The net increment in the power output as a function of the temperature decrease for each cooling method is also obtained.Keywords: Absorption chiller, evaporative cooling, gas turbine, turbine inlet cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75522806 Optimization of Thermal and Discretization Parameters in Laser Welding Simulation Nd:YAG Applied for Shin Plate Transparent Mode Of DP600
Authors: Chansopheak Seang, Afia David Kouadri, Eric Ragneau
Abstract:
Three dimensional analysis of thermal model in laser full penetration welding, Nd:YAG, by transparent mode DP600 alloy steel 1.25mm of thickness and gap of 0.1mm. Three models studied the influence of thermal dependent temperature properties, thermal independent temperature and the effect of peak value of specific heat at phase transformation temperature, AC1, on the transient temperature. Another seven models studied the influence of discretization, meshes on the temperature distribution in weld plate. It is shown that for the effects of thermal properties, the errors less 4% of maximum temperature in FZ and HAZ have identified. The minimum value of discretization are at least one third increment per radius for temporal discretization and the spatial discretization requires two elements per radius and four elements through thickness of the assembled plate, which therefore represent the minimum requirements of modeling for the laser welding in order to get minimum errors less than 5% compared to the fine mesh.Keywords: FEA, welding, discretization, ABAQUS user subroutine DFLUX
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18182805 Thermal Analysis of Toroidal Transformers Using Finite Element Method
Authors: Adrian T.
Abstract:
In this paper a three dimensional thermal model of a power toroidal transformer is proposed for both steady-state or transient conditions. The influence of electric current and ambient temperature on the temperature distribution, has been investigated. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.Keywords: Temperature distribution, thermal analysis, toroidal transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35782804 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters
Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran
Abstract:
The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.
Keywords: Electric propulsion, mass gauging, propellant, PVT, xenon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21892803 Analysis of Evaporation of Liquid Ammonia in a Vertical Cylindrical Storage Tank
Authors: S. Chikh, S. Boulifa
Abstract:
The present study addresses the problem of ammonia evaporation during filling of a vertical cylindrical tank and the influence of various external factors on the stability of storage by determining the conditions for minimum evaporation. Numerical simulation is carried out by solving the governing equations namely, continuity, momentum, energy, and diffusion of species. The effect of temperature of surrounding air, the filling speed of the reservoir and the temperature of the filling liquid ammonia on the evaporation rate is investigated. Results show that the temperature of the filling liquid has little effect on the liquid ammonia for a short period, which, in fact, is function of the filling speed. The evaporation rate along the free surface of the liquid is non-uniform. The inlet temperature affects the vapor ammonia temperature because of pressure increase. The temperature of the surrounding air affects the temperature of the vapor phase rather than the liquid phase. The maximum of evaporation is reached at the final step of filling. In order to minimize loss of ammonia vapors automatically causing losses in quantity of the liquid stored, it is suggested to ensure the proper insulation for the walls and roof of the reservoir and to increase the filling speed.Keywords: Evaporation, liquid ammonia, storage tank, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24592802 Evaluation Using a Bidirectional Microphone as a Pressure Pulse Wave Meter
Authors: S. Fujiwara, T. Kaburagi, K. Kobayashi, K. Watanabe, Y. Kurihara
Abstract:
This paper describes a novel sensor device, a pressure pulse wave meter, which uses a bidirectional condenser microphone. The microphone work as a microphone as well as a sensor with high gain over a wide frequency range; they are also highly reliable and economic. Currently aging is becoming a serious social issue in Japan causing increased medical expenses in the country. Hence, it is important for elderly citizens to check health condition at home, and to care the health conditions through daily monitoring. Given this circumstances, we developed a novel pressure pulse wave meter based on a bidirectional condenser microphone: this device is used as a measuring instrument of health conditions.Keywords: Bidirectional microphone, pressure pulse wave meter, health condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15822801 RTCoord: A Methodology to Design WSAN Applications
Authors: J. Barbarán, M. Díaz, I. Esteve, D. Garrido, L. Llopis, B. Rubio
Abstract:
Wireless Sensor and Actor Networks (WSANs) constitute an emerging and pervasive technology that is attracting increasing interest in the research community for a wide range of applications. WSANs have two important requirements: coordination interactions and real-time communication to perform correct and timely actions. This paper introduces a methodology to facilitate the task of the application programmer focusing on the coordination and real-time requirements of WSANs. The methodology proposed in this model uses a real-time component model, UM-RTCOM, which will help us to achieve the design and implementation of applications in WSAN by using the component oriented paradigm. This will help us to develop software components which offer some very interesting features, such as reusability and adaptability which are very suitable for WSANs as they are very dynamic environments with rapidly changing conditions. In addition, a high-level coordination model based on tuple channels (TC-WSAN) is integrated into the methodology by providing a component-based specification of this model in UM-RTCOM; this will allow us to satisfy both sensor-actor and actor-actor coordination requirements in WSANs. Finally, we present in this paper the design and implementation of an application which will help us to show how the methodology can be easily used in order to achieve the development of WSANs applications.Keywords: Sensor networks, real time and embedded systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12982800 Backcalculation of HMA Stiffness Based On Finite Element Model
Authors: Md Rashadul Islam, Umme Amina Mannan, Rafiqul A. Tarefder
Abstract:
Stiffness of Hot Mix Asphalt (HMA) in flexible pavement is largely dependent of temperature, mode of testing and age of pavement. Accurate measurement of HMA stiffness is thus quite challenging. This study determines HMA stiffness based on Finite Element Model (FEM) and validates the results using field data. As a first step, stiffnesses of different layers of a pavement section on Interstate 40 (I-40) in New Mexico were determined by Falling Weight Deflectometer (FWD) test. Pavement temperature was not measured at that time due to lack of temperature probe. Secondly, a FE model is developed in ABAQUS. Stiffness of the base, subbase and subgrade were taken from the FWD test output obtained from the first step. As HMA stiffness largely varies with temperature it was assigned trial and error approach. Thirdly, horizontal strain and vertical stress at the bottom of the HMA and temperature at different depths of the pavement were measured with installed sensors on the whole day on December 25th, 2012. Fourthly, outputs of FEM were correlated with measured stress-strain responses. After a number of trials a relationship was developed between the trial stiffness of HMA and measured mid-depth HMA temperature. At last, the obtained relationship between stiffness and temperature is verified by further FWD test when pavement temperature was recorded. A promising agreement between them is observed. Therefore, conclusion can be drawn that linear elastic FEM can accurately predict the stiffness and the structural response of flexible pavement.
Keywords: Asphalt pavement, falling weight deflectometer test, field instrumentation, finite element model, horizontal strain, temperature probes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24152799 Analysis of Impact Load Induced by Ultrasonic Cavitation Bubble Collapse Using Thin Film Pressure Sensors
Authors: Moiz S. Vohra, Nagalingam Arun Prasanth, Wei L. Tan, S. H. Yeo
Abstract:
The understanding of generation and collapse of acoustic cavitation bubbles are prerequisites for application of cavitation erosion. Microbubbles generated due to rapid fluctuation of pressure induced by propagation of ultrasonic wave lead to formation of high velocity microjets and or shock waves upon collapse. Due to vast application of ultrasonic, it is important to characterize and understand cavitation collapse pressure under the radiating surface at different conditions. A comparative investigation is carried out to determine impact load and dynamic pressure distribution exerted upon bubble collapse using thin film pressure sensors. Measurements were recorded at different input conditions such as amplitude, stand-off distance, insertion depth of the horn inside the liquid and pulse on-off time of acoustic vibrations. Impact force of 2.97 N is recorded at amplitude of 108 μm and stand-off distance of 1 mm from the sensor film, whereas impulsive force as low as 0.4 N is recorded at amplitude of 12 μm and stand-off distance of 5 mm from the sensor film. The results drawn from the investigation indicated that variety of impact loads can be achieved by controlling generation and collapse of bubbles, making it suitable to use for numerous application.
Keywords: Ultrasonic cavitation, bubble collapse, pressure mapping sensor, impact load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11372798 A Codebook-based Redundancy Suppression Mechanism with Lifetime Prediction in Cluster-based WSN
Authors: Huan Chen, Bo-Chao Cheng, Chih-Chuan Cheng, Yi-Geng Chen, Yu Ling Chou
Abstract:
Wireless Sensor Network (WSN) comprises of sensor nodes which are designed to sense the environment, transmit sensed data back to the base station via multi-hop routing to reconstruct physical phenomena. Since physical phenomena exists significant overlaps between temporal redundancy and spatial redundancy, it is necessary to use Redundancy Suppression Algorithms (RSA) for sensor node to lower energy consumption by reducing the transmission of redundancy. A conventional algorithm of RSAs is threshold-based RSA, which sets threshold to suppress redundant data. Although many temporal and spatial RSAs are proposed, temporal-spatial RSA are seldom to be proposed because it is difficult to determine when to utilize temporal or spatial RSAs. In this paper, we proposed a novel temporal-spatial redundancy suppression algorithm, Codebookbase Redundancy Suppression Mechanism (CRSM). CRSM adopts vector quantization to generate a codebook, which is easily used to implement temporal-spatial RSA. CRSM not only achieves power saving and reliability for WSN, but also provides the predictability of network lifetime. Simulation result shows that the network lifetime of CRSM outperforms at least 23% of that of other RSAs.Keywords: Redundancy Suppression Algorithm (RSA), Threshold-based RSA, Temporal RSA, Spatial RSA and Codebookbase Redundancy Suppression Mechanism (CRSM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14392797 Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou
Authors: Hankun Lin, Yiqiang Xiao, Qiaosheng Zhan
Abstract:
Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2nd-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs.
Keywords: Outdoor shading devices, hot-humid area, temperature, ventilation, measurement, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10262796 Three Dimensional Numerical Simulation of a Full Scale CANDU Reactor Moderator to Study Temperature Fluctuations
Authors: A. Sarchami, N. Ashgriz, M. Kwee
Abstract:
Threedimensional numerical simulations are conducted on a full scale CANDU Moderator and Transient variations of the temperature and velocity distributions inside the tank are determined. The results show that the flow and temperature distributions inside the moderator tank are three dimensional and no symmetry plane can be identified.Competition between the upward moving buoyancy driven flows and the downward moving momentum driven flows, results in the formation of circulation zones. The moderator tank operates in the buoyancy driven mode and any small disturbances in the flow or temperature makes the system unstable and asymmetric. Different types of temperature fluctuations are noted inside the tank: (i) large amplitude are at the boundaries between the hot and cold (ii) low amplitude are in the core of the tank (iii) high frequency fluctuations are in the regions with high velocities and (iv) low frequency fluctuations are in the regions with lower velocities.
Keywords: Bruce, Fluctuations, Numerical, Temperature, Thermal hydraulics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19302795 Experimental Investigation of Adjacent Hall Structures Parameters
Authors: Ivelina N. Cholakova, Tihomir B. Takov, Radostin Ts. Tsankov, Nicolas Simonne, Slavka S. Tzanova
Abstract:
Adjacent Hall microsensors, comprising a silicon substrate and four contacts, providing simultaneously two supply inputs and two differential outputs, are characterized. The voltage related sensitivity is in the order of 0.11T-1, and a cancellation method for offset compensation is used, achieving residual offset in the micro scale which is also compared to a single Hall plate.Keywords: Adjacent Hall sensors, offset compensation, voltage related sensitivity, 0.18μm CMOS technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15102794 A Cross-Layer Approach for Cooperative MIMO Multi-hop Wireless Sensor Networks
Authors: Jain-Shing Liu
Abstract:
In this work, we study the problem of determining the minimum scheduling length that can satisfy end-to-end (ETE) traffic demand in scheduling-based multihop WSNs with cooperative multiple-input multiple-output (MIMO) transmission scheme. Specifically, we present a cross-layer formulation for the joint routing, scheduling and stream control problem by incorporating various power and rate adaptation schemes, and taking into account an antenna beam pattern model and the signal-to-interference-and-noise (SINR) constraint at the receiver. In the context, we also propose column generation (CG) solutions to get rid of the complexity requiring the enumeration of all possible sets of scheduling links.Keywords: Wireless Sensor Networks, Cross-Layer Design, CooperativeMIMO System, Column Generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16502793 Fuzzy Logic System for Tractive Performance Prediction of an Intelligent Air-Cushion Track Vehicle
Authors: Altab Hossain, Ataur Rahman, A. K. M. Mohiuddin, Yulfian Aminanda
Abstract:
Fuzzy logic system (FLS) is used in this study to predict the tractive performance in terms of traction force, and motion resistance for an intelligent air cushion track vehicle while it operates in the swamp peat. The system is effective to control the intelligent air –cushion system with measuring the vehicle traction force (TF), motion resistance (MR), cushion clearance height (CH) and cushion pressure (CP). Ultrasonic displacement sensor, pull-in solenoid electromagnetic switch, pressure control sensor, micro controller, and battery pH sensor are incorporated with the Fuzzy logic system to investigate experimentally the TF, MR, CH, and CP. In this study, a comparison for tractive performance of an intelligent air cushion track vehicle has been performed with the results obtained from the predicted values of FLS and experimental actual values. The mean relative error of actual and predicted values from the FLS model on traction force, and total motion resistance are found as 5.58 %, and 6.78 % respectively. For all parameters, the relative error of predicted values are found to be less than the acceptable limits. The goodness of fit of the prediction values from the FLS model on TF, and MR are found as 0.90, and 0.98 respectively.Keywords: Cushion pressure, Fuzzy logic, Motion resistance, Traction force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14932792 Design, Simulation, and Implementation of a Digital Pulse Oxygen Saturation Measurement System Using the Arduino Microcontroller
Authors: Muhibul Haque Bhuyan, Md. Refat Sarder
Abstract:
If a person can monitor his/her oxygen saturation level intermittently then he/she can identify his/her condition early and thus he/she can seek a doctor’s help. This paper reports the design, simulation, and implementation of a low-cost pulse oxygen saturation measurement device based on a reflective photoplethysmography (PPG) system using an integrated circuit sensor as the fundamental component of this health status checking device. The measurement of the physiological parameter is the blood oxygen saturation level (SpO2) in the peripheral capillary. This work has been implemented using an Arduino Uno R3 microcontroller along with this sensor integrated circuit (IC). The system is designed in the Proteus environment and then simulated to check its performance. After that, the hardware implementation is performed. We used a clipping type optical sensor to sense the arterial oxygen saturation level of blood signal from the fingertips of an individual and then transformed it into the digital data in the microcontroller through its programming its instruction. The designed system was tested by measuring the SpO2 level for several people of different ages, from 12 to 57 years of age. Besides, the same people were tested using a standard machine purchased from the market. Test results were found very satisfactory as the average percentage of error was very low, 1.59% only.
Keywords: Digital pulse oxygen saturation level, oximeter, measurement, design, simulation, implementation, proteus, Arduino Uno microcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18602791 Thermal Effect on Wave Interaction in Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry
Abstract:
There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.Keywords: Temperature dependent mechanical characteristics, wave propagation properties, damage detection, wave finite element, composite structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12092790 Design of Air Conditioning Automation for Patisserie Shopwindow
Authors: Kemal Tutuncu, Recai Ozcan
Abstract:
Having done in this study, air-conditioning automation for patisserie shopwindow was designed. In the cooling sector it is quite important to cooling up the air temperature in the shopwindow within short time interval. Otherwise the patisseries inside of the shopwindow will be spoilt in a few days. Additionally the humidity is other important parameter for the patisseries kept in shopwindow. It must be raised up to desired level in a quite short time. Traditional patisserie shopwindows only allow controlling temperature manually. There is no humidity control and humidity is supplied by fans that are directed to the water at the bottom of the shopwindows. In this study, humidity and temperature sensors (SHT11), PIC, AC motor controller, DC motor controller, ultrasonic nebulizer and other electronic circuit members were used to simulate air conditioning automation for patisserie shopwindow in proteus software package. The simulation results showed that temperature and humidity values are adjusted in desired time duration by openloop control technique. Outer and inner temperature and humidity values were used for control mechanism.
Keywords: Air conditioning automation, temperature and humidity, SHT11, AC motor controller, open-loop control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22042789 Numerical Simulation of Heat Exchanger Area of R410A-R23 and R404A-R508B Cascade Refrigeration System at Various Evaporating and Condensing Temperature
Authors: A. D. Parekh, P. R. Tailor
Abstract:
Capacity and efficiency of any refrigerating system diminish rapidly as the difference between the evaporating and condensing temperature is increased by reduction in the evaporator temperature. The single stage vapour compression refrigeration system is limited to an evaporator temperature of -40 0C. Below temperature of -40 0C the either cascade refrigeration system or multi stage vapour compression system is employed. Present work describes thermal design of main three heat exchangers namely condenser (HTS), cascade condenser and evaporator (LTS) of R404A-R508B and R410A-R23 cascade refrigeration system. Heat transfer area of condenser (HTS), cascade condenser and evaporator (LTS) for both systems have been compared and the effect of condensing and evaporating temperature on heat-transfer area for both systems have been studied under same operating condition. The results shows that the required heat-transfer area of condenser and cascade condenser for R410A-R23 cascade system is lower than the R404A-R508B cascade system but heat transfer area of evaporator is similar for both the system. The heat transfer area of condenser and cascade condenser decreases with increase in condensing temperature (Tc), whereas the heat transfer area of cascade condenser and evaporator increases with increase in evaporating temperature (Te).Keywords: Heat-transfer area, R410A, R404A, R508B, R23, Refrigeration system, Thermal design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24392788 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously
Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen
Abstract:
Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.
Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO2 cycle, transcritical CO2 cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10742787 Vehicle Position Estimation for Driver Assistance System
Authors: Hyun-Koo Kim, Sangmoon Lee, Ho-Youl Jung, Ju H. Park
Abstract:
We present a system that finds road boundaries and constructs the virtual lane based on fusion data from a laser and a monocular sensor, and detects forward vehicle position even in no lane markers or bad environmental conditions. When the road environment is dark or a lot of vehicles are parked on the both sides of the road, it is difficult to detect lane and road boundary. For this reason we use fusion of laser and vision sensor to extract road boundary to acquire three dimensional data. We use parabolic road model to calculate road boundaries which is based on vehicle and sensors state parameters and construct virtual lane. And then we distinguish vehicle position in each lane.Keywords: Vehicle Detection, Adaboost, Haar-like Feature, Road Boundary Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16402786 Thermal Analysis of the Fuse with Unequal Fuse Links Using Finite Element Method
Authors: Adrian T.Pleşca
Abstract:
In this paper a three dimensional thermal model of high breaking capacity fuse with unequal fuse links is proposed for both steady-state or transient conditions. The influence of ambient temperature and electric current on the temperature distribution inside the fuse, has been investigated. A thermal analysis of the unbalanced distribution of the electric current through the fuse elements and their influence on fuse link temperature rise, has been performed. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.Keywords: Electric fuse, fuse links, temperature distribution, thermal analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28112785 Robust Sensorless Speed Control of Induction Motor with DTFC and Fuzzy Speed Regulator
Authors: Jagadish H. Pujar, S. F. Kodad
Abstract:
Recent developments in Soft computing techniques, power electronic switches and low-cost computational hardware have made it possible to design and implement sophisticated control strategies for sensorless speed control of AC motor drives. Such an attempt has been made in this work, for Sensorless Speed Control of Induction Motor (IM) by means of Direct Torque Fuzzy Control (DTFC), PI-type fuzzy speed regulator and MRAS speed estimator strategy, which is absolutely nonlinear in its nature. Direct torque control is known to produce quick and robust response in AC drive system. However, during steady state, torque, flux and current ripple occurs. So, the performance of conventional DTC with PI speed regulator can be improved by implementing fuzzy logic techniques. Certain important issues in design including the space vector modulated (SVM) 3-Ф voltage source inverter, DTFC design, generation of reference torque using PI-type fuzzy speed regulator and sensor less speed estimator have been resolved. The proposed scheme is validated through extensive numerical simulations on MATLAB. The simulated results indicate the sensor less speed control of IM with DTFC and PI-type fuzzy speed regulator provides satisfactory high dynamic and static performance compare to conventional DTC with PI speed regulator.Keywords: Sensor-less Speed Estimator, Fuzzy Logic Control(FLC), SVM, DTC, DTFC, IM, fuzzy speed regulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24962784 A Dynamic Equation for Downscaling Surface Air Temperature
Authors: Ch. Surawut, D. Sukawat
Abstract:
In order to utilize results from global climate models, dynamical and statistical downscaling techniques have been developed. For dynamical downscaling, usually a limited area numerical model is used, with associated high computational cost. This research proposes dynamic equation for specific space-time regional climate downscaling from the Educational Global Climate Model (EdGCM) for Southeast Asia. The equation is for surface air temperature. This equation provides downscaling values of surface air temperature at any specific location and time without running a regional climate model. In the proposed equations, surface air temperature is approximated from ground temperature, sensible heat flux and 2m wind speed. Results from the application of the equation show that the errors from the proposed equations are less than the errors for direct interpolation from EdGCM.Keywords: Dynamic Equation, Downscaling, Inverse distance weight interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24552783 Finite Element Investigation of Transmission Conditions for Non-Monotonic Temperature Interphases
Authors: Hamid Mozafari, Andreas Öchsner, Amran Alias
Abstract:
Imperfect transmission conditions modeling a thin reactive 2D interphases layer between two dissimilar bonded strips have been extracted. In this paper, the soundness of these transmission conditions for heat conduction problems are examined by the finite element method for a strong temperature-dependent source or sink and non-monotonic temperature distributions around the faces..
Keywords: Imperfect interface, Transmission conditions, Finiteelement analysis, Interphase
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15092782 Numerical Simulation of Iron Ore Reactor Isobaric and Cooling zone to Investigate Total Carbon Formation in Sponge Iron
Authors: B. Alamsari, S. Torii, A. Trianto, Y. Bindar
Abstract:
Isobaric and cooling zone of iron ore reactor have been simulated. In this paper, heat and mass transfer equation are formulated to perform the temperature and concentration of gas and solid phase respectively. Temperature profile for isobaric zone is simulated on the range temperature of 873-1163K while cooling zone is simulated on the range temperature of 733-1139K. The simulation results have a good agreement with the plant data. Total carbon formation in the isobaric zone is only 30% of total carbon contained in the sponge iron product. The formation of Fe3C in isobaric zone reduces metallization degree up to 0.58% whereas reduction of metallization degree in cooling zone up to 1.139%. The decreasing of sponge iron temperature in the isobaric and cooling zone is around 300 K and 600 K respectively.Keywords: Mathematical Model, Iron Ore Reactor, Cooling Zone, Isobaric zone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16392781 SNC Based Network Layer Design for Underwater Wireless Communication Used in Coral Farms
Authors: T. T. Manikandan, Rajeev Sukumaran
Abstract:
For maintaining the biodiversity of many ecosystems the existence of coral reefs play a vital role. But due to many factors such as pollution and coral mining, coral reefs are dying day by day. One way to protect the coral reefs is to farm them in a carefully monitored underwater environment and restore it in place of dead corals. For successful farming of corals in coral farms, different parameters of the water in the farming area need to be monitored and maintained at optimal level. Sensing underwater parameters using wireless sensor nodes is an effective way for precise and continuous monitoring in a highly dynamic environment like oceans. Here the sensed information is of varying importance and it needs to be provided with desired Quality of Service(QoS) guarantees in delivering the information to offshore monitoring centers. The main interest of this research is Stochastic Network Calculus (SNC) based modeling of network layer design for underwater wireless sensor communication. The model proposed in this research enforces differentiation of service in underwater wireless sensor communication with the help of buffer sizing and link scheduling. The delay and backlog bounds for such differentiated services are analytically derived using stochastic network calculus.
Keywords: Underwater Coral Farms, SNC, differentiated service, delay bound, backlog bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3672780 Influence of Ambient Condition on Performance of Wet Compression Process
Authors: Kyoung Hoon Kim
Abstract:
Gas turbine systems with wet compression have a potential for future power generation, since they can offer a high efficiency and a high specific power with a relatively low cost. In this study influence of ambient condition on the performance of the wet compression process is investigated with a non-equilibrium analytical modeling based on droplet evaporation. Transient behaviors of droplet diameter and temperature of mixed air are investigated for various ambient temperatures. Special attention is paid for the effects of ambient temperature, pressure ratio, and water injection ratios on the important wet compression variables including compressor outlet temperature and compression work. Parametric studies show that downing of the ambient temperature leads to lower compressor outlet temperature and consequently lower consumption of compression work even in wet compression processes.Keywords: water injection, droplet evaporation, wet compression, gas turbine, ambient condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754