Search results for: miniaturized tensile specimen
538 Thermal Treatments and Characteristics Study On Unalloyed Structural (AISI 1140) Steel
Authors: S. S. Sharma, P. R. Prabhu, Rajagopal Chadaga
Abstract:
The main emphasis of metallurgists has been to process the materials to obtain the balanced mechanical properties for the given application. One of the processing routes to alter the properties is heat treatment. Nearly 90% of the structural applications are related to the medium carbon an alloyed steels and hence are regarded as structural steels. The major requirement in the conventional steel is to improve workability, toughness, hardness and grain refinement. In this view, it is proposed to study the mechanical and tribological properties of unalloyed structural (AISI 1140) steel with different thermal (heat) treatments like annealing, normalizing, tempering and hardening and compared with as brought (cold worked) specimen. All heat treatments are carried out in atmospheric condition. Hardening treatment improves hardness of the material, a marginal decrease in hardness value with improved ductility is observed in tempering. Annealing and normalizing improve ductility of the specimen. Normalized specimen shows ultimate ductility. Hardened specimen shows highest wear resistance in the initial period of slide wear where as above 25KM of sliding distance, as brought steel dominates the hardened specimen. Both mild and severe wear regions are observed. Microstructural analysis shows the existence of pearlitic structure in normalized specimen, lath martensitic structure in hardened, pearlitic, ferritic structure in annealed specimen.
Keywords: Annealing, hardness, heat treatment, normalizing, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113537 Development of a Sliding-tearing Mode Fracture Mechanical Tool for Laminated Composite Materials
Authors: Andras Szekrenyes
Abstract:
This work presents the mixed-mode II/III prestressed split-cantilever beam specimen for the fracture testing of composite materials. In accordance with the concept of prestressed composite beams one of the two fracture modes is provided by the prestressed state of the specimen, and the other one is increased up to fracture initiation by using a testing machine. The novel beam-like specimen is able to provide any combination of the mode-II and mode-III energy release rates. A simple closed-form solution is developed using beam theory as a data reduction scheme and for the calculation of the energy release rates in the new configuration. The applicability and the limitations of the novel fracture mechanical test are demonstrated using unidirectional glass/polyester composite specimens. If only crack propagation onset is involved then the mixed-mode beam specimen can be used to obtain the fracture criterion of transparent composite materials in the GII - GIII plane in a relatively simple way.
Keywords: Composite, fracture mechanics, toughness testing, mixed-mode II/III fracture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939536 Study of Ageing Deterioration of Silicone Rubber Housing Material for Outdoor Polymer Insulators
Authors: S. Thong-om, W. Payakcho, J. Grasasom, B. Marungsri
Abstract:
This paper presents the experimental results of salt fog ageing test of silicone rubber housing material for outdoor polymer insulator based on IEC 61109. Four types of HTV silicone rubber sheet with different amount of ATH were tested continuously 1000<=hours in salt fog chamber. By visual observation after tested, slightly surface erosion was observed on tested specimen surface near the energized end. Furthermore, increasing in hardness and reduction in hydrophobicity were measured on tested specimen comparing with new specimen. In addition, chemical analysis by ATRFTIR was conducted in order to elucidate the chemical change of tested specimens comparing with new specimen. Physical and chemical results confirmed the experimental results as well.
Keywords: Accelerated ageing test, HTV silicone rubber, housing material, salt fog test, surface erosion, polymer insulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085535 Temperature-Based Detection of Initial Yielding Point in Loading of Tensile Specimens Made of Structural Steel
Authors: Aqsa Jamil, Hiroshi Tamura, Hiroshi Katsuchi, Jiaqi Wang
Abstract:
Yield point represents the upper limit of forces which can be applied on a specimen without causing any permanent deformation. After yielding, the behavior of specimen suddenly changes including the possibility of cracking or buckling. So, the accumulation of damage or type of fracture changes depending on this condition. As it is difficult to accurately detect yield points of the several stress concentration points in structural steel specimens, an effort has been made in this research work to develop a convenient technique using thermography (temperature-based detection) during tensile tests for the precise detection of yield point initiation. To verify the applicability of thermography camera, tests were conducted under different loading conditions and measuring the deformation by installing various strain gauges and monitoring the surface temperature with the help of thermography camera. The yield point of specimens was estimated by the help of temperature dip which occurs due to the thermoelastic effect during the plastic deformation. The scattering of the data has been checked by performing repeatability analysis. The effect of temperature imperfection and light source has been checked by carrying out the tests at daytime as well as midnight and by calculating the signal to noise ratio (SNR) of the noised data from the infrared thermography camera, it can be concluded that the camera is independent of testing time and the presence of a visible light source. Furthermore, a fully coupled thermal-stress analysis has been performed by using Abaqus/Standard exact implementation technique to validate the temperature profiles obtained from the thermography camera and to check the feasibility of numerical simulation for the prediction of results extracted with the help of thermographic technique.
Keywords: Signal to noise ratio, thermoelastic effect, thermography, yield point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 367534 Fracture Location Characterizations of Dissimilar Friction Stir Welds
Authors: Esther T. Akinlabi, Stephen A. Akinlabi
Abstract:
This paper reports the tensile fracture location characterizations of dissimilar friction stir welds between 5754 aluminium alloy and C11000 copper. The welds were produced using three shoulder diameter tools; namely, 15, 18 and 25 mm by varying the process parameters. The rotational speeds considered were 600, 950 and 1200 rpm while the feed rates employed were 50, 150 and 300 mm/min to represent the low, medium and high settings respectively. The tensile fracture locations were evaluated using the optical microscope to identify the fracture locations and were characterized. It was observed that 70% of the tensile samples failed in the Thermo Mechanically Affected Zone (TMAZ) of copper at the weld joints. Further evaluation of the fracture surfaces of the pulled tensile samples revealed that welds with low Ultimate Tensile Strength either have defects or intermetallics present at their joint interfaces.Keywords: fracture location, friction stir welding, intermetallics, metallography,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970533 Experimental Investigation on Cold-Formed Steel Foamed Concrete Composite Wall under Compression
Authors: Zhifeng Xu, Zhongfan Chen
Abstract:
A series of tests on cold-formed steel foamed concrete (CSFC) composite walls subjected to axial load were proposed. The primary purpose of the experiments was to study the mechanical behavior and identify the failure modes of CSFC composite walls. Two main factors were considered in this study: 1) specimen with pouring foamed concrete or without and 2) different foamed concrete density ranks (corresponding to different foamed concrete strength). The interior space between two pieces of straw board of the specimen W-2 and W-3 were poured foamed concrete, and the specimen W-1 does not have foamed concrete core. The foamed concrete density rank of the specimen W-2 was A05 grade, and that of the specimen W-3 was A07 grade. Results showed that the failure mode of CSFC composite wall without foamed concrete was distortional buckling of cold-formed steel (CFS) column, and that poured foamed concrete includes the local crushing of foamed concrete and local buckling of CFS column, but the former prior to the later. Compared with CSFC composite wall without foamed concrete, the ultimate bearing capacity of spec imens poured A05 grade and A07 grade foamed concrete increased 1.6 times and 2.2 times respectively, and specimen poured foamed concrete had a low vertical deformation. According to these results, the simplified calculation formula for the CSFC wall subjected to axial load was proposed, and the calculated results from this formula are in very good agreement with the test results.
Keywords: Cold-formed steel, composite wall, foamed concrete, axial behavior test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343532 Fracture Toughness Characterization of Carbon-Epoxy Composite using Arcan Specimen
Authors: M. Nikbakht, N. Choupani
Abstract:
In this study the behavior of interlaminar fracture of carbon-epoxy thermoplastic laminated composite is investigated numerically and experimentally. Tests are performed with Arcan specimens. Testing with Arcan specimen gives the opportunity of utilizing just one kind of specimen for extracting fracture properties for mode I, mode II and different mixed mode ratios of materials with exerting load via different loading angles. Variation of loading angles in range of 0-90° made possible to achieve different mixed mode ratios. Correction factors for various conditions are obtained from ABAQUS 2D finite element models which demonstrate the finite shape of Arcan specimens used in this study. Finally, applying the correction factors to critical loads obtained experimentally, critical interlaminar fracture toughness of this type of carbon- epoxy composite has been attained.Keywords: Fracture Mechanics, Mixed Mode, Arcan Specimen, Finite Element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2900531 Development of Tensile Stress-Strain Relationship for High-Strength Steel Fiber Reinforced Concrete
Authors: H. A. Alguhi, W. A. Elsaigh
Abstract:
This paper provides a tensile stress-strain (σ-ε) relationship for High-Strength Steel Fiber Reinforced Concrete (HSFRC). Load-deflection (P-δ) behavior of HSFRC beams tested under four-point flexural load were used with inverse analysis to calculate the tensile σ-ε relationship for various tested concrete grades (70 and 90MPa) containing 60 kg/m3 (0.76 %) of hook-end steel fibers. A first estimate of the tensile (σ-ε) relationship is obtained using RILEM TC 162-TDF and other methods available in literature, frequently used for determining tensile σ-ε relationship of Normal-Strength Concrete (NSC) Non-Linear Finite Element Analysis (NLFEA) package ABAQUS® is used to model the beam’s P-δ behavior. The results have shown that an element-size dependent tensile σ-ε relationship for HSFRC can be successfully generated and adopted for further analyses involving HSFRC structures.Keywords: Tensile stress-strain, flexural response, high strength concrete, steel fibers, non-linear finite element analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169530 Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy
Authors: N. H. Othman, N. Udin, M. Ishak, L. H. Shah
Abstract:
This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed.Keywords: Friction stir welding, magnesium AZ31, cylindrical taper tool, taper pin ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607529 The Effect of Choke on the Efficiency of Coaxial Antenna for Percutaneous Microwave Coagulation Therapy for Hepatic Tumor
Authors: Surita Maini
Abstract:
There are many perceived advantages of microwave ablation have driven researchers to develop innovative antennas to effectively treat deep-seated, non-resectable hepatic tumors. In this paper a coaxial antenna with a miniaturized sleeve choke has been discussed for microwave interstitial ablation therapy, in order to reduce backward heating effects irrespective of the insertion depth into the tissue. Two dimensional Finite Element Method (FEM) is used to simulate and measure the results of miniaturized sleeve choke antenna. This paper emphasizes the importance of factors that can affect simulation accuracy, which include mesh resolution, surface heating and reflection coefficient. Quarter wavelength choke effectiveness has been discussed by comparing it with the unchoked antenna with same dimensions.Keywords: Microwave ablation, tumor, Finite Element Method, Coaxial slot antenna, Coaxial dipole antenna.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609528 Determining the Mode II Intra-Ply Energy Release Rate of Composites Made of Prepreg
Authors: Philip Rose, Markus Linke, David Busquets
Abstract:
The distinction between interlaminar and intralaminar fracture toughness is challenging. For loading mode I, the double cantilever beam specimens were often used for the interlaminar fracture toughness and the compact tension specimen for the intralaminar fracture toughness. For the analysis of interlaminar properties regarding energy release under different loading modes, the geometry of the DCB specimen can also be tested under three-point bending for Mode II characteristics. The same specimen can also be tested with defined superimposed loading conditions (mixed mode) using the Mixed Mode Bending test apparatus. However, this approach has not been applicable for intralaminar characteristics, as crack initiation in a single layer for laminates made out of prepreg, has not been feasible. The method presented in this work enables differentiation of interlaminar and intralaminar energy release rates in Mode II loading with nearly identical specimen geometry. With this, a practically identical energy release rate is observed in Mode II for the investigated material IM7/8552.
Keywords: Fibre reinforced plastics, end-notched flexure, energy release rate, fracture toughness, intralaminar, interlaminar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201527 The Effect of Type of Nanoparticles on the Quenching Process
Authors: Dogan Ciloglu, Abdurrahim Bolukbasi, Harun Cifci
Abstract:
In this study, the experiments were carried out to determine the best coolant for the quenching process among waterbased silica, alumina, titania and copper oxide nanofluids (0.1 vol%). A sphere made up off brass material was used in the experiments. When the spherical test specimen was heated at high temperatures, it was suddenly immersed into the nanofluids. All experiments were carried out at saturated conditions and under atmospheric pressure. After the experiments, the cooling curves were obtained by using the temperature-time data of the specimen. The experimental results showed that the cooling performance of test specimen depended on the type of nanofluids. The silica nanoparticles enhanced the performance of boiling heat transfer and it is the best coolant for the quenching among other nanoparticles.Keywords: Heat transfer, nanofluid, pool boiling, quenching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606526 Effect of Cladding Direction on Residual Stress Distribution in Laser Cladded Rails
Authors: Taposh Roy, Anna Paradowska, Ralph Abrahams, Quan Lai, Michael Law, Peter Mutton, Mehdi Soodi, Wenyi Yan
Abstract:
In this investigation, a laser cladding process with a powder feeding was used to deposit stainless steel 410L (high strength, excellent resistance to abrasion and corrosion, and great laser compatibility) onto railhead (higher strength, heat treated hypereutectoid rail grade manufactured in accordance with the requirements of European standard EN 13674 Part 1 for R400HT grade), to investigate the development and controllability of process-induced residual stress in the cladding, heat-affected zone (HAZ) and substrate and to analyse their correlation with hardness profile during two different laser cladding directions (across and along the track). Residual stresses were analysed by neutron diffraction at OPAL reactor, ANSTO. Neutron diffraction was carried out on the samples in longitudinal (parallel to the rail), transverse (perpendicular to the rail) and normal (through thickness) directions with high spatial resolution through the thickness. Due to the thick rail and thin cladding, 4 mm thick reference samples were prepared from every specimen by Electric Discharge Machining (EDM). Metallography across the laser claded sample revealed four distinct zones: The clad zone, the dilution zone, HAZ and the substrate. Compressive residual stresses were found in the clad zone and tensile residual stress in the dilution zone and HAZ. Laser cladding in longitudinally cladding induced higher tensile stress in the HAZ, whereas transversely cladding rail showed lower tensile behavior.
Keywords: Laser cladding, residual stress, neutron diffraction, HAZ.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012525 Relocation of Plastic Hinge of Interior Beam-Column Connections with Intermediate Bars in Reinforced Concrete and T-Section Steel Inserts in Precast Concrete Frames
Authors: P. Wongmatar, C. Hansapinyo, C. Buachart
Abstract:
Failure of typical seismic frames has been found by plastic hinge occurring on beams section near column faces. On the other hand, the seismic capacity of the frames can be enhanced if the plastic hinges of the beams are shifted away from the column faces. This paper presents detailing of reinforcements in the interior beam– column connections aiming to relocate the plastic hinge of reinforced concrete and precast concrete frames. Four specimens were tested under quasi-static cyclic load including two monolithic specimens and two precast specimens. For one monolithic specimen, typical seismic reinforcement was provided and considered as a reference specimen named M1. The other reinforced concrete frame M2 contained additional intermediate steel in the connection area compared with the specimen M1. For the precast specimens, embedded T-section steels in joint were provided, with and without diagonal bars in the connection area for specimen P1 and P2, respectively. The test results indicated the ductile failure with beam flexural failure in monolithic specimen M1 and the intermediate steel increased strength and improved joint performance of specimen M2. For the precast specimens, cracks generated at the end of the steel inserts. However, slipping of reinforcing steel lapped in top of the beams was seen before yielding of the main bars leading to the brittle failure. The diagonal bars in precast specimens P2 improved the connection stiffness and the energy dissipation capacity.Keywords: Relocation, Plastic hinge, Intermediate bar, Tsection steel, Precast concrete frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3344524 Design and Fabrication of a Miniaturized Microstrip Antenna Loaded by DNG Metamaterial
Authors: A. Ghaznavi Jahromi, F. Mohajeri
Abstract:
In this paper the design, fabrication, and testing of a miniaturized rectangular microstrip patch antenna loaded with DNG metamaterials is reported. The metamaterial is composed of two nested spiral strips and a single straight strip which are etched on two sides of a 5.7 mm×5.7 mm Rogers RT/duroid 5880 with 0.5 mm thickness and dielectric constant of 2.2. Two units of this structure as a double negative (DNG) medium in combination with air as a double positive (DPS) medium are used as substrate of the microstrip patch antenna. By placing these metamaterial structures under the patch, a sub-wavelength resonance occurs which leads to a smaller size patch antenna compared to the conventional antenna at that frequency. The total size of the proposed antenna is reduced 54.6%. The dimensions of the proposed patch antenna are significantly smaller than the wavelength of the operation frequency with respect to the conventional patch antenna. Simulation result and test result for the proposed patch antenna are given and compared.
Keywords: Antennas, Metamaterials, Microstrip Antennas, Miniaturization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2961523 Mechanical Behavior of Recycled Pet Fiber Reinforced Concrete Matrix
Authors: Comingstarful Marthong, Deba Kumar Sarma
Abstract:
Concrete is strong in compression however weak in tension. The tensile strength as well as ductile property of concrete could be improved by addition of short dispersed fibers. Polyethylene terephthalate (PET) fiber obtained from hand cutting or mechanical slitting of plastic sheets generally used as discrete reinforcement in substitution of steel fiber. PET fiber obtained from the former process is in the form of straight slit sheet pattern that impart weaker mechanical bonding behavior in the concrete matrix. To improve the limitation of straight slit sheet fiber the present study considered two additional geometry of fiber namely (a) flattened end slit sheet and (b) deformed slit sheet. The mix for plain concrete was design for a compressive strength of 25 MPa at 28 days curing time with a watercement ratio of 0.5. Cylindrical and beam specimens with 0.5% fibers volume fraction and without fibers were cast to investigate the influence of geometry on the mechanical properties of concrete. The performance parameters mainly studied include flexural strength, splitting tensile strength, compressive strength and ultrasonic pulse velocity (UPV). Test results show that geometry of fiber has a marginal effect on the workability of concrete. However, it plays a significant role in achieving a good compressive and tensile strength of concrete. Further, significant improvement in term of flexural and energy dissipation capacity were observed from other fibers as compared to the straight slit sheet pattern. Also, the inclusion of PET fiber improved the ability in absorbing energy in the post-cracking state of the specimen as well as no significant porous structures.Keywords: Concrete matrix, polyethylene terephthalate (PET) fibers, mechanical bonding, mechanical properties, UPV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052522 Difference of Properties on Surface Leakage and Discharge Currents of Porcelain Insulator Material
Authors: Waluyo, Ngapuli I. Sinisuka, Suwarno, Maman A. Djauhari
Abstract:
This paper presents the experimental results of comparison between leakage currents and discharge currents. The leakage currents were obtained on polluted porcelain insulator. Whereas, the discharge currents were obtained on lightly artificial polluted porcelain specimen. The conducted measurements were leakage current or discharge current and applied voltage. The insulator or specimen was in a hermetically sealed chamber, and the current waveforms were analyzed using FFT. The result indicated that the leakage current (LC) on low RH condition the fifth harmonic would be visible, and followed by the seventh harmonic. The insulator had capacitive property. Otherwise, on 99% relative humidity, the fifth harmonic would also be visible, and the phase angle reached up to 12.2 degree. Whereas, on discharge current, the third harmonic would be visible, and followed by fifth harmonic. The third harmonic would increase as pressure reduced. On this condition, the specimen had a non-linear characteristicsKeywords: leakage current, discharge current, third harmonic, fifth harmonic, porcelain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650521 Numerical Investigation of Delamination in Carbon-Epoxy Composite using Arcan Specimen
Authors: M. Nikbakht, N. Choupani
Abstract:
In this paper delamination phenomenon in Carbon-Epoxy laminated composite material is investigated numerically. Arcan apparatus and specimen is modeled in ABAQUS finite element software for different loading conditions and crack geometries. The influence of variation of crack geometry on interlaminar fracture stress intensity factor and energy release rate for various mixed mode ratios and pure mode I and II was studied. Also, correction factors for this specimen for different crack length ratios were calculated. The finite element results indicate that for loading angles close to pure mode-II loading, a high ratio of mode-II to mode-I fracture is dominant and there is an opposite trend for loading angles close to pure mode-I loading. It confirms that by varying the loading angle of Arcan specimen pure mode-I, pure mode-II and a wide range of mixed-mode loading conditions can be created and tested. Also, numerical results confirm that the increase of the mode- II loading contribution leads to an increase of fracture resistance in the CF/PEI composite (i.e., a reduction in the total strain energy release rate) and the increase of the crack length leads to a reduction of interlaminar fracture resistance in the CF/PEI composite (i.e., an increase in the total interlaminar strain energy release rate).Keywords: Fracture Mechanics, Mixed Mode, Arcan Specimen, Finite Element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909520 An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 Aluminium Alloy
Authors: Lakshman Singh, Rajeshwar Singh, Naveen Kumar Singh, Davinder Singh, Pargat Singh
Abstract:
Tungsten Inert Gas (TIG) welding is a high quality welding process used to weld the thin metals and their alloy. 5083 Aluminium alloys play an important role in engineering and metallurgy field because of excellent corrosion properties, ease of fabrication and high specific strength coupled with best combination of toughness and formability.
TIG welding technique is one of the precise and fastest processes used in aerospace, ship and marine industries. TIG welding process is used to analyze the data and evaluate the influence of input parameters on tensile strength of 5083 Al-alloy specimens with dimensions of 100mm long x 15mm wide x 5mm thick. Welding current (I), gas flow rate (G) and welding speed (S) are the input parameters which effect tensile strength of 5083 Al-alloy welded joints. As welding speed increased, tensile strength increases first till optimum value and after that both decreases by increasing welding speed further. Results of the study show that maximum tensile strength of 129 MPa of weld joint are obtained at welding current of 240 Amps, gas flow rate of 7 Lt/min and welding speed of 98 mm/min. These values are the optimum values of input parameters which help to produce efficient weld joint that have good mechanical properties as a tensile strength.
Keywords: 5083 Aluminium alloy, Gas flow rate, TIG welding, Welding current, Welding speed and Tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4085519 An Experimental Study on the Tensile Behavior of the Cracked Aluminum Plates Repaired with FML Composite Patches
Authors: A. Pourkamali Anaraki, G. H. Payganeh, F. Ashena ghasemi, A. Fallah
Abstract:
Repairing of the cracks by fiber metal laminates (FMLs) was first done by some aeronautical laboratories in early 1970s. In this study, experimental investigations were done on the effect of repairing the center-cracked aluminum plates using the FML patches. The repairing processes were conducted to characterize the response of the repaired structures to tensile tests. The composite patches were made of one aluminum layer and two woven glassepoxy composite layers. Three different crack lengths in three crack angles and different patch lay-ups were examined. It was observed for the lengthen cracks, the effect of increasing the crack angle on ultimate tensile load in the structure was increase. It was indicated that the situation of metal layer in the FML patches had an important effect on the tensile response of the tested specimens. It was found when the aluminum layer is farther, the ultimate tensile load has the highest amount.Keywords: Crack, Composite patch repair, Fiber metal laminate (FML), Patch Lay-up, Repair surface, Ultimate load
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843518 Fatigue Crack Initiation of Al-Alloys “Effect of Heat Treatment Condition”
Authors: M. Benachour, N. Benachour, M. Benguediab
Abstract:
In this investigation an empirical study was made on fatigue crack initiation on 7075 T6 and 7075 T71 Al-alloys under constant amplitude loading. In initiation stage, local strain approach at the notch was applied. Single Edge Notch Tensile specimen with semi circular notch is used. Based on experimental results, effect of mean stress, is highlights on fatigue initiation life. Results show that fatigue life initiation is affected by notch geometry and mean stress.
Keywords: Fatigue crack initiation, Al-Alloy, mean stress, heat treatment state.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2970517 Effect of Miniature Cracks on the Fracture Strength and Strain of Tensile Armour Wires
Authors: Kazeem K. Adewole, Steve J. Bull
Abstract:
Tensile armour wires provide a flexible pipe's resistance to longitudinal stresses. Flexible pipe manufacturers need to know the effect of defects such as scratches and cracks, with dimensions less than 0.2mm which is the limit of the current nondestructive detection technology, on the fracture stress and fracture strain of the wire for quality assurance purposes. Recent research involving the determination of the fracture strength of cracked wires employed laboratory testing and classical fracture mechanics approach using non-standardised fracture mechanics specimens because standard test specimens could not be manufactured from the wires owing to their sizes. In this work, the effect of miniature cracks on the fracture properties of tensile armour wires was investigated using laboratory and finite element tensile testing simulations with the phenomenological shear fracture model. The investigation revealed that the presence of cracks shallower than 0.2mm is worse on the fracture strain of the wire.Keywords: Cracks, Finite Element Simulations, Fracture Mechanics, Shear Fracture Model, Tensile Armour Wire
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852516 Influence of Fibre Content on Crack Propagation Rate in Fibre-Reinforced Concrete Beams
Authors: Amir M. Alani, Morteza Aboutalebi, Martin J. King
Abstract:
Experimental study on the influence of fibre content on crack behaviour and propagation in synthetic-fibre reinforced beams has been reported in this paper. The tensile behaviour of metallic fibre concrete is evaluated in terms of residual flexural tensile strength values determined from the load-crack mouth opening displacement curve or load-deflection curve obtained by applying a centre-point load on a simply supported notched prism. The results achieved demonstrate that an increase in fibre content has an almost negligible effect on compressive and tensile splitting properties, causes a marginal increment in flexural tensile strength and increasesthe Re3 value.
Keywords: Fibre-Reinforced Concrete, Crack, Flexural Test, Ductility, Fibre Content, Experimental Study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3730515 Using Molecular Dynamics to Assess Mechanical Properties of PAN-Based Carbon Fibers Comprising Imperfect Crystals with Amorphous Structures
Authors: A. Ito, S. Okamoto
Abstract:
We constructed an atomic structure model for a PAN-based carbon fiber containing amorphous structures using molecular dynamics methods. It was found that basic physical properties such as crystallinity, Young’s modulus, and thermal conductivity of our model were nearly identical to those of real carbon fibers. We then obtained the tensile strength of a carbon fiber, which has no macro defects. We finally determined that the limitation of the tensile strength was 19 GPa.
Keywords: Amorphous, carbon fiber, molecular dynamics, tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3004514 Development of Impressive Tensile Properties of Hybrid Rolled Ta0.5Nb0.5Hf0.5ZrTi1.5 Refractory High Entropy Alloy
Authors: M. Veeresham
Abstract:
The microstructure, texture, phase stability, and tensile properties of annealed Ta0.5Nb0.5Hf0.5ZrTi1.5 alloy have been investigated in the present research. The alloy was severely hybrid-rolled up to 93.5% thickness reduction, subsequently rolled samples subjected to an annealing treatment at 800 °C and 1000 °C temperatures for 1 h. Consequently, the rolled condition and both annealed temperatures have a body-centered cubic (BCC) structure. Furthermore, quantitative texture measurements (orientation distribution function (ODF) analysis) and microstructural examinations (analytical electron backscatter diffraction (EBSD) maps) permitted to establish a good relationship between annealing texture and microstructure and universal testing machine (UTM) utilized for obtaining the mechanical properties. Impressive room temperature tensile properties combination with the tensile strength (1380 MPa) and (24.7%) elongation is achieved for the 800 °C heat-treated condition. The evolution of the coarse microstructure featured in the case of 1000 °C annealed temperature ascribed to the influence of high thermal energy.
Keywords: Refractory high entropy alloys, hybrid-rolling, recrystallization, microstructure, tensile properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679513 Structural Performance Evaluation of Electronic Road Sign Panels Reflecting Damage Scenarios
Authors: Junwon Seo, Bipin Adhikari, Euiseok Jeong
Abstract:
This paper is intended to evaluate the structural performance of welded electronic road signs under various damage scenarios (DSs) using a finite element (FE) model calibrated with full-scale ultimate load testing results. The tested electronic road sign specimen was built with a back skin made of 5052 aluminum and two channels and a frame made of 6061 aluminum, where the back skin was connected to the frame by welding. The size of the tested specimen was 1.52 m long, 1.43 m wide, and 0.28 m deep. An actuator applied vertical loads at the center of the back skin of the specimen, resulting in a displacement of 158.7 mm and an ultimate load of 153.46 kN. Using these testing data, generation and calibration of a FE model of the tested specimen were executed in ABAQUS, indicating that the difference in the ultimate load between the calibrated model simulation and full-scale testing was only 3.32%. Then, six different DSs were simulated where the areas of the welded connection in the calibrated model were diminished for the DSs. It was found that the corners at the back skin-frame joint were prone to connection failure for all the DSs, and failure of the back skin-frame connection occurred remarkably from the distant edges.
Keywords: Computational analysis, damage scenarios, electronic road signs, finite element, welded connections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389512 Effect of Applied Voltage Frequency on Electrical Treeing in 22 kV Cross-linked Polyethylene Insulated Cable
Authors: R. Thiamsri, N. Ruangkajonmathee, A. Oonsivilaiand B. Marungsri
Abstract:
This paper presents the experimental results on effect of applied voltage stress frequency to the occurrence of electrical treeing in 22 kV cross linked polyethylene (XLPE) insulated cable.Hallow disk of XLPE insulating material with thickness 5 mm taken from unused high voltage cable was used as the specimen in this study. Stainless steel needle was inserted gradually into the specimen to give a tip to earth plane electrode separation of 2.50.2 mm at elevated temperature 105-110°C. The specimen was then annealed for 5 minute to minimize any mechanical stress build up around the needle-plane region before it was cooled down to room temperature. Each specimen were subjected to the same applied voltage stress level at 8 kV AC rms, with various frequency, 50, 100, 500, 1000 and 2000 Hz. Initiation time, propagation speed and pattern of electrical treeing were examined in order to study the effect of applied voltage stress frequency. By the experimental results, initial time of visible treeing decreases with increasing in applied voltage frequency. Also, obviously, propagation speed of electrical treeing increases with increasing in applied voltage frequency.Furthermore, two types of electrical treeing, bush-like and branch-like treeing were observed.The experimental results confirmed the effect of voltage stress frequency as well.
Keywords: Voltage stress frequency, cross-linked polyethylene, electrical treeing, treeing propagation, treeing pattern
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621511 Influence of Silica Fume on High Strength Lightweight Concrete
Authors: H. Katkhuda, B. Hanayneh, N. Shatarat
Abstract:
The main objective of this paper is to determine the isolated effect of silica fume on tensile, compressive and flexure strengths on high strength lightweight concrete. Many experiments were carried out by replacing cement with different percentages of silica fume at different constant water-binder ratio keeping other mix design variables constant. The silica fume was replaced by 0%, 5%, 10%, 15%, 20% and 25% for a water-binder ratios ranging from 0.26 to 0.42. For all mixes, split tensile, compressive and flexure strengths were determined at 28 days. The results showed that the tensile, compressive and flexure strengths increased with silica fume incorporation but the optimum replacement percentage is not constant because it depends on the water–cementitious material (w/cm) ratio of the mix. Based on the results, a relationship between split tensile, compressive and flexure strengths of silica fume concrete was developed using statistical methods.Keywords: Silica fume, Lightweight, High strength concrete, and Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3754510 Tensile Properties of Aluminum Silicon Nickel Iron Vanadium High Entropy Alloys
Authors: Sefiu A. Bello, Nasirudeen K. Raji, Jeleel A. Adebisi, Sadiq A. Raji
Abstract:
Pure metals are not used in most cases for structural applications because of their limited properties. Presently, high entropy alloys (HEAs) are emerging by mixing comparative proportions of metals with the aim of maximizing the entropy leading to enhancement in structural and mechanical properties. Aluminum Silicon Nickel Iron Vanadium (AlSiNiFeV) alloy was developed using stir cast technique and analysed. Results obtained show that the alloy grade G0 contains 44 percentage by weight (wt%) Al, 32 wt% Si, 9 wt% Ni, 4 wt% Fe, 3 wt% V and 8 wt% for minor elements with tensile strength and elongation of 106 Nmm-2 and 2.68%, respectively. X-ray diffraction confirmed intermetallic compounds having hexagonal closed packed (HCP), orthorhombic and cubic structures in cubic dendritic matrix. This affirmed transformation from the cubic structures of elemental constituents of the HEAs to the precipitated structures of the intermetallic compounds. A maximum tensile strength of 188 Nmm-2 with 4% elongation was noticed at 10wt% of silica addition to the G0. An increase in tensile strength with an increment in silica content could be attributed to different phases and crystal geometries characterizing each HEA.
Keywords: High entropy alloys, phases, model, tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746509 Improving Concrete Properties with Fibers Addition
Authors: E. Mello, C. Ribellato, E. Mohamedelhassan
Abstract:
This study investigated the improvement in concrete properties with addition of cellulose, steel, carbon and PET fibers. Each fiber was added at four percentages to the fresh concrete, which was moist-cured for 28-days and then tested for compressive, flexural and tensile strengths. Changes in strength and increases in cost were analyzed. Results showed that addition of cellulose caused a decrease between 9.8% and 16.4% in compressive strength. This range may be acceptable as cellulose fibers can significantly increase the concrete resistance to fire, and freezing and thawing cycles. Addition of steel fibers to concreteincreased the compressive strength by up to 20%. Increases 121.5% and 80.7% were reported in tensile and flexural strengths respectively. Carbon fibers increased flexural and tensile strengths by up to 11% and 45%, respectively. Concrete strength properties decreased after the addition of PET fibers. Results showed that improvement in strength after addition of steel and carbon fibers may justify the extra cost of fibers.
Keywords: Concrete, compressive strength, fibers, flexural strength, tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11496