Search results for: Surveillance.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 129

Search results for: Surveillance.

99 Toward Indoor and Outdoor Surveillance Using an Improved Fast Background Subtraction Algorithm

Authors: A. El Harraj, N. Raissouni

Abstract:

The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes invariance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes.

Keywords: Video surveillance, background subtraction, Contrast Limited Histogram Equalization, illumination invariance, object tracking, object detection, behavior understanding, dynamic scenes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
98 Centralized Monitoring and Self-protected against Fiber Fault in FTTH Access Network

Authors: Mohammad Syuhaimi Ab-Rahman, Boonchuan Ng, Kasmiran Jumari

Abstract:

This paper presented a new approach for centralized monitoring and self-protected against fiber fault in fiber-to-the-home (FTTH) access network by using Smart Access Network Testing, Analyzing and Database (SANTAD). SANTAD will be installed with optical line terminal (OLT) at central office (CO) for in-service transmission surveillance and fiber fault localization within FTTH with point-to-multipoint (P2MP) configuration downwardly from CO towards customer residential locations based on the graphical user interface (GUI) processing capabilities of MATLAB software. SANTAD is able to detect any fiber fault as well as identify the failure location in the network system. SANTAD enable the status of each optical network unit (ONU) connected line is displayed onto one screen with capability to configure the attenuation and detect the failure simultaneously. The analysis results and information will be delivered to the field engineer for promptly actions, meanwhile the failure line will be diverted to protection line to ensure the traffic flow continuously. This approach has a bright prospect to improve the survivability and reliability as well as increase the efficiency and monitoring capabilities in FTTH.

Keywords: Fiber fault, FTTH, SANTAD, transmission surveillance, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
97 Using HMM-based Classifier Adapted to Background Noises with Improved Sounds Features for Audio Surveillance Application

Authors: Asma Rabaoui, Zied Lachiri, Noureddine Ellouze

Abstract:

Discrimination between different classes of environmental sounds is the goal of our work. The use of a sound recognition system can offer concrete potentialities for surveillance and security applications. The first paper contribution to this research field is represented by a thorough investigation of the applicability of state-of-the-art audio features in the domain of environmental sound recognition. Additionally, a set of novel features obtained by combining the basic parameters is introduced. The quality of the features investigated is evaluated by a HMM-based classifier to which a great interest was done. In fact, we propose to use a Multi-Style training system based on HMMs: one recognizer is trained on a database including different levels of background noises and is used as a universal recognizer for every environment. In order to enhance the system robustness by reducing the environmental variability, we explore different adaptation algorithms including Maximum Likelihood Linear Regression (MLLR), Maximum A Posteriori (MAP) and the MAP/MLLR algorithm that combines MAP and MLLR. Experimental evaluation shows that a rather good recognition rate can be reached, even under important noise degradation conditions when the system is fed by the convenient set of features.

Keywords: Sounds recognition, HMM classifier, Multi-style training, Environmental Adaptation, Feature combinations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
96 MATLAB-based System for Centralized Monitoring and Self Restoration against Fiber Fault in FTTH

Authors: Mohammad Syuhaimi Ab-Rahman, Boonchuan Ng, Kasmiran Jumari

Abstract:

This paper presented a MATLAB-based system named Smart Access Network Testing, Analyzing and Database (SANTAD), purposely for in-service transmission surveillance and self restoration against fiber fault in fiber-to-the-home (FTTH) access network. The developed program will be installed with optical line terminal (OLT) at central office (CO) to monitor the status and detect any fiber fault that occurs in FTTH downwardly from CO towards residential customer locations. SANTAD is interfaced with optical time domain reflectometer (OTDR) to accumulate every network testing result to be displayed on a single computer screen for further analysis. This program will identify and present the parameters of each optical fiber line such as the line's status either in working or nonworking condition, magnitude of decreasing at each point, failure location, and other details as shown in the OTDR's screen. The failure status will be delivered to field engineers for promptly actions, meanwhile the failure line will be diverted to protection line to ensure the traffic flow continuously. This approach has a bright prospect to improve the survivability and reliability as well as increase the efficiency and monitoring capabilities in FTTH.

Keywords: MATLAB, SANTAD, in-service transmission surveillance, self restoration, fiber fault, FTTH

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2114
95 Low Resolution Face Recognition Using Mixture of Experts

Authors: Fatemeh Behjati Ardakani, Fatemeh Khademian, Abbas Nowzari Dalini, Reza Ebrahimpour

Abstract:

Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this paper we introduce a new low resolution face recognition system based on mixture of expert neural networks. In order to produce the low resolution input images we down-sampled the 48 × 48 ORL images to 12 × 12 ones using the nearest neighbor interpolation method and after that applying the bicubic interpolation method yields enhanced images which is given to the Principal Component Analysis feature extractor system. Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in low resolution face recognition that is the recognition rate of 100% for the training set and 96.5% for the test set.

Keywords: Low resolution face recognition, Multilayered neuralnetwork, Mixture of experts neural network, Principal componentanalysis, Bicubic interpolation, Nearest neighbor interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
94 A Vehicular Visual Tracking System Incorporating Global Positioning System

Authors: Hsien-Chou Liao, Yu-Shiang Wang

Abstract:

Surveillance system is widely used in the traffic monitoring. The deployment of cameras is moving toward a ubiquitous camera (UbiCam) environment. In our previous study, a novel service, called GPS-VT, was firstly proposed by incorporating global positioning system (GPS) and visual tracking techniques for the UbiCam environment. The first prototype is called GODTA (GPS-based Moving Object Detection and Tracking Approach). For a moving person carried GPS-enabled mobile device, he can be tracking when he enters the field-of-view (FOV) of a camera according to his real-time GPS coordinate. In this paper, GPS-VT service is applied to the tracking of vehicles. The moving speed of a vehicle is much faster than a person. It means that the time passing through the FOV is much shorter than that of a person. Besides, the update interval of GPS coordinate is once per second, it is asynchronous with the frame rate of the real-time image. The above asynchronous is worsen by the network transmission delay. These factors are the main challenging to fulfill GPS-VT service on a vehicle.In order to overcome the influence of the above factors, a back-propagation neural network (BPNN) is used to predict the possible lane before the vehicle enters the FOV of a camera. Then, a template matching technique is used for the visual tracking of a target vehicle. The experimental result shows that the target vehicle can be located and tracking successfully. The success location rate of the implemented prototype is higher than that of the previous GODTA.

Keywords: visual surveillance, visual tracking, globalpositioning system, intelligent transportation system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
93 Automated Video Surveillance System for Detection of Suspicious Activities during Academic Offline Examination

Authors: G. Sandhya Devi, G. Suvarna Kumar, S. Chandini

Abstract:

This research work aims to develop a system that will analyze and identify students who indulge in malpractices/suspicious activities during the course of an academic offline examination. Automated Video Surveillance provides an optimal solution which helps in monitoring the students and identifying the malpractice event immediately. This work is organized into three modules. The first module deals with performing an impersonation check using a PCA-based face recognition method which is done by cross checking his profile with the database. The presence or absence of the student is even determined in this module by implementing an image registration technique wherein a grid is formed by considering all the images registered using the frontal camera at the determined positions. Second, detecting such facial malpractices in which a student gets involved in conversation with another, trying to obtain unauthorized information etc., based on the threshold range evaluated by considering his/her mouth state whether open or closed. The third module deals with identification of unauthorized material or gadgets used in the examination hall by training the positive samples of the object through various stages. Here, a top view camera feed is analyzed to detect the suspicious activities. The system automatically alerts the administration when any suspicious activities are identified, thereby reducing the error rate caused due to manual monitoring. This work is an improvement over our previous work published in identifying suspicious activities done by examinees in an offline examination.

Keywords: Impersonation, image registration, incrimination, object detection, threshold evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
92 Occurrence of Foreign Matter in Food: Applied Identification Method - Association of Official Agricultural Chemists (AOAC) and Food and Drug Administration (FDA)

Authors: E. C. Mattos, V. S. M. G. Daros, R. Dal Col, A. L. Nascimento

Abstract:

The aim of this study is to present the results of a retrospective survey on the foreign matter found in foods analyzed at the Adolfo Lutz Institute, from July 2001 to July 2015. All the analyses were conducted according to the official methods described on Association of Official Agricultural Chemists (AOAC) for the micro analytical procedures and Food and Drug Administration (FDA) for the macro analytical procedures. The results showed flours, cereals and derivatives such as baking and pasta products were the types of food where foreign matters were found more frequently followed by condiments and teas. Fragments of stored grains insects, its larvae, nets, excrement, dead mites and rodent excrement were the most foreign matter found in food. Besides, foreign matters that can cause a physical risk to the consumer’s health such as metal, stones, glass, wood were found but rarely. Miscellaneous (shell, sand, dirt and seeds) were also reported. There are a lot of extraneous materials that are considered unavoidable since are something inherent to the product itself, such as insect fragments in grains. In contrast, there are avoidable extraneous materials that are less tolerated because it is preventable with the Good Manufacturing Practice. The conclusion of this work is that although most extraneous materials found in food are considered unavoidable it is necessary to keep the Good Manufacturing Practice throughout the food processing as well as maintaining a constant surveillance of the production process in order to avoid accidents that may lead to occurrence of these extraneous materials in food.

Keywords: Food contamination, extraneous materials, foreign matter, surveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3701
91 The Role of Mobile Technology in Surveillance of Adverse Events Following Immunization during New Vaccines Introduction in Cameroon: A Cross-Sectional Study

Authors: A. A. Njoh, S. T. Ndoula, A. Adidja, G. N. Menan, A. Mengue, E. Mboke, H. B. Bachir, S. C. Nchinjoh, L. Adisso, Y. Saidu, L. Cleenewerck de Kiev

Abstract:

Vaccines serve a great deal in protecting the population globally. Vaccine products are subject to rigorous quality control and approval before use to ensure safety. Even if all actors take the required precautions, some people could still have adverse events following immunization (AEFI) caused by the vaccine composition or an error in its administration. AEFI underreporting is pronounced in low-income settings like Cameroon. The Country introduced electronic platforms to strengthen surveillance. With the introduction of many novel vaccines, like COVID-19 and the novel Oral Polio Vaccine (nOPV) 2, there was a need to monitor AEFI in Cameroon. A cross-sectional study was conducted from July to December 2022. Data on AEFI per region of Cameroon were reviewed for the previous five years. Data were analyzed with MS Excel, and the results were presented in proportions. AEFI reporting was uncommon in Cameroon. With the introduction of novel vaccines in 2021, the health authorities engaged in new tools and training to capture cases. AEFI detected almost doubled using the open data kit (ODK) compared to previous platforms, especially following the introduction of the nOPV2 and COVID-19 vaccines. The AEFI rate was 1.9 and 160 per administered 100,000 doses of nOPV2 and COVID-19 vaccines, respectively. This mobile tool captured individual information for people with AEFI from all regions. The platform helped to identify common AEFI following the use of these new vaccines. The ODK mobile technology was vital in improving AEFI reporting and providing data to monitor the use of new vaccines in Cameroon.

Keywords: Adverse events following immunization, AEFI, Cameroon, COVID-19 vaccines, novel oral polio vaccine 2, open data kit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171
90 Stereo Motion Tracking

Authors: Yudhajit Datta, Jonathan Bandi, Ankit Sethia, Hamsi Iyer

Abstract:

Motion Tracking and Stereo Vision are complicated, albeit well-understood problems in computer vision. Existing softwares that combine the two approaches to perform stereo motion tracking typically employ complicated and computationally expensive procedures. The purpose of this study is to create a simple and effective solution capable of combining the two approaches. The study aims to explore a strategy to combine the two techniques of two-dimensional motion tracking using Kalman Filter; and depth detection of object using Stereo Vision. In conventional approaches objects in the scene of interest are observed using a single camera. However for Stereo Motion Tracking; the scene of interest is observed using video feeds from two calibrated cameras. Using two simultaneous measurements from the two cameras a calculation for the depth of the object from the plane containing the cameras is made. The approach attempts to capture the entire three-dimensional spatial information of each object at the scene and represent it through a software estimator object. In discrete intervals, the estimator tracks object motion in the plane parallel to plane containing cameras and updates the perpendicular distance value of the object from the plane containing the cameras as depth. The ability to efficiently track the motion of objects in three-dimensional space using a simplified approach could prove to be an indispensable tool in a variety of surveillance scenarios. The approach may find application from high security surveillance scenes such as premises of bank vaults, prisons or other detention facilities; to low cost applications in supermarkets and car parking lots.

Keywords: Kalman Filter, Stereo Vision, Motion Tracking, Matlab, Object Tracking, Camera Calibration, Computer Vision System Toolbox.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2821
89 First Person View Camera Based Quadcopter with Raspberry Pi

Authors: C. R. Balamurugan, P. Vijayakumar, P. Kiruba, S. Arun Kanna, E. R. Hariprasath, C. Anu Priya

Abstract:

This paper studies in details about the need of quadcopter in various fields especially in the place of remote area where the road transportation facility is very less. It is used to monitor and collect data in a specific region. The movement of this quadcopter is controlled by the Raspberry Pi. FPV camera is used for capturing the image and will transmit the image to the receiver which can be monitored using an android smart phone. This is mainly used for surveillance purpose and hidden activities can be captured.

Keywords: FPV camera, A2212 brushless direct current motor, Raspberry Pi, lithium polymer battery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1059
88 Spatial Clustering Model of Vessel Trajectory to Extract Sailing Routes Based on AIS Data

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

The automatic extraction of shipping routes is advantageous for intelligent traffic management systems to identify events and support decision-making in maritime surveillance. At present, there is a high demand for the extraction of maritime traffic networks that resemble the real traffic of vessels accurately, which is valuable for further analytical processing tasks for vessels trajectories (e.g., naval routing and voyage planning, anomaly detection, destination prediction, time of arrival estimation). With the help of big data and processing huge amounts of vessels’ trajectory data, it is possible to learn these shipping routes from the navigation history of past behaviour of other, similar ships that were travelling in a given area. In this paper, we propose a spatial clustering model of vessels’ trajectories (SPTCLUST) to extract spatial representations of sailing routes from historical Automatic Identification System (AIS) data. The whole model consists of three main parts: data preprocessing, path finding, and route extraction, which consists of clustering and representative trajectory extraction. The proposed clustering method provides techniques to overcome the problems of: (i) optimal input parameters selection; (ii) the high complexity of processing a huge volume of multidimensional data; (iii) and the spatial representation of complete representative trajectory detection in the context of trajectory clustering algorithms. The experimental evaluation showed the effectiveness of the proposed model by using a real-world AIS dataset from the Port of Halifax. The results contribute to further understanding of shipping route patterns. This could aid surveillance authorities in stable and sustainable vessel traffic management.

Keywords: Vessel trajectory clustering, trajectory mining, Spatial Clustering, marine intelligent navigation, maritime traffic network extraction, sdailing routes extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452
87 H.263 Based Video Transceiver for Wireless Camera System

Authors: Won-Ho Kim

Abstract:

In this paper, a design of H.263 based wireless video transceiver is presented for wireless camera system. It uses standard WIFI transceiver and the covering area is up to 100m. Furthermore the standard H.263 video encoding technique is used for video compression since wireless video transmitter is unable to transmit high capacity raw data in real time and the implemented system is capable of streaming at speed of less than 1Mbps using NTSC 720x480 video.

Keywords: Digital signal processing, H.263 video encoder, surveillance camera, wireless video transceiver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
86 Scenario Recognition in Modern Building Automation

Authors: Roland Lang, Dietmar Bruckner, Rosemarie Velik, Tobias Deutsch

Abstract:

Modern building automation needs to deal with very different types of demands, depending on the use of a building and the persons acting in it. To meet the requirements of situation awareness in modern building automation, scenario recognition becomes more and more important in order to detect sequences of events and to react to them properly. We present two concepts of scenario recognition and their implementation, one based on predefined templates and the other applying an unsupervised learning algorithm using statistical methods. Implemented applications will be described and their advantages and disadvantages will be outlined.

Keywords: Building automation, ubiquitous computing, scenariorecognition, surveillance system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
85 Spread Spectrum Code Estimation by Genetic Algorithm

Authors: V. R. Asghari, M. Ardebilipour

Abstract:

In the context of spectrum surveillance, a method to recover the code of spread spectrum signal is presented, whereas the receiver has no knowledge of the transmitter-s spreading sequence. The approach is based on a genetic algorithm (GA), which is forced to model the received signal. Genetic algorithms (GAs) are well known for their robustness in solving complex optimization problems. Experimental results show that the method provides a good estimation, even when the signal power is below the noise power.

Keywords: Code estimation, genetic algorithms, spread spectrum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
84 People Counting in Transport Vehicles

Authors: Sebastien Harasse, Laurent Bonnaud, Michel Desvignes

Abstract:

Counting people from a video stream in a noisy environment is a challenging task. This project aims at developing a counting system for transport vehicles, integrated in a video surveillance product. This article presents a method for the detection and tracking of multiple faces in a video by using a model of first and second order local moments. An iterative process is used to estimate the position and shape of multiple faces in images, and to track them. the trajectories are then processed to count people entering and leaving the vehicle.

Keywords: face detection, tracking, counting, local statistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
83 Positivity Rate of Person under Surveillance among Institut Jantung Negara’s Patients with Various COVID-19 Vaccination Status in the First Quarter of 2022, Malaysia

Authors: M. Izzat Md. Nor, N. Jaffar, N. Zaitulakma Md. Zain, N. Izyanti Mohd Suppian, S. Balakrishnan, G. Kandavello

Abstract:

During the Coronavirus (COVID-19) pandemic, Malaysia has been focusing on building herd immunity by introducing vaccination programs into the community. Hospital Standard Operating Procedures (SOP) were developed to prevent inpatient transmission. In this study, we focus on the positivity rate of inpatient Person Under Surveillance (PUS) becoming COVID-19 positive and compare this to the national rate in order to see the outcomes of the patient who becomes COVID-19 positive in relation to their vaccination status. This is a retrospective observational study carried out from 1 January until 30 March 2022 in Institut Jantung Negara (IJN). There were 5,255 patients admitted during the time of this study. Pre-admission Polymerase Chain Reaction (PCR) swab was done for all patients. Patients with positive PCR on pre-admission screening were excluded. The patients who had exposure to COVID-19-positive staff or patients during hospitalization were defined as PUS and were quarantined and monitored for potential COVID-19 infection. Their frequency and risk of exposure (WHO definition) were recorded. On the final day of quarantine, a second PCR swab was performed on PUS patients who exhibit clinical deterioration, whether or not they exhibit COVID-19 symptoms. The severity of COVID-19 infection was defined as category 1-5A. All patients' vaccination status was recorded, and they were divided into three groups: fully immunised, partially immunised, and unvaccinated. We analysed the positivity rate of PUS patients becoming COVID-positive, outcomes, and correlation with the vaccination status. The ratio of positive inpatient PUS to the total inpatient PUS is 492; only 13 became positive, giving a positivity rate of 2.6%. Eight (62%) had multiple exposures. The majority, 8/13(72.7%), had a high-risk exposure, and the remaining 5 had medium-risk exposure. Four (30.8%) were boosted, 7(53.8%) were fully vaccinated, and 2(15.4%) were partial/unvaccinated. Eight patients were in categories 1-2, whilst 38% were in categories 3-5. Vaccination status did not correlate with COVID-19 Category (P = 0.641). One (7.7%) patient died due to COVID-19 complications and sepsis. Within the first quarter of 2022, our institution's positivity rate (2.6%) is significantly lower than the country's (14.4%). High-risk exposure and multiple exposures to positive COVID-19 cases increased the risk of PUS becoming COVID-19 positive despite their underlying vaccination status.

Keywords: COVID-19, boosted, high risk, Malaysia, quarantine, vaccination status.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 248
82 Human Verification in a Video Surveillance System Using Statistical Features

Authors: Sanpachai Huvanandana

Abstract:

A human verification system is presented in this paper. The system consists of several steps: background subtraction, thresholding, line connection, region growing, morphlogy, star skelatonization, feature extraction, feature matching, and decision making. The proposed system combines an advantage of star skeletonization and simple statistic features. A correlation matching and probability voting have been used for verification, followed by a logical operation in a decision making stage. The proposed system uses small number of features and the system reliability is convincing.

Keywords: Human verification, object recognition, videounderstanding, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
81 Creation of a Care Robot Impact Assessment

Authors: E. Fosch-Villaronga

Abstract:

This paper pioneers Care Robot Impact Assessment (CRIA), a methodology used to identify, analyze, mitigate and eliminate the risks posed by the insertion of non-medical personal care robots (PCR) in medical care facilities. Its precedent instruments [Privacy and Surveillance Impact Assessment (PIA and SIA)] fall behind in coping with robots. Indeed, personal care robots change dramatically how care is delivered. The paper presents a specific risk-sector methodology, identifies which robots are under its scope and presents some of the challenges introduced by these robots.

Keywords: Ethics, Impact Assessment, Law, Personal Care Robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3062
80 ICAM-2, A Protein of Antitumor Immune Response in Mekong Giant Catfish (Pangasianodon gigas)

Authors: Jiraporn Rojtinnakorn

Abstract:

ICAM-2 (intercellular adhesion molecule 2) or CD102 (Cluster of Differentiation 102) is type I transmembrane glycoproteins, composing 2-9 immunoglobulin-like C2-type domains. ICAM-2 plays the particular role in immune response and cell surveillance. It is concerned in innate and specific immunity, cell survival signal, apoptosis, and anticancer. EST clone of ICAM-2, from P. gigas blood cell EST libraries, showed high identity to human ICAM-2 (92%) with conserve region of ICAM N-terminal domain and part of Ig superfamily. Gene and protein of ICAM-2 has been founded in mammals. This is the first report of ICAM-2 in fish

Keywords: ICAM-2, CD102, Pangasianodon gigas, antitumor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
79 Information Fusion for Identity Verification

Authors: Girija Chetty, Monica Singh

Abstract:

In this paper we propose a novel approach for ascertaining human identity based on fusion of profile face and gait biometric cues The identification approach based on feature learning in PCA-LDA subspace, and classification using multivariate Bayesian classifiers allows significant improvement in recognition accuracy for low resolution surveillance video scenarios. The experimental evaluation of the proposed identification scheme on a publicly available database [2] showed that the fusion of face and gait cues in joint PCA-LDA space turns out to be a powerful method for capturing the inherent multimodality in walking gait patterns, and at the same time discriminating the person identity..

Keywords: Biometrics, gait recognition, PCA, LDA, Eigenface, Fisherface, Multivariate Gaussian Classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778
78 A Moving Human-Object Detection for Video Access Monitoring

Authors: Won-Ho Kim, Nuwan Sanjeewa Rajasooriya

Abstract:

In this paper, a simple moving human detection method is proposed for video surveillance system or access monitoring system. The frame difference and noise threshold are used for initial detection of a moving human-object, and simple labeling method is applied for final human-object segmentation. The simulated results show that the applied algorithm is fast to detect the moving human-objects by performing 95% of correct detection rate. The proposed algorithm has confirmed that can be used as an intelligent video access monitoring system.

Keywords: Moving human-object detection, Video access monitoring, Image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
77 Vehicle Velocity Estimation for Traffic Surveillance System

Authors: H. A. Rahim, U. U. Sheikh, R. B. Ahmad, A. S. M. Zain

Abstract:

This paper describes an algorithm to estimate realtime vehicle velocity using image processing technique from the known camera calibration parameters. The presented algorithm involves several main steps. First, the moving object is extracted by utilizing frame differencing technique. Second, the object tracking method is applied and the speed is estimated based on the displacement of the object-s centroid. Several assumptions are listed to simplify the transformation of 2D images from 3D real-world images. The results obtained from the experiment have been compared to the estimated ground truth. From this experiment, it exhibits that the proposed algorithm has achieved the velocity accuracy estimation of about ± 1.7 km/h.

Keywords: camera calibration, object tracking, velocity estimation, video image processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4450
76 Scene Adaptive Shadow Detection Algorithm

Authors: Mohammed Ibrahim M, Anupama R.

Abstract:

Robustness is one of the primary performance criteria for an Intelligent Video Surveillance (IVS) system. One of the key factors in enhancing the robustness of dynamic video analysis is,providing accurate and reliable means for shadow detection. If left undetected, shadow pixels may result in incorrect object tracking and classification, as it tends to distort localization and measurement information. Most of the algorithms proposed in literature are computationally expensive; some to the extent of equalling computational requirement of motion detection. In this paper, the homogeneity property of shadows is explored in a novel way for shadow detection. An adaptive division image (which highlights homogeneity property of shadows) analysis followed by a relatively simpler projection histogram analysis for penumbra suppression is the key novelty in our approach.

Keywords: homogeneity, penumbra, projection histogram, shadow correction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
75 Wireless Sensor Network: Characteristics and Architectures

Authors: Muhammad R Ahmed, Xu Huang, Dharmandra Sharma, Hongyan Cui

Abstract:

An information procuring and processing emerging technology wireless sensor network (WSN) Consists of autonomous nodes with versatile devices underpinned by applications. Nodes are equipped with different capabilities such as sensing, computing, actuation and wireless communications etc. based on application requirements. A WSN application ranges from military implementation in the battlefield, environmental monitoring, health sector as well as emergency response of surveillance. The nodes are deployed independently to cooperatively monitor the physical and environmental conditions. The architecture of WSN differs based on the application requirements and focus on low cost, flexibility, fault tolerance capability, deployment process as well as conserve energy. In this paper we have present the characteristics, architecture design objective and architecture of WSN

Keywords: wireless sensor network, characteristics, architecture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7806
74 A New Method for Detection of Artificial Objects and Materials from Long Distance Environmental Images

Authors: H. Dujmic, V. Papic, H. Turic

Abstract:

The article presents a new method for detection of artificial objects and materials from images of the environmental (non-urban) terrain. Our approach uses the hue and saturation (or Cb and Cr) components of the image as the input to the segmentation module that uses the mean shift method. The clusters obtained as the output of this stage have been processed by the decision-making module in order to find the regions of the image with the significant possibility of representing human. Although this method will detect various non-natural objects, it is primarily intended and optimized for detection of humans; i.e. for search and rescue purposes in non-urban terrain where, in normal circumstances, non-natural objects shouldn-t be present. Real world images are used for the evaluation of the method.

Keywords: Landscape surveillance, mean shift algorithm, image segmentation, target detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
73 Object Alignment for Military Optical Surveillance

Authors: Oscar J.G. Somsen, Fok Bolderheij

Abstract:

Electro-optical devices are increasingly used for military sea-, land- and air applications to detect, recognize and track objects. Typically, these devices produce video information that is presented to an operator. However, with increasing availability of electro-optical devices the data volume is becoming very large, creating a rising need for automated analysis. In a military setting, this typically involves detecting and recognizing objects at a large distance, i.e. when they are difficult to distinguish from background and noise. One may consider combining multiple images from a video stream into a single enhanced image that provides more information for the operator. In this paper we investigate a simple algorithm to enhance simulated images from a military context and investigate how the enhancement is affected by various types of disturbance.

Keywords: Electro-Optics, Automated Image alignment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
72 Detection, Tracking and Classification of Vehicles and Aircraft based on Magnetic Sensing Technology

Authors: K. Dimitropoulos, N. Grammalidis, I. Gragopoulos, H. Gao, Th. Heuer, M. Weinmann, S. Voit, C. Stockhammer, U. Hartmann, N. Pavlidou

Abstract:

Existing ground movement surveillance technologies at airports are subjected to limitations due to shadowing effects or multiple reflections. Therefore, there is a strong demand for a new sensing technology, which will be cost effective and will provide detection of non-cooperative targets under any weather conditions. This paper aims to present a new intelligent system, developed within the framework of the EC-funded ISMAEL project, which is based on a new magnetic sensing technology and provides detection, tracking and automatic classification of targets moving on the airport surface. The system is currently being installed at two European airports. Initial experimental results under real airport traffic demonstrate the great potential of the proposed system.

Keywords: Air traffic management, magnetic sensors, multitracking, A-SMGCS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
71 De-noising Infrared Image Using OWA Based Filter

Authors: Ruchika, Munish Vashisht, S. Qamar

Abstract:

Detection of small ship is crucial task in many automatic surveillance systems which are employed for security of maritime boundaries of a country. To address this problem, image de-noising is technique to identify the target ship in between many other ships in the sea. Image de-noising technique needs to extract the ship’s image from sea background for the analysis as the ship’s image may submerge in the background and flooding waves. In this paper, a noise filter is presented that is based on fuzzy linguistic ‘most’ quantifier. Ordered weighted averaging (OWA) function is used to remove salt-pepper noise of ship’s image. Results obtained are in line with the results available by other well-known median filters and OWA based approach shows better performance.

Keywords: Linguistic quantifier, impulse noise, OWA filter, median filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932
70 Radar Task Schedulers based on Multiple Queue

Authors: María I. Jiménez, Alberto Izquierdo, Juan J. Villacorta, Lara del Val, Mariano Raboso

Abstract:

There are very complex communication systems, as the multifunction radar, MFAR (Multi-Function Array Radar), where functions are integrated all together, and simultaneously are performed the classic functions of tracking and surveillance, as all the functions related to the communication, countermeasures, and calibration. All these functions are divided into the tasks to execute. The task scheduler is a key element of the radar, since it does the planning and distribution of energy and time resources to be shared and used by all tasks. This paper presents schedulers based on the use of multiple queue. Several schedulers have been designed and studied, and it has been made a comparative analysis of different performed schedulers. The tests and experiments have been done by means of system software simulation. Finally a suitable set of radar characteristics has been selected to evaluate the behavior of the task scheduler working.

Keywords: Queue Theory, Radar, Scheduler, Task.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197