Search results for: quarantine
5 Positivity Rate of Person under Surveillance among Institut Jantung Negara’s Patients with Various COVID-19 Vaccination Status in the First Quarter of 2022, Malaysia
Authors: M. Izzat Md. Nor, N. Jaffar, N. Zaitulakma Md. Zain, N. Izyanti Mohd Suppian, S. Balakrishnan, G. Kandavello
Abstract:
During the Coronavirus (COVID-19) pandemic, Malaysia has been focusing on building herd immunity by introducing vaccination programs into the community. Hospital Standard Operating Procedures (SOP) were developed to prevent inpatient transmission. In this study, we focus on the positivity rate of inpatient Person Under Surveillance (PUS) becoming COVID-19 positive and compare this to the national rate in order to see the outcomes of the patient who becomes COVID-19 positive in relation to their vaccination status. This is a retrospective observational study carried out from 1 January until 30 March 2022 in Institut Jantung Negara (IJN). There were 5,255 patients admitted during the time of this study. Pre-admission Polymerase Chain Reaction (PCR) swab was done for all patients. Patients with positive PCR on pre-admission screening were excluded. The patients who had exposure to COVID-19-positive staff or patients during hospitalization were defined as PUS and were quarantined and monitored for potential COVID-19 infection. Their frequency and risk of exposure (WHO definition) were recorded. On the final day of quarantine, a second PCR swab was performed on PUS patients who exhibit clinical deterioration, whether or not they exhibit COVID-19 symptoms. The severity of COVID-19 infection was defined as category 1-5A. All patients' vaccination status was recorded, and they were divided into three groups: fully immunised, partially immunised, and unvaccinated. We analysed the positivity rate of PUS patients becoming COVID-positive, outcomes, and correlation with the vaccination status. The ratio of positive inpatient PUS to the total inpatient PUS is 492; only 13 became positive, giving a positivity rate of 2.6%. Eight (62%) had multiple exposures. The majority, 8/13(72.7%), had a high-risk exposure, and the remaining 5 had medium-risk exposure. Four (30.8%) were boosted, 7(53.8%) were fully vaccinated, and 2(15.4%) were partial/unvaccinated. Eight patients were in categories 1-2, whilst 38% were in categories 3-5. Vaccination status did not correlate with COVID-19 Category (P = 0.641). One (7.7%) patient died due to COVID-19 complications and sepsis. Within the first quarter of 2022, our institution's positivity rate (2.6%) is significantly lower than the country's (14.4%). High-risk exposure and multiple exposures to positive COVID-19 cases increased the risk of PUS becoming COVID-19 positive despite their underlying vaccination status.
Keywords: COVID-19, boosted, high risk, Malaysia, quarantine, vaccination status.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2504 Dynamical Network Transmission of H1N1 Virus at the Local Level Transmission Model
Authors: P. Pongsumpun
Abstract:
A new strain of Type A influenza virus can cause the transmission of H1N1 virus. This virus can spread between the people by coughing and sneezing. Because the people are always movement, so this virus can be easily spread. In this study, we construct the dynamical network model of H1N1 virus by separating the human into five groups; susceptible, exposed, infectious, quarantine and recovered groups. The movement of people between houses (local level) is considered. The behaviors of solutions to our dynamical model are shown for the different parameters.Keywords: Dynamical network, H1N1virus, local level, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15473 Swine Flu Transmission Model in Risk and Non-Risk Human Population
Authors: P. Pongsumpun
Abstract:
The Swine flu outbreak in humans is due to a new strain of influenza A virus subtype H1N1 that derives in part from human influenza, avian influenza, and two separated strains of swine influenza. It can be transmitted from human to human. A mathematical model for the transmission of Swine flu is developed in which the human populations are divided into two classes, the risk and non-risk human classes. Each class is separated into susceptible, exposed, infectious, quarantine and recovered sub-classes. In this paper, we formulate the dynamical model of Swine flu transmission and the repetitive contacts between the people are also considered. We analyze the behavior for the transmission of this disease. The Threshold condition of this disease is found and numerical results are shown to confirm our theoretical predictions.Keywords: Mathematical model, Steady state, Swine flu, threshold condition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13112 Investigation of Tbilisi City Atmospheric Air Pollution with PM in Usual and Emergency Situations Using the Observational and Numerical Modeling Data
Authors: N. Gigauri, V. Kukhalashvili, V. Sesadze, A. Surmava, L. Intskirveli
Abstract:
Pollution of the Tbilisi atmospheric air with PM2.5 and PM10 in usual and pandemic situations by using the data of 5 stationary observation points is investigated. The values of the statistical characteristic parameters of PM in the atmosphere of Tbilisi are analyzed and trend graphs are constructed. By means of analysis of pollution levels in the quarantine and usual periods the proportion of vehicle traffic in pollution of city is estimated. Experimental measurements of PM2.5, PM10 in the atmosphere have been carried out in different districts of the city and map of the distribution of their concentrations were constructed. It is shown that maximum pollution values are recorded in the city center and along major motorways. It is shown that the average monthly concentrations vary in the range of 0.6-1.6 Maximum Permissible Concentration (MPC). Average daily values of concentration vary at 2-4 days intervals. The distribution of PM10 generated as a result of traffic is numerical modeled. The modeling results are compared with the observation data.
Keywords: Air pollution, numerical modeling, PM2.5, PM10.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5751 A Subjectively Influenced Router for Vehicles in a Four-Junction Traffic System
Authors: Anilkumar Kothalil Gopalakrishnan
Abstract:
A subjectively influenced router for vehicles in a fourjunction traffic system is presented. The router is based on a 3-layer Backpropagation Neural Network (BPNN) and a greedy routing procedure. The BPNN detects priorities of vehicles based on the subjective criteria. The subjective criteria and the routing procedure depend on the routing plan towards vehicles depending on the user. The routing procedure selects vehicles from their junctions based on their priorities and route them concurrently to the traffic system. That is, when the router is provided with a desired vehicles selection criteria and routing procedure, it routes vehicles with a reasonable junction clearing time. The cost evaluation of the router determines its efficiency. In the case of a routing conflict, the router will route the vehicles in a consecutive order and quarantine faulty vehicles. The simulations presented indicate that the presented approach is an effective strategy of structuring a subjective vehicle router.Keywords: Backpropagation Neural Network, Backpropagationalgorithm, Greedy routing procedure, Subjective criteria, Vehiclepriority, Cost evaluation, Route generation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391