%0 Journal Article
	%A A. El Harraj and  N. Raissouni
	%D 2015
	%J International Journal of Computer and Information Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 100, 2015
	%T Toward Indoor and Outdoor Surveillance Using an Improved Fast Background Subtraction Algorithm
	%U https://publications.waset.org/pdf/10000943
	%V 100
	%X The detection of moving objects from a video image
sequences is very important for object tracking, activity recognition,
and behavior understanding in video surveillance.
The most used approach for moving objects detection / tracking is
background subtraction algorithms. Many approaches have been
suggested for background subtraction. But, these are illumination
change sensitive and the solutions proposed to bypass this problem
are time consuming.
In this paper, we propose a robust yet computationally efficient
background subtraction approach and, mainly, focus on the ability to
detect moving objects on dynamic scenes, for possible applications in
complex and restricted access areas monitoring, where moving and
motionless persons must be reliably detected. It consists of three
main phases, establishing illumination changes invariance,
background/foreground modeling and morphological analysis for
noise removing.
We handle illumination changes using Contrast Limited Histogram
Equalization (CLAHE), which limits the intensity of each pixel to
user determined maximum. Thus, it mitigates the degradation due to
scene illumination changes and improves the visibility of the video
signal. Initially, the background and foreground images are extracted
from the video sequence. Then, the background and foreground
images are separately enhanced by applying CLAHE.
In order to form multi-modal backgrounds we model each channel
of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture
Model (GMM). Finally, we post process the resulting binary
foreground mask using morphological erosion and dilation
transformations to remove possible noise.
For experimental test, we used a standard dataset to challenge the
efficiency and accuracy of the proposed method on a diverse set of
dynamic scenes.

	%P 922 - 927