Search results for: Personal Care Robots.
966 An AR/VR Based Approach Towards the Intuitive Control of Mobile Rescue Robots
Authors: Jürgen Roßmann, André Kupetz, Roland Wischnewski
Abstract:
An intuitive user interface for the teleoperation of mobile rescue robots is one key feature for a successful exploration of inaccessible and no-go areas. Therefore, we have developed a novel framework to embed a flexible and modular user interface into a complete 3-D virtual reality simulation system. Our approach is based on a client-server architecture to allow for a collaborative control of the rescue robot together with multiple clients on demand. Further, it is important that the user interface is not restricted to any specific type of mobile robot. Therefore, our flexible approach allows for the operation of different robot types with a consistent concept and user interface. In laboratory tests, we have evaluated the validity and effectiveness of our approach with the help of two different robot platforms and several input devices. As a result, an untrained person can intuitively teleoperate both robots without needing a familiarization time when changing the operating robot.
Keywords: Teleoperation of mobile robots, augmented reality, user interface, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848965 Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation
Authors: Md. Masum Billah, Mohiuddin Ahmed, Soheli Farhana
Abstract:
In modern day disaster recovery mission has become one of the top priorities in any natural disaster management regime. Smart autonomous robots may play a significant role in such missions, including search for life under earth quake hit rubbles, Tsunami hit islands, de-mining in war affected areas and many other such situations. In this paper current state of many walking robots are compared and advantages of hexapod systems against wheeled robots are described. In our research we have selected a hexapod spider robot; we are developing focusing mainly on efficient navigation method in different terrain using apposite gait of locomotion, which will make it faster and at the same time energy efficient to navigate and negotiate difficult terrain. This paper describes the method of terrain negotiation navigation in a hazardous field.Keywords: Walking robots, locomotion, hexapod robot, gait, hazardous field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4436964 Analytical Approach of the In-Pipe Robot on Branched Pipe Navigation and Its Solution
Authors: Yoon Koo Kang, Jung wan Park, Hyun Seok Yang
Abstract:
This paper determines most common model of in-pipe robots to derive its degree of freedom in order to compare with the necessary degree of freedom required for a system to move inside pipelines freely in order to derive analytical reason for losing control of in-pipe robots at branched pipe. DOF of most common mechanism in in-pipe robots can be calculated by considering the robot as a parallel manipulator. A new design based on previously researched in-pipe robot PAROYS has been suggested, and its possibility to overcome branched section has been simulated.Keywords: Branched pipe, Degree of freedom, In-pipe robot, Parallel manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220963 A Universal Approach for the Intuitive Control of Mobile Robots using an AR/VR-based Interface
Authors: Juergen Rossmann, Andre Kupetz, Roland Wischnewski
Abstract:
Mobile robots are used in a large field of scenarios, like exploring contaminated areas, repairing oil rigs under water, finding survivors in collapsed buildings, etc. Currently, there is no unified intuitive user interface (UI) to control such complex mobile robots. As a consequence, some scenarios are done without the exploitation of experience and intuition of human teleoperators. A novel framework has been developed to embed a flexible and modular UI into a complete 3-D virtual reality simulation system. This new approach wants to access maximum benefits of human operators. Sensor information received from the robot is prepared for an intuitive visualization. Virtual reality metaphors support the operator in his decisions. These metaphors are integrated into a real time stereo video stream. This approach is not restricted to any specific type of mobile robot and allows for the operation of different robot types with a consistent concept and user interface.Keywords: 3-D simulation system, augmented reality, teleoperation of mobile robots, user interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041962 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot
Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan
Abstract:
With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.Keywords: Service Robot, Object Recognition, 3D Sensors, Plane Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674961 Fuzzy Separation Bearing Control for Mobile Robots Formation
Authors: A. Bazoula, H. Maaref
Abstract:
In this article we address the problem of mobile robot formation control. Indeed, the most work, in this domain, have studied extensively classical control for keeping a formation of mobile robots. In this work, we design an FLC (Fuzzy logic Controller) controller for separation and bearing control (SBC). Indeed, the leader mobile robot is controlled to follow an arbitrary reference path, and the follower mobile robot use the FSBC (Fuzzy Separation and Bearing Control) to keep constant relative distance and constant angle to the leader robot. The efficiency and simplicity of this control law has been proven by simulation on different situation.
Keywords: Autonomous mobile robot, Formation control, Fuzzy logic control, Multiple robots, Leader-Follower.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727960 Pipelines Monitoring System Using Bio-mimetic Robots
Authors: Seung You Na, Daejung Shin, Jin Young Kim, Seong-Joon Baek, Bae-Ho Lee
Abstract:
Recently there has been a growing interest in the field of bio-mimetic robots that resemble the behaviors of an insect or an aquatic animal, among many others. One of various bio-mimetic robot applications is to explore pipelines, spotting any troubled areas or malfunctions and reporting its data. Moreover, the robot is able to prepare for and react to any abnormal routes in the pipeline. Special types of mobile robots are necessary for the pipeline monitoring tasks. In order to move effectively along a pipeline, the robot-s movement will resemble that of insects or crawling animals. When situated in massive pipelines with complex routes, the robot places fixed sensors in several important spots in order to complete its monitoring. This monitoring task is to prevent a major system failure by preemptively recognizing any minor or partial malfunctions. Areas uncovered by fixed sensors are usually impossible to provide real-time observation and examination, and thus are dependent on periodical offline monitoring. This paper proposes a monitoring system that is able to monitor the entire area of pipelines–with and without fixed sensors–by using the bio-mimetic robot.Keywords: Bio-mimetic robots, Plant pipes monitoring, Mobile and active monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271959 A Base Plan for Tomorrow’s Patient Care Information Systems
Authors: M. Tsirintani
Abstract:
The article is proposing a base plan for the future Patient Care Information Systems in a changing health care environment where it is necessary to assure quality patient care services and reducing cost and where new technology trends give the opportunities to develop clinical applications and services patient focused according to new business objectives.
Keywords: Health care management, planning patient care information system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809958 Minimizing of Target Localization Error using Multi-robot System and Particle Filters
Authors: Jana Puchyova
Abstract:
In recent years a number of applications with multirobot systems (MRS) is growing in various areas. But their design is in practice often difficult and algorithms are proposed for the theoretical background and do not consider errors and noise in real conditions, so they are not usable in real environment. These errors are visible also in task of target localization enough, when robots try to find and estimate the position of the target by the sensors. Localization of target is possible also with one robot but as it was examined target finding and localization with group of mobile robots can estimate the target position more accurately and faster. The accuracy of target position estimation is made by cooperation of MRS and particle filtering. Advantage of usage the MRS with particle filtering was tested on task of fixed target localization by group of mobile robots.Keywords: Multi-robot system, particle filter, position estimation, target localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567957 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser
Authors: Guanqiao Wang, Hongyang Yu
Abstract:
There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. Therefore, robots appear more and more frequently in the construction industry. Navigation and positioning is a very important task for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radio frequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered or the error of plastering the wall is large. A positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.
Keywords: Indoor plastering robot, navigation, precise positioning, line laser, image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544956 A Cooperative Multi-Robot Control Using Ad Hoc Wireless Network
Authors: Amira Elsonbaty, Rawya Rizk, Mohamed Elksas, Mofreh Salem
Abstract:
In this paper, a Cooperative Multi-robot for Carrying Targets (CMCT) algorithm is proposed. The multi-robot team consists of three robots, one is a supervisor and the others are workers for carrying boxes in a store of 100×100 m2. Each robot has a self recharging mechanism. The CMCT minimizes robot-s worked time for carrying many boxes during day by working in parallel. That is, the supervisor detects the required variables in the same time another robots work with previous variables. It works with straightforward mechanical models by using simple cosine laws. It detects the robot-s shortest path for reaching the target position avoiding obstacles by using a proposed CMCT path planning (CMCT-PP) algorithm. It prevents the collision between robots during moving. The robots interact in an ad hoc wireless network. Simulation results show that the proposed system that consists of CMCT algorithm and its accomplished CMCT-PP algorithm achieves a high improvement in time and distance while performing the required tasks over the already existed algorithms.Keywords: Ad hoc network, Computer vision based positioning, Dynamic collision avoidance, Multi-robot, Path planning algorithms, Self recharging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788955 Adoption of Lean Thinking and Service Improvement for Care Home Service
Authors: Chuang-Chun Chiou
Abstract:
Ageing population is a global trend; therefore the need of care service has been increasing dramatically. There are three basic forms of service delivered to the elderly: institution, community, and home. Particularly, the institutional service can be seen as an extension of medical service. The nursing home or so-called care home which is equipped with professional staff and facilities can provide a variety of service including rehabilitation service, short-term care, and long term care. Similar to hospital and other health care service, care home service do need to provide quality and cost-effective service to satisfy the dwellers. The main purpose of this paper is to show how lean thinking and service innovation can be applied to care home operation. The issues and key factors of implementing lean practice are discussed.
Keywords: Lean, Service improvement, SERVQUAL, Care home service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3173954 Development of a Pipeline Monitoring System by Bio-mimetic Robots
Authors: Seung You Na, Daejung Shin, Jin Young Kim, Joo Hyun Jung, Yong-Gwan Won
Abstract:
To explore pipelines is one of various bio-mimetic robot applications. The robot may work in common buildings such as between ceilings and ducts, in addition to complicated and massive pipeline systems of large industrial plants. The bio-mimetic robot finds any troubled area or malfunction and then reports its data. Importantly, it can not only prepare for but also react to any abnormal routes in the pipeline. The pipeline monitoring tasks require special types of mobile robots. For an effective movement along a pipeline, the movement of the robot will be similar to that of insects or crawling animals. During its movement along the pipelines, a pipeline monitoring robot has an important task of finding the shapes of the approaching path on the pipes. In this paper we propose an effective solution to the pipeline pattern recognition, based on the fuzzy classification rules for the measured IR distance data.Keywords: Bio-mimetic robots, Plant pipes monitoring, Pipepattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650953 A Profile of Recent Upsurge of Brucellosis of Veterinary Health Care Workers Engaged in Brucella Vaccination Program in West Bengal, India
Authors: Satadal Das, Parthasarathi Sengupta
Abstract:
With millions of livestock wealth in India including cattle, and buffaloes, the National Animal Disease Control Program targeted a massive Brucella vaccination program. As a part of it in the state of West Bengal Veterinary healthcare assistants participated in the program in 2021. The aim of this study was to elucidate the burden of brucellosis in those healthcare assistants and to pinpoint the main causes of such infection. We contacted the healthcare assistants to find out whether they were infected during the vaccination program. Our findings indicated many Veterinary healthcare assistants who participated in the program developed symptoms and signs suggestive of brucellosis. Laboratory tests indicated many confirmed Brucellosis cases. However, this may not include many asymptomatic cases. Detailed analysis revealed that in most of them there was a history of needle prick injury about a month back during the vaccination program, which was mainly due to ferocious or disturbed animals. Few also complained that they were not properly trained or proper personal protective types of equipment were not provided. All of them were treated in referral hospitals following a standard protocol of the Government Health Department and now they are followed up. Thus we conclude that proper care during the vaccination of animals should be followed, prophylactic treatment for needle prick injuries should be given, and training and supply of personal protective equipment should be monitored.
Keywords: Occupational brucellosis, needle prick injury, brucella vaccination, personal protective equipment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 427952 Evidence Based Practice for Oral Care in Children
Authors: T. Turan, Ç. Erdoğan
Abstract:
As far as is known, general nursing care practices do not include specific evidence-based practices related to oral care in children. This study aimed to evaluate the evidence based nursing practice for oral care in children. This article is planned as a review article by searching the literature in this field. According to all age groups and the oral care in various specific situations located evidence in the literature were examined. It has been determined that the methods and frequency used in oral care practices performed by nurses in clinics differ from one hospital to another. In addition, it is seen that different solutions are used in basic oral care, oral care practices to prevent ventilator-associated pneumonia and evidence-based practice in mucositis management in children. As a result, a standard should be established in oral care practices for children and education for children is recommended.
Keywords: Children, evidence based practice, nursing, oral care.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338951 Design and Implementation a Fully Autonomous Soccer Player Robot
Authors: S. H. Mohades Kasaei, S. M. Mohades Kasaei, S. A. Mohades Kasaei, M. Taheri, M. Rahimi, H. Vahiddastgerdi, M. Saeidinezhad
Abstract:
Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensive Omni directional mobile robot. Such a robot can respond more quickly and it would be capable for more sophisticated behaviors with multi-sensor data fusion algorithm for global localization base on the data fusion. This paper has tried to focus on the research improvements in the mechanical, electrical and software design of the robots of team ADRO Iran. The main improvements are the world model, the new strategy framework, mechanical structure, Omni-vision sensor for object detection, robot path planning, active ball handling mechanism and the new kicker design, , and other subjects related to mobile robotKeywords: Mobile robot, Machine vision, Omni directional movement, Autonomous Systems, Robot path planning, Object Localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155950 Development of an Autonomous Friction Gripper for Industrial Robots
Authors: Majid Tolouei-Rad, Peter Kalivitis
Abstract:
Industrial robots become useless without end-effectors that for many instances are in the form of friction grippers. Commonly friction grippers apply frictional forces to different objects on the basis of programmers- experiences. This puts a limitation on the effectiveness of gripping force that may result in damaging the object. This paper describes various stages of design and development of a low cost sensor-based robotic gripper that would facilitate the task of applying right gripping forces to different objects. The gripper is also equipped with range sensors in order to avoid collisions of the gripper with objects. It is a fully functional automated pick and place gripper which can be used in many industrial applications. Yet it can also be altered or further developed in order to suit a larger number of industrial activities. The current design of gripper could lead to designing completely automated robot grippers able to improve the efficiency and productivity of industrial robots.Keywords: Control system, end-effector, robot, sensor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2893949 Workspace Analysis of 6–6 Cable-Suspended Parallel Robots
Authors: Arian Bahrami, Amir Teimourian
Abstract:
In this paper, the effect of the moving platform size on the workspace volume of 6–6 cable-suspended parallel robots is investigated in details for different geometric configurations and orientations of the moving platform. The obtained hints can be used as a rule of thumb in designing this type of robot.Keywords: Cable-suspended parallel robot, system analysis and design, workspace analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1157948 Automated Testing of Workshop Robot Behavior
Authors: Arne Hitzmann, Philipp Wentscher, Alexander Gabel, Reinhard Gerndt
Abstract:
Autonomous mobile robots can be found in a wide field of applications. Their types range from household robots over workshop robots to autonomous cars and many more. All of them undergo a number of testing steps during development, production and maintenance. This paper describes an approach to improve testing of robot behavior. It was inspired by the RoboCup @work competition that itself reflects a robotics benchmark for industrial robotics. There, scaled down versions of mobile industrial robots have to navigate through a workshop-like environment or operation area and have to perform tasks of manipulating and transporting work pieces. This paper will introduce an approach of automated vision-based testing of the behavior of the so called youBot robot, which is the most widely used robot platform in the RoboCup @work competition. The proposed system allows automated testing of multiple tries of the robot to perform a specific missions and it allows for the flexibility of the robot, e.g. selecting different paths between two tasks within a mission. The approach is based on a multi-camera setup using, off the shelf cameras and optical markers. It has been applied for test-driven development (TDD) and maintenance-like verification of the robot behavior and performance.
Keywords: Supervisory control, Testing, Markers, Mono Vision, Automation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385947 Analysis of Pharmaceuticals in Influents of Municipal Wastewater Treatment Plants in Jordan
Authors: O. A. Al-Mashaqbeh, A. M. Ghrair, D. Alsafadi, S. S. Dalahmeh, S. L. Bartelt-Hunt, D. D. Snow
Abstract:
Grab samples were collected in the summer to characterize selected pharmaceuticals and personal care products (PPCPs) in the influent of two wastewater treatment plants (WWTPs) in Jordan. Liquid chromatography tandem mass spectrometry (LC–MS/MS) was utilized to determine the concentrations of 18 compounds of PPCPs. Among all of the PPCPs analyzed, eight compounds were detected in the influent samples (1,7-dimethylxanthine, acetaminophen, caffeine, carbamazepine, cotinine, morphine, sulfamethoxazole and trimethoprim). However, five compounds (amphetamine, cimetidine, diphenhydramine, methylenedioxyamphetamine (MDA) and sulfachloropyridazine) were not detected in collected samples (below the detection limits <0.005 ng/l). Moreover, the results indicated that the highest concentration levels detected in collected samples were caffeine, acetaminophen, 1,7-dimethylxanthine, cotinine and carbamazepine at concentration of 182.5 µg/L, 28.7 µg/l, 7.47 µg/l, 4.67 µg/l and 1.54 µg/L, respectively. In general, most of compounds concentrations measured in wastewater in Jordan are within the range for wastewater previously reported in India wastewater except caffeine.
Keywords: Pharmaceuticals and personal care products, wastewater, Jordan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283946 Kinematic Modeling and Workspace Analysis of a Spatial Cable Suspended Robot as Incompletely Restrained Positioning Mechanism
Authors: Jahanbakhsh Hamedi, Hassan Zohoor
Abstract:
This article proposes modeling, simulation and kinematic and workspace analysis of a spatial cable suspended robot as incompletely Restrained Positioning Mechanism (IRPM). These types of robots have six cables equal to the number of degrees of freedom. After modeling, the kinds of workspace are defined then an statically reachable combined workspace for different geometric structures of fixed and moving platform is obtained. This workspace is defined as the situations of reference point of the moving platform (center of mass) which under external forces such as weight and with ignorance of inertial effects, the moving platform should be in static equilibrium under conditions that length of all cables must not be exceeded from the maximum value and all of cables must be at tension (they must have non-negative tension forces). Then the effect of various parameters such as the size of moving platform, the size of fixed platform, geometric configuration of robots, magnitude of applied forces and moments to moving platform on workspace of these robots with different geometric configuration are investigated. Obtained results should be effective in employing these robots under different conditions of applied wrench for increasing the workspace volume.Keywords: Kinematic modeling, applied wrench, workspace, cable based robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700945 An Experimental Multi-Agent Robot System for Operating in Hazardous Environments
Authors: Y. J. Huang, J. D. Yu, B. W. Hong, C. H. Tai, T. C. Kuo
Abstract:
In this paper, a multi-agent robot system is presented. The system consists of four robots. The developed robots are able to automatically enter and patrol a harmful environment, such as the building infected with virus or the factory with leaking hazardous gas. Further, every robot is able to perform obstacle avoidance and search for the victims. Several operation modes are designed: remote control, obstacle avoidance, automatic searching, and so on.
Keywords: autonomous robot, field programmable gate array, obstacle avoidance, ultrasonic sensor, wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779944 Development of a Three-Dimensional-Flywheel Robotic System
Authors: Chung-Chun Hsiao, Yu-Kai, Ting, Kai-Yuan Liu, Pang-Wei Yen, Jia-Ying Tu
Abstract:
In this paper, a new design of spherical robotic system based on the concepts of gimbal structure and gyro dynamics is presented. Robots equipped with multiple wheels and complex steering mechanics may increase the weight and degrade the energy transmission efficiency. In addition, the wheeled and legged robots are relatively vulnerable to lateral impact and lack of lateral mobility. Therefore, the proposed robotic design uses a spherical shell as the main body for ground locomotion, instead of using wheel devices. Three spherical shells are structured in a similar way to a gimbal device and rotate like a gyro system. The design and mechanism of the proposed robotic system is introduced. In addition, preliminary results of the dynamic model based on the principles of planar rigid body kinematics and Lagrangian equation are included. Simulation results and rig construction are presented to verify the concepts.
Keywords: Gyro, gimbal, Lagrange equation, spherical robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061943 Personal Health Assistance Service Expert System (PHASES)
Authors: Chakkrit Snae, Michael Brueckner
Abstract:
In this paper the authors present the framework of a system for assisting users through counseling on personal health, the Personal Health Assistance Service Expert System (PHASES). Personal health assistance systems need Personal Health Records (PHR), which support wellness activities, improve the understanding of personal health issues, enable access to data from providers of health services, strengthen health promotion, and in the end improve the health of the population. This is especially important in societies where the health costs increase at a higher rate than the overall economy. The most important elements of a healthy lifestyle are related to food (such as balanced nutrition and diets), activities for body fitness (such as walking, sports, fitness programs), and other medical treatments (such as massage, prescriptions of drugs). The PHASES framework uses an ontology of food, which includes nutritional facts, an expert system keeping track of personal health data that are matched with medical treatments, and a comprehensive data transfer between patients and the system.Keywords: Personal health assistance service, expert system, ontologies, knowledge management, information technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918942 Autonomous Robots- Visual Perception in Underground Terrains Using Statistical Region Merging
Authors: Omowunmi E. Isafiade, Isaac O. Osunmakinde, Antoine B. Bagula
Abstract:
Robots- visual perception is a field that is gaining increasing attention from researchers. This is partly due to emerging trends in the commercial availability of 3D scanning systems or devices that produce a high information accuracy level for a variety of applications. In the history of mining, the mortality rate of mine workers has been alarming and robots exhibit a great deal of potentials to tackle safety issues in mines. However, an effective vision system is crucial to safe autonomous navigation in underground terrains. This work investigates robots- perception in underground terrains (mines and tunnels) using statistical region merging (SRM) model. SRM reconstructs the main structural components of an imagery by a simple but effective statistical analysis. An investigation is conducted on different regions of the mine, such as the shaft, stope and gallery, using publicly available mine frames, with a stream of locally captured mine images. An investigation is also conducted on a stream of underground tunnel image frames, using the XBOX Kinect 3D sensors. The Kinect sensors produce streams of red, green and blue (RGB) and depth images of 640 x 480 resolution at 30 frames per second. Integrating the depth information to drivability gives a strong cue to the analysis, which detects 3D results augmenting drivable and non-drivable regions in 2D. The results of the 2D and 3D experiment with different terrains, mines and tunnels, together with the qualitative and quantitative evaluation, reveal that a good drivable region can be detected in dynamic underground terrains.Keywords: Drivable Region Detection, Kinect Sensor, Robots' Perception, SRM, Underground Terrains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839941 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines
Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder
Abstract:
One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.Keywords: Affective computing, emotion recognition, humanoid robot, Human-Robot-Interaction (HRI), social robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357940 Aesthetics and Robotics: Which Form to give to the Human-Like Robot?
Abstract:
The recent development of humanoid robots has led robot designers to imagine a great variety of anthropomorphic forms for human-like machine. Which form is the best ? We try to answer this question from a double meaning of the anthropomorphism : a positive anthropomorphism corresponing to the realization of an effective anthropomorphic form object and a negative one corresponding to our natural tendency in certain circumstances to give human attributes to non-human beings. We postulate that any humanoid robot is concerned by both these two anthropomorphism kinds. We propose to use gestalt theory and Heider-s balance theory in order to analyze how negative anthropomorphism can influence our perception of human-like robots. From our theoretical approach we conclude that an “even shape" as defined by gestalt theory is not a sufficient condition for a good integration of future humanoid robots into a human community. Aesthetic perception of the robot cannot be splitted from a social perception : a humanoid robot, any how the efforts made for improving its appearance, could be rejected if it is devoted to a task with too high affective implications.
Keywords: Robot appearance, humanoid robot, uncanny valley, human-robot-interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2422939 Development of Roller-Based Interior Wall Painting Robot
Authors: Mohamed T. Sorour, Mohamed A. Abdellatif, Ahmed A. Ramadan, Ahmed A. Abo-Ismail
Abstract:
This paper describes the development of an autonomous robot for painting the interior walls of buildings. The robot consists of a painting arm with an end effector roller that scans the walls vertically and a mobile platform to give horizontal feed to paint the whole area of the wall. The painting arm has a planar twolink mechanism with two joints. Joints are driven from a stepping motor through a ball screw-nut mechanism. Four ultrasonic sensors are attached to the mobile platform and used to maintain a certain distance from the facing wall and to avoid collision with side walls. When settled on adjusted distance from the wall, the controller starts the painting process autonomously. Simplicity, relatively low weight and short painting time were considered in our design. Different modules constituting the robot have been separately tested then integrated. Experiments have shown successfulness of the robot in its intended tasks.Keywords: Automated roller painting, Construction robots, Mobile robots, service robots, two link planar manipulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6975938 A Practical Solution of a Plant Pipes Monitoring System Using Bio-mimetic Robots
Authors: Seung You Na, Daejung Shin, Jin Young Kim, Bae-Ho Lee, Ji-Sung Lee
Abstract:
There has been a growing interest in the field of bio-mimetic robots that resemble the shape of an insect or an aquatic animal, among many others. One bio-mimetic robot serves the purpose of exploring pipelines, spotting any troubled areas or malfunctions and reporting its data. Moreover, the robot is able to prepare for and react to any abnormal routes in the pipeline. In order to move effectively inside a pipeline, the robot-s movement will resemble that of a lizard. When situated in massive pipelines with complex routes, the robot places fixed sensors in several important spots in order to complete its monitoring. This monitoring task is to prevent a major system failure by preemptively recognizing any minor or partial malfunctions. Areas uncovered by fixed sensors are usually impossible to provide real-time observation and examination, and thus are dependant on periodical offline monitoring. This paper provides the Monitoring System that is able to monitor the entire area of pipelines–with and without fixed sensors–by using the bio-mimetic robot.Keywords: Bio-mimetic robots, Plant pipes monitoring, Mobileand active monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590937 Wireless Healthcare Monitoring System for Home
Authors: T. Hui Teo, Wee Tiong Tan, Pradeep K. Gopalakrishnan, Victor K. H. Phay, Ma Su M. M. Shwe
Abstract:
A healthcare monitoring system is presented in this paper. This system is based on ultra-low power sensor nodes and a personal server, which is based on hardware and software extensions to a Personal Digital Assistant (PDA)/Smartphone. The sensor node collects data from the body of a patient and sends it to the personal server where the data is processed, displayed and made ready to be sent to a healthcare network, if necessary. The personal server consists of a compact low power receiver module and equipped with a Smartphone software. The receiver module takes less than 30 × 30 mm board size and consumes approximately 25 mA in active mode.Keywords: healthcare monitoring, sensor node, personal server, wireless.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999