Search results for: Legendre wavelet
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 384

Search results for: Legendre wavelet

354 Microarrays Denoising via Smoothing of Coefficients in Wavelet Domain

Authors: Mario Mastriani, Alberto E. Giraldez

Abstract:

We describe a novel method for removing noise (in wavelet domain) of unknown variance from microarrays. The method is based on a smoothing of the coefficients of the highest subbands. Specifically, we decompose the noisy microarray into wavelet subbands, apply smoothing within each highest subband, and reconstruct a microarray from the modified wavelet coefficients. This process is applied a single time, and exclusively to the first level of decomposition, i.e., in most of the cases, it is not necessary a multirresoltuion analysis. Denoising results compare favorably to the most of methods in use at the moment.

Keywords: Directional smoothing, denoising, edge preservation, microarrays, thresholding, wavelets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
353 Lagrange and Multilevel Wavelet-Galerkin with Polynomial Time Basis for Heat Equation

Authors: Watcharakorn Thongchuay, Puntip Toghaw, Montri Maleewong

Abstract:

The Wavelet-Galerkin finite element method for solving the one-dimensional heat equation is presented in this work. Two types of basis functions which are the Lagrange and multi-level wavelet bases are employed to derive the full form of matrix system. We consider both linear and quadratic bases in the Galerkin method. Time derivative is approximated by polynomial time basis that provides easily extend the order of approximation in time space. Our numerical results show that the rate of convergences for the linear Lagrange and the linear wavelet bases are the same and in order 2 while the rate of convergences for the quadratic Lagrange and the quadratic wavelet bases are approximately in order 4. It also reveals that the wavelet basis provides an easy treatment to improve numerical resolutions that can be done by increasing just its desired levels in the multilevel construction process.

Keywords: Galerkin finite element method, Heat equation , Lagrange basis function, Wavelet basis function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
352 Journals Subheadlines Text Extraction Using Wavelet Thresholding and New Projection Profile

Authors: Davod Zaravi, Habib Rostami, Alireza Malahzaheh, S. S. Mortazavi

Abstract:

In this paper a new robust and efficient algorithm to automatic text extraction from colored book and journal cover sheets is proposed. First, we perform wavelet transform. Next for edge detecting from detail wavelet coefficient, we use dynamic threshold. By blurring approximate coefficients with alternative heuristic thresholding, achieve effective edge,. Afterward, with ROI technique get binary image. Finally text boxes would be extracted with new projection profile.

Keywords: Text extraction, colored cover sheet, wavelet threshold, region of interest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
351 Improvements in Edge Detection Based on Mathematical Morphology and Wavelet Transform using Fuzzy Rules

Authors: Masrour Dowlatabadi, Jalil Shirazi

Abstract:

In this paper, an improved edge detection algorithm based on fuzzy combination of mathematical morphology and wavelet transform is proposed. The combined method is proposed to overcome the limitation of wavelet based edge detection and mathematical morphology based edge detection in noisy images. Experimental results show superiority of the proposed method, as compared to the traditional Prewitt, wavelet based and morphology based edge detection methods. The proposed method is an effective edge detection method for noisy image and keeps clear and continuous edges.

Keywords: Edge detection, Wavelet transform, Mathematical morphology, Fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400
350 Performance Analysis of Wavelet Based Multiuser MIMO OFDM

Authors: Md. Mahmudul Hasan

Abstract:

Wavelet analysis has some strong advantages over Fourier analysis, as it allows a time-frequency domain analysis, allowing optimal resolution and flexibility. As a result, they have been satisfactorily applied in almost all the fields of communication systems including OFDM which is a strong candidate for next generation of wireless technology. In this paper, the performances of wavelet based Multiuser Multiple Input and Multiple Output Orthogonal Frequency Division Multiplexing (MU-MIMO OFDM) systems are analyzed in terms of BER. It has been shown that the wavelet based systems outperform the classical FFT based systems. This analysis also unfolds an interesting result, where wavelet based OFDM system will have a constant error performance using Regularized Channel Inversion (RCI) beamforming for any number of users, and outperforms in all possible scenario in a multiuser environment. An extensive computer simulations show that a PAPR reduction of up to 6.8dB can be obtained with M=64.

Keywords: Wavelet Based OFDM, Optimal Beam-forming, Multiuser MIMO OFDM, Signal to Leakage Ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2616
349 Despeckling of Synthetic Aperture Radar Images Using Inner Product Spaces in Undecimated Wavelet Domain

Authors: Syed Musharaf Ali, Muhammad Younus Javed, Naveed Sarfraz Khattak, Athar Mohsin, UmarFarooq

Abstract:

This paper introduces the effective speckle reduction of synthetic aperture radar (SAR) images using inner product spaces in undecimated wavelet domain. There are two major areas in projection onto span algorithm where improvement can be made. First is the use of undecimated wavelet transformation instead of discrete wavelet transformation. And second area is the use of smoothing filter namely directional smoothing filter which is an additional step. Proposed method does not need any noise estimation and thresholding technique. More over proposed method gives good results on both single polarimetric and fully polarimetric SAR images.

Keywords: Directional Smoothing, Inner product, Length ofvector, Undecimated wavelet transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
348 Multi-algorithmic Iris Authentication System

Authors: Hunny Mehrotra, Banshidhar Majhi, Phalguni Gupta

Abstract:

The paper proposes a novel technique for iris recognition using texture and phase features. Texture features are extracted on the normalized iris strip using Haar Wavelet while phase features are obtained using LOG Gabor Wavelet. The matching scores generated from individual modules are combined using sum of score technique. The system is tested on database obtained from Bath University and Indian Institute of Technology Kanpur and is giving an accuracy of 95.62% and 97.66% respectively. The FAR and FRR of the combined system is also reduced comparatively.

Keywords: Fusion, Haar Wavelet, Iris, LOG Gabor Wavelet, Phase, Texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
347 On the Efficiency of Five Step Approximation Method for the Solution of General Third Order Ordinary Differential Equations

Authors: N. M. Kamoh, M. C. Soomiyol

Abstract:

In this work, a five step continuous method for the solution of third order ordinary differential equations was developed in block form using collocation and interpolation techniques of the shifted Legendre polynomial basis function. The method was found to be zero-stable, consistent and convergent. The application of the method in solving third order initial value problem of ordinary differential equations revealed that the method compared favorably with existing methods.

Keywords: Shifted Legendre polynomials, third order block method, discrete method, convergent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659
346 Quadrature Formula for Sampled Functions

Authors: Khalid Minaoui, Thierry Chonavel, Benayad Nsiri, Driss Aboutajdine

Abstract:

This paper deals with efficient quadrature formulas involving functions that are observed only at fixed sampling points. The approach that we develop is derived from efficient continuous quadrature formulas, such as Gauss-Legendre or Clenshaw-Curtis quadrature. We select nodes at sampling positions that are as close as possible to those of the associated classical quadrature and we update quadrature weights accordingly. We supply the theoretical quadrature error formula for this new approach. We show on examples the potential gain of this approach.

Keywords: Gauss-Legendre, Clenshaw-Curtis, quadrature, Peano kernel, irregular sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
345 Error Propagation in the RK5GL3 Method

Authors: J.S.C. Prentice

Abstract:

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe the propagation of local errors in this method, and show that the global order of RK5GL3 is expected to be six, one better than the underlying Runge- Kutta method.

Keywords: RK5GL3, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, order, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
344 Frequency-Energy Characteristics of Local Earthquakes using Discrete Wavelet Transform(DWT)

Authors: O. H. Colak, T. C. Destici, S. Ozen, H. Arman, O. Cerezci

Abstract:

The wavelet transform is one of the most important method used in signal processing. In this study, we have introduced frequency-energy characteristics of local earthquakes using discrete wavelet transform. Frequency-energy characteristic was analyzed depend on difference between P and S wave arrival time and noise within records. We have found that local earthquakes have similar characteristics. If frequency-energy characteristics can be found accurately, this gives us a hint to calculate P and S wave arrival time. It can be seen that wavelet transform provides successful approximation for this. In this study, 100 earthquakes with 500 records were analyzed approximately.

Keywords: Discrete Wavelet Transform, Frequency-EnergyCharacteristics, P and S waves arrival time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
343 Application of EEG Wavelet Power to Prediction of Antidepressant Treatment Response

Authors: Dorota Witkowska, Paweł Gosek, Lukasz Swiecicki, Wojciech Jernajczyk, Bruce J. West, Miroslaw Latka

Abstract:

In clinical practice, the selection of an antidepressant often degrades to lengthy trial-and-error. In this work we employ a normalized wavelet power of alpha waves as a biomarker of antidepressant treatment response. This novel EEG metric takes into account both non-stationarity and intersubject variability of alpha waves. We recorded resting, 19-channel EEG (closed eyes) in 22 inpatients suffering from unipolar (UD, n=10) or bipolar (BD, n=12) depression. The EEG measurement was done at the end of the short washout period which followed previously unsuccessful pharmacotherapy. The normalized alpha wavelet power of 11 responders was markedly different than that of 11 nonresponders at several, mostly temporoparietal sites. Using the prediction of treatment response based on the normalized alpha wavelet power, we achieved 81.8% sensitivity and 81.8% specificity for channel T4.

Keywords: Alpha waves, antidepressant, treatment outcome, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
342 High Sensitivity Crack Detection and Locating with Optimized Spatial Wavelet Analysis

Authors: A. Ghanbari Mardasi, N. Wu, C. Wu

Abstract:

In this study, a spatial wavelet-based crack localization technique for a thick beam is presented. Wavelet scale in spatial wavelet transformation is optimized to enhance crack detection sensitivity. A windowing function is also employed to erase the edge effect of the wavelet transformation, which enables the method to detect and localize cracks near the beam/measurement boundaries. Theoretical model and vibration analysis considering the crack effect are first proposed and performed in MATLAB based on the Timoshenko beam model. Gabor wavelet family is applied to the beam vibration mode shapes derived from the theoretical beam model to magnify the crack effect so as to locate the crack. Relative wavelet coefficient is obtained for sensitivity analysis by comparing the coefficient values at different positions of the beam with the lowest value in the intact area of the beam. Afterward, the optimal wavelet scale corresponding to the highest relative wavelet coefficient at the crack position is obtained for each vibration mode, through numerical simulations. The same procedure is performed for cracks with different sizes and positions in order to find the optimal scale range for the Gabor wavelet family. Finally, Hanning window is applied to different vibration mode shapes in order to overcome the edge effect problem of wavelet transformation and its effect on the localization of crack close to the measurement boundaries. Comparison of the wavelet coefficients distribution of windowed and initial mode shapes demonstrates that window function eases the identification of the cracks close to the boundaries.

Keywords: Edge effect, scale optimization, small crack locating, spatial wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949
341 Hidden State Probabilistic Modeling for Complex Wavelet Based Image Registration

Authors: F. C. Calnegru

Abstract:

This article presents a computationally tractable probabilistic model for the relation between the complex wavelet coefficients of two images of the same scene. The two images are acquisitioned at distinct moments of times, or from distinct viewpoints, or by distinct sensors. By means of the introduced probabilistic model, we argue that the similarity between the two images is controlled not by the values of the wavelet coefficients, which can be altered by many factors, but by the nature of the wavelet coefficients, that we model with the help of hidden state variables. We integrate this probabilistic framework in the construction of a new image registration algorithm. This algorithm has sub-pixel accuracy and is robust to noise and to other variations like local illumination changes. We present the performance of our algorithm on various image types.

Keywords: Complex wavelet transform, image registration, modeling using hidden state variables, probabilistic similaritymeasure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
340 Envelope-Wavelet Packet Transform for Machine Condition Monitoring

Authors: M. F. Yaqub, I. Gondal, J. Kamruzzaman

Abstract:

Wavelet transform has been extensively used in machine fault diagnosis and prognosis owing to its strength to deal with non-stationary signals. The existing Wavelet transform based schemes for fault diagnosis employ wavelet decomposition of the entire vibration frequency which not only involve huge computational overhead in extracting the features but also increases the dimensionality of the feature vector. This increase in the dimensionality has the tendency to 'over-fit' the training data and could mislead the fault diagnostic model. In this paper a novel technique, envelope wavelet packet transform (EWPT) is proposed in which features are extracted based on wavelet packet transform of the filtered envelope signal rather than the overall vibration signal. It not only reduces the computational overhead in terms of reduced number of wavelet decomposition levels and features but also improves the fault detection accuracy. Analytical expressions are provided for the optimal frequency resolution and decomposition level selection in EWPT. Experimental results with both actual and simulated machine fault data demonstrate significant gain in fault detection ability by EWPT at reduced complexity compared to existing techniques.

Keywords: Envelope Detection, Wavelet Transform, Bearing Faults, Machine Health Monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
339 Wavelet-Based ECG Signal Analysis and Classification

Authors: Madina Hamiane, May Hashim Ali

Abstract:

This paper presents the processing and analysis of ECG signals. The study is based on wavelet transform and uses exclusively the MATLAB environment. This study includes removing Baseline wander and further de-noising through wavelet transform and metrics such as signal-to noise ratio (SNR), Peak signal-to-noise ratio (PSNR) and the mean squared error (MSE) are used to assess the efficiency of the de-noising techniques. Feature extraction is subsequently performed whereby signal features such as heart rate, rise and fall levels are extracted and the QRS complex was detected which helped in classifying the ECG signal. The classification is the last step in the analysis of the ECG signals and it is shown that these are successfully classified as Normal rhythm or Abnormal rhythm.  The final result proved the adequacy of using wavelet transform for the analysis of ECG signals.

Keywords: ECG Signal, QRS detection, thresholding, wavelet decomposition, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
338 Applying Wavelet Transform to Ferroresonance Detection and Protection

Authors: Chun-Wei Huang, Jyh-Cherng Gu, Ming-Ta Yang

Abstract:

Non-synchronous breakage or line failure in power systems with light or no loads can lead to core saturation in transformers or potential transformers. This can cause component and capacitance matching resulting in the formation of resonant circuits, which trigger ferroresonance. This study employed a wavelet transform for the detection of ferroresonance. Simulation results demonstrate the efficacy of the proposed method.

Keywords: Ferroresonance, Wavelet Transform, Intelligent Electronic Device, Transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
337 Parallel Image Compression and Analysis with Wavelets

Authors: M. Kutila, J. Viitanen

Abstract:

This paper presents image compression with wavelet based method. The wavelet transformation divides image to low- and high pass filtered parts. The traditional JPEG compression technique requires lower computation power with feasible losses, when only compression is needed. However, there is obvious need for wavelet based methods in certain circumstances. The methods are intended to the applications in which the image analyzing is done parallel with compression. Furthermore, high frequency bands can be used to detect changes or edges. Wavelets enable hierarchical analysis for low pass filtered sub-images. The first analysis can be done for a small image, and only if any interesting is found, the whole image is processed or reconstructed.

Keywords: image compression, jpeg, wavelet, vlc

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
336 Application of Legendre Transformation to Portfolio Optimization

Authors: Peter Benneth, Tsaroh N. Theophilus, Prince Benjamin

Abstract:

This research work aims at studying the application of Legendre Transformation Method (LTM) to Hamilton Jacobi Bellman (HJB) equation which is an example of optimal control problem. We discuss the steps involved in modelling the HJB equation as it relates to mathematical finance by applying the Ito’s lemma and maximum principle theorem. By applying the LTM and dual theory, the resultant HJB equation is transformed to a linear Partial Differential Equation (PDE). Also, the Optimal Investment Strategy (OIS) and the optimal value function were obtained under the exponential utility function. Furthermore, some numerical results were also presented with observations that the OIS under exponential utility is directly proportional to the appreciation rate of the risky asset and inversely proportional to the instantaneous volatility, predetermined interest rate, risk averse coefficient. Finally, it was observed that the optimal fund size is an increasing function of the risk free interest rate. This result is consistent with some existing results.

Keywords: Legendre transformation method, Optimal investment strategy, Ito’s lemma, Hamilton Jacobi Bellman equation, Geometric Brownian motion, financial market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67
335 Nonstational Dual Wavelet Frames in Sobolev Spaces

Authors: Yingchun Jiang, Yan Tang

Abstract:

In view of the good properties of nonstationary wavelet frames and the better flexibility of wavelets in Sobolev spaces, the nonstationary dual wavelet frames in a pair of dual Sobolev spaces are studied in this paper. We mainly give the oblique extension principle and the mixed extension principle for nonstationary dual wavelet frames in a pair of dual Sobolev spaces Hs(Rd) and H-s(Rd).

Keywords: Nonstationary, dual frames, dual Sobolev spaces, extension principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
334 Classification of Non Stationary Signals Using Ben Wavelet and Artificial Neural Networks

Authors: Mohammed Benbrahim, Khalid Benjelloun, Aomar Ibenbrahim, Adil Daoudi

Abstract:

The automatic classification of non stationary signals is an important practical goal in several domains. An essential classification task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, we present a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "Ben wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.

Keywords: Seismic signals, Ben Wavelet, Dimensionality reduction, Artificial neural networks, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
333 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients

Authors: Subha D. Puthankattil, Paul K. Joseph

Abstract:

Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.

Keywords: EEG, Depression, Wavelet entropy, Approximate entropy, Relative Wavelet energy, Multiresolution decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3639
332 Feature Extraction Technique for Prediction the Antigenic Variants of the Influenza Virus

Authors: Majid Forghani, Michael Khachay

Abstract:

In genetics, the impact of neighboring amino acids on a target site is referred as the nearest-neighbor effect or simply neighbor effect. In this paper, a new method called wavelet particle decomposition representing the one-dimensional neighbor effect using wavelet packet decomposition is proposed. The main idea lies in known dependence of wavelet packet sub-bands on location and order of neighboring samples. The method decomposes the value of a signal sample into small values called particles that represent a part of the neighbor effect information. The results have shown that the information obtained from the particle decomposition can be used to create better model variables or features. As an example, the approach has been applied to improve the correlation of test and reference sequence distance with titer in the hemagglutination inhibition assay.

Keywords: Antigenic variants, neighbor effect, wavelet packet, wavelet particle decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
331 Effects of Various Wavelet Transforms in Dynamic Analysis of Structures

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history dynamic analysis of structures is considered as an exact method while being computationally intensive. Filtration of earthquake strong ground motions applying wavelet transform is an approach towards reduction of computational efforts, particularly in optimization of structures against seismic effects. Wavelet transforms are categorized into continuum and discrete transforms. Since earthquake strong ground motion is a discrete function, the discrete wavelet transform is applied in the present paper. Wavelet transform reduces analysis time by filtration of non-effective frequencies of strong ground motion. Filtration process may be repeated several times while the approximation induces more errors. In this paper, strong ground motion of earthquake has been filtered once applying each wavelet. Strong ground motion of Northridge earthquake is filtered applying various wavelets and dynamic analysis of sampled shear and moment frames is implemented. The error, regarding application of each wavelet, is computed based on comparison of dynamic response of sampled structures with exact responses. Exact responses are computed by dynamic analysis of structures applying non-filtered strong ground motion.

Keywords: Wavelet transform, computational error, computational duration, strong ground motion data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373
330 The RK1GL2X3 Method for Initial Value Problems in Ordinary Differential Equations

Authors: J.S.C. Prentice

Abstract:

The RK1GL2X3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on the RK1GL2 method which, in turn, is a particular case of the general RKrGLm method. The RK1GL2X3 method is a fourth-order method, even though its underlying Runge-Kutta method RK1 is the first-order Euler method, and hence, RK1GL2X3 is considerably more efficient than RK1. This enhancement is achieved through an implementation involving triple-nested two-point Gauss- Legendre quadrature.

Keywords: RK1GL2X3, RK1GL2, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, local error, global error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
329 A Video Watermarking Algorithm Based on Chaotic and Wavelet Neural Network

Authors: Jiadong Liang

Abstract:

This paper presented a video watermarking algorithm based on wavelet chaotic neural network. First, to enhance binary image’s security, the algorithm encrypted it with double chaotic based on Arnold and Logistic map, Then, the host video was divided into some equal frames and distilled the key frame through chaotic sequence which generated by Logistic. Meanwhile, we distilled the low frequency coefficients of luminance component and self-adaptively embedded the processed image watermark into the low frequency coefficients of the wavelet transformed luminance component with the wavelet neural network. The experimental result suggested that the presented algorithm has better invisibility and robustness against noise, Gaussian filter, rotation, frame loss and other attacks.

Keywords: Video watermark, double chaotic encryption, wavelet neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
328 A Study of Thermal Convection in Two Porous Layers Governed by Brinkman's Model in Upper Layer and Darcy's Model in Lower Layer

Authors: M. S. Al-Qurashi

Abstract:

This work examines thermal convection in two porous layers. Flow in the upper layer is governed by Brinkman-s equations model and in the lower layer is governed by Darcy-s model. Legendre polynomials are used to obtain numerical solution when the lower layer is heated from below.

Keywords: Brinkman's law, Darcy's law, porous layers, Legendre polynomials, the Oberbeck-Boussineq approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
327 Denoising and Compression in Wavelet Domainvia Projection on to Approximation Coefficients

Authors: Mario Mastriani

Abstract:

We describe a new filtering approach in the wavelet domain for image denoising and compression, based on the projections of details subbands coefficients (resultants of the splitting procedure, typical in wavelet domain) onto the approximation subband coefficients (much less noisy). The new algorithm is called Projection Onto Approximation Coefficients (POAC). As a result of this approach, only the approximation subband coefficients and three scalars are stored and/or transmitted to the channel. Besides, with the elimination of the details subbands coefficients, we obtain a bigger compression rate. Experimental results demonstrate that our approach compares favorably to more typical methods of denoising and compression in wavelet domain.

Keywords: Compression, denoising, projections, wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
326 Comparison of S-transform and Wavelet Transform in Power Quality Analysis

Authors: Mohammad Javad Dehghani

Abstract:

In the power quality analysis non-stationary nature of voltage distortions require some precise and powerful analytical techniques. The time-frequency representation (TFR) provides a powerful method for identification of the non-stationary of the signals. This paper investigates a comparative study on two techniques for analysis and visualization of voltage distortions with time-varying amplitudes. The techniques include the Discrete Wavelet Transform (DWT), and the S-Transform. Several power quality problems are analyzed using both the discrete wavelet transform and S–transform, showing clearly the advantage of the S– transform in detecting, localizing, and classifying the power quality problems.

Keywords: Power quality, S-Transform, Short Time FourierTransform , Wavelet Transform, instantaneous sag, swell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2812
325 Optimal and Generalized Multiple Descriptions Image Coding Transform in the Wavelet Domain

Authors: Bahi brahim, El hassane Ibn Elhaj, Driss Aboutajdine

Abstract:

In this paper we propose a Multiple Description Image Coding(MDIC) scheme to generate two compressed and balanced rates descriptions in the wavelet domain (Daubechies biorthogonal (9, 7) wavelet) using pairwise correlating transform optimal and application method for Generalized Multiple Description Coding (GMDC) to image coding in the wavelet domain. The GMDC produces statistically correlated streams such that lost streams can be estimated from the received data. Our performance test shown that the proposed method gives more improvement and good quality of the reconstructed image when the wavelet coefficients are normalized by Gaussian Scale Mixture (GSM) model then the Gaussian one ,.

Keywords: Multiple description coding (MDC), gaussian scale mixture (GSM) model, joint source-channel coding, pairwise correlating transform, GMDCT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616