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Nonstational Dual Wavelet Frames in Sobolev
spaces

Yingchun Jiang, Yan Tang

Abstract— In view of the good properties of nonstationary
wavelet frames and the better flexibility of wavelets in Sobolev
spaces, the nonstationary dual wavelet frames in a pair of dual
Sobolev spaces are studied in this paper. We mainly give the
oblique extension principle and the mixed extension principle for
nonstationary dual wavelet frames in a pair of dual Sobolev spaces
H*(R%) and H™*(R%).

Keywords—nonstationary; dual frames; dual Sobolev spaces; ex-
tension principle

1. INTRODUCTION AND PRELIMINARIES

A S a redundant wavelet system, wavelet frames are easier
to design and provide more flexibilities in applications.
Because of this, wavelet frames have been extensively studied
in the literature. In particular, wavelet frames obtained from
refinable functions are of interest, due to the associated mul-
tiresolution structure and fast frame algorithms. Constructions
of tight wavelet frames from a refinable function can be
done by the unitary extension principle(UEP)'%); Moreover,
the dual wavelet frames can be done by the mlxed exten-
sion principle(MEP)['!). Later, more general oblique extension
principle(OEP) and mixed oblique extension principle are
independently developed by [3,5]. For the stationary case, it
is impossible to obtain MRA-based compactly supported tight
wavelet frames in L?(R) whose generators are in C*°(R). In
recent years, nonstationary spline tight wavelet frames by the
OEP have been systematically studied in [1,2]. Particularly,
motivated by the work of [4] and equipped with pseudo-
splines[ﬁ], together with the idea of UEP, [9] constructs nonsta-
tionary C>°(R) tight wavelet frames in L?(R) with desirable
properties, especially, the symmetric property. Furthermore,
it have been proved that such wavelet frames can be used
to characterize Sobolev spaces of arbitrary smoothness!®.
Characterization of Sobolev norm and more general Besov
norm of a function in terms of its weighted wavelet coefficient
sequence has already been studied, using a pair of dual
wavelet frames in LQ(Rd), under the assumption that both
wavelet frames must have regularity and vanishing moments
simultaneously. In [7], the MEP in L?(R?) is generalized
to a pair of dual Sobolev spaces H*(R?) and H~*(R%). 1
completely separates the vanishing moments and regulanty
of two competing requirements for two systems. One can
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require the analysis system to have vanishing moments to
achieve the sparsity, while requiring the synthesis system to
have the desired order of regularity for representing functions.
In this paper, we will generalize the extension principle in
a pair of dual Sobolev spaces H*(R?) and H*(R%) to the
nonstationary case.

For two families of 27-periodic trigonometric polynomials
masks @;,j € N and @;, j € N, their associated nonstationary
refinable functions are defined by

G20 = i55)5) = [[ara@ ). e € R j € N;
" (1.1)

H3)0(5) = [ (2706 R je N,
n=1

(1.2)
j €N (=

q;;;(f) =

Wavelet functions )%
L2,

i—1.J € N and 1/}
-, L) are defined by

@ =0050), P =1550)

For a real number s, we denote by H*(R?) the Sobolev
space consisting of all tempered distributions f such that

Jj—b

(1.3)

1
2 2\s
Iy = g ., 1FOR+ el < o
where || - || denotes the Euclidean norm in RY. H*(R?) is a

Hilbert space under the inner product

sy = gy [ FOGE

Moreover, for each g € H—*
H*(R%) as

1.9) = o | O

The spaces H*(R%) and H~*(R%) form a palr of dual spaces.

Denote Ny =: N U {0}. For given ¢0,¢](] € Ny, £ =
1,2,---,L) € H*(R%), a properly normalized wavelet system
X4 (o; {wf}jGNm ¢e{1,2,-,L}) in H?*(R?) is defined as

{do(- — k) : /{:EZd}U{1/; : jE€Ny, £=1,2,--- L}

Jdok
with 1/15 Se=27 ngj k= 2]((1_9)@0‘5(23' - —k). We say that

(quo, {LZJ }ieNo, ¢e{1,2,,0}) is a nonstationary wavelet
frame in H S(Rd) if there exist positive constants C; and Cs
such that for any f € H*(R%),

Cl||f\|§{s(3d) < Z [(f, Bo:0.) 1 (R >+

kezd

(1+ [l€)*)*de.

(R%), define linear functional on

f e H*(RY).
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L oo
SN s ¢§;§,k>Hs(Rd)|2 < Co| fIl3re (gay-

£=1 j=0 ke zd
It is called a Bessel sequence if the right-side inequal-
ity holds. Furthermore, X*(¢o; {'@bf}jeNo, te{1,2,-,}) and

X_S(QZQ; {wf}jeN(,, ¢e{1,2,--,0}) is a pair of nonstationary
dual wavelet frames in (H*(R?), H~*(R%)) if the following
two conditions are satisfied:

(1) X*(o; {@Z) YieNo, tef1,2, L}) is a nonstationary wavelet

frame in HS(Rd) and X (¢o, {4t }JGNO te{1,2,,L}) 18 @
nonstationary wavelet frame in H~ (R );

(ii) For any f € H*(R?) and g € H~*(R%), there have
<fa g> = Z <fa 50;0,k><¢0;0,k7g>+

kezd

[ee]

L
SN S R D 0 9)-

=1j=0kezd

o~

II. EXTENSION PRINCIPLE

For a 27— periodic trigonometric polynomial & in d— vari-
ables, we denote deg(a) the smallest nonnegative integer such
that its Fourier coefficients vanish outside [—deg(a), deg(a)]?.

Lemma 2.1°0  Let @;, j € N be 2r— periodic trigono-
metrlc polynomials such that sup e n 1@l poo(rey < oo. If
Z 274deg(a;) < oo and Z |@;(0) — 1| < oo hold, then the

1 1
{nﬁnite product in (1.1) corjlverges uniformly on every compact
set of R? and all ¢;, j € Ny are well-defined compactly
supported tempered distributions.

For two functions f,g: R% — C, define

[£,91(€) = D F(&+2km)g(€ + 2km) (1 + [|€ + 2k7*)".

keze

Furthermore, for our use, we define v(¢) =: sup{s € R :
(05, 0j]ls < M, j € No}.

The following lemma can be obtained by modifying the
Theorem 2.3 of [7]:

Lemma 2.2 Let ¢;(j € No) € H*(R?), s € R satisfy
[q/b_,\qSJ] < M for some ¢t > s and all j € Ny. Define
0j-1(2€) =1 b;(€)6;(€), € € RY, where b;(§)(j € N) are
2m— perlodlc measurable functions in d— variables. Assume
that there exists a nonnegative number « > —s and a positive
constant C' independent of j such that

16;(€)| < Cmin(1, ||€]%), € € R™.

Then X*(¢o;%;,j € No) is a nonstationary Bessel wavelet
sequence in H*(R%).

Lemma 2.3 X*(¢o; {¢}jen,, veq1,2,,L}) is a frame
in H*(R%) with C1,Cy > 0 if and only if

Cillglz- s(R1) = Z {9, Po0.k) |2+ZZ Z 195 V550

keza £=1j=0kezd
< Collgl -« ray, 9 € H*(RY).

The following result is the OEP for nonstationary dual
wavelet frames in Sobolev spaces:
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Theorem 2.1 Let aAj,bAﬁ(j €N, ¢ =1,2,---,L) and

6/;,~ bi(j € N, £ =1,2,---,L) be 2r— periodic trigonometric
polynomlals in d— Var1ables _which satisfy the conditions of
Lemma 2.1. Suppose that gZ)J, (bj (j € Np) and 1/)@, 1/J£(j € Np)
are defined as in (1.1), (1.2) and (1.3), ©;, j € N are
2m—period trigonometric polynomial satisfying ©;(0) = 1
and |9;(§)| < Cp for all j € N. Moreover, the following
identity holds

W @j(2€)@(€)'@(§+w)+é BB +97) = 0,41 ()

L
0;(26)a; ()a; (E+ym)+>_ b(€) bf (&+ym) = 0,7 € {0,1}\{0}
=1

(2) for a real number s € R satisfying
v(¢) >s and v() > —s,

there exist nonnegative numbers « and a with o > —s and
a > s, such that the following conditions hold for constants
C, C’ independent of j:

b4(€)] < Cmin(1, [i€]*)
()| < O min(1, [€]%), £=1,2,--, L.

Let 75(¢) =: 9~j+1(§)¢j(f)-Xs(¢o; {wf}jeNo, ¢e{1,2,,L})
and X ~*(no; {@Dﬁ}jem’ ¢e{1,2,,}) is a pair of nonstation-
ary dual wavelet frames in (H*(R?), H~*(R%)). Further-
more, there are positive constants C; and Cy such that

Cillgll - s(Rd) S Z 1(g, Po;0.%)| +ZZ Z 9, V505

kezd £=1j=0 kezd

< Collgl -« (ray, 9 € H*(RY);

L oo
Cy M I N1 Fe (ray < ST fmoom P DY K wf;i

keza =1 j=0kez?

< O e (gays f€ HY(RY). (2.1)

Let ©;(£) = 1, we obtain the MEP for nonstationary dual
wavelet frames in Sobolev spaces:

Corollary 21 Let a;,bi(j € N, ¢ = 1,2,---,L),
aj,b (j €N, £ =12-,1L), ¢J’ ¢J(] € Ny) and 77[’[’
¢§ (j € Np) be defined as in Theorem 2.1. Suppose that

L o~
a@-(g)a?(uw + S0 (€ +Am) = 6, v € 0,1}
/=1

If the condition (2) of Theorem 2.1 are sat-
isﬁed, then XS(¢0; {wf}jGNo, ZG{I,Z,m,L}) and

’5(50; {Jf}je%_’ ¢te{1,2,,}) is a pair of nonstationary
dual wavelet frames in (H*(R?), H—*(R?)).

For proving the theorems,we give the following lemmas:
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Lemma 2.4 If the condition of item (1) in Theorem 2.1
is satisfied, then for any f € H*(R%) and g € H*(R%),

ZZ f’ JJk

=1 kezd

Z (Fsmir1+1,6)(Pj415541,k5 9) — Z (fom35.00 (D50, 9)-

keZd keZd

JJk’ >_

Proof For simplicity, we only prove the case for d = 1, the
general case can be proved similarly. For any h € H*(R) and

heH ~*(R), by Plancherel formula and Parseval identity,
SR —H)9) = o [ a@hal(€)ds.

Since (f,mjin) = 273(F277),mi(- = ), (Djsimrg) =
27%<¢]( - k)ag(27]')>a then
> k) (b k0 9)

keZz

— 9 Z (2*]’.))

keZ

[(f(2 INN3310(€) - 165, (9(2

= k))(8;(- = k),

2 J

- ~9)"lo(€)dg

-2 /W[zmj F(2i¢ +20 - 2mm)iy (€ + 2mm)

1Y 6,6+ 2nm)g(27€ + 27 - 2nm)]de.

Due to . £ ¢
¢;(§) = @(§)¢j+1(§)
() = 051 (O (5571 (5),
we obtain

[Z f(?jf + 27 2mm)i; (€ + 2mm)] x

1> ;€ + 2nm)g(27€ + 27 - 2nm)]

n

—

= (3 F@et2 amm)dy a(§ +mm)O, 1 (€ (5 + me)

<30 6§ +nm i (S + nm)@E 27 20m)

p—

Z (29¢ 4 291, 2m7r)$j+1(g + 2mm)| x

m

Z%H( + 2nm)g(29€ + 2971 - 2nm)]

051 @i (S ()

Z Fl@ie + 27" - omm); 1 (5 + 2mm)x
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[Z ‘ZS/JII(% +2nm + m)g(29€ + 29+ - 2n + 29+ )] x

9J'+1(§)2‘7+\1(§

Sam(S + )

p—

) F(@e+ 274 2mr + 247‘+17r)$]—+1(§ + 2mar + )] x

Z ¢J+1

+ 2nm)g(29€ + 291 . 2nm)] %

o~

0,170 +mimi ()

) F(@e+ 274 2mr + 27 )4, +1(5 + 2mm + )] x

m

Z¢]+1

+2nm +m)g(29€ 4+ 291 - 2nr + 29+ 1) x

& — &
O;+1(8)aj41(5 + m)aja (5 + 7).
By the item (1) of Theorem 2.1, one can know

®j+1(£)a?1(§)a7+‘1(§ Oj+2(3 Z G2 (5051 ( g)

—

9j+1(§)5j+1(§

£
2 2t

+ a7

J+2

Zbﬁl( F (G 4 m)

—

@j+1<s>aj+1<§>aj+1< +m) ZbH( (S +m)

£

@j+1(f)57+\1(§ + w)aj+1 Zle + w)be (2).
Furthermore,
[Z J?(ij +927. QWW)W]X
57 65( + 2nm)5(2E + 27 - 20m)
— [Z J?(ij 4 9itL. 2m7r)@j+2(§)q~57_:1(§ + 2mm)] x

+ 2nm)g(27¢ + 2941 - 2nm) |+

Z ¢]+1

[Z f(2j§+2j+1-2m7r—0—2j+17r)®j+2(§ + ﬂ)ggj_,_l(g +2mm + 7))

m
Z@H + 20 + m)G(2IE + 27T - 2nm + 277 )]

p—

— Z[Zf 20¢ 427 2m7r)gb7+1(£ + mﬁ)b§+1

=1 m

(2 + mm)]x
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+ nm) J+1(£ + nm)g(27¢ + 27 - 2n)).

Z¢j+1

The third item equals
L

>D F(2ig+27. ZmW)@(f + 2m)] x

/=1 m
" 0L(E + 2nm)G(2E + 27 - 2nm)).

Therefore, we have the following result by integrating

.

> F(e+2. 2m7r)zf§f(§ + 2m)| x

Ti=1 m

> zpf.(g + 2n7)g(27€ + 27 - 2nm)|dE

L
ZZ fwfjk <1/)j]k7g>

l=1keZ

Integrating for the first and the second item on [—, 7] and
using the 27r—peri0d, we obtain

j+1 _
2;7r i Zf (274271 2mm) 040 (€) b1 (€ + 2m)]
[Z dg:l(f + 2n7)g(29 1€ + 20+1 . 2n7)]dé
2]+1

+

5 / Z F@ITE 42 2mm)0140(€) Sy 1 (€ + 2mm))

137 Gy (€ + 2nm)g(27FTE + 27T - 2nm))de

n

92j+1

B S 42 im0 16+ 2]

17 Gira (€ + 2nm)GRIFIE + 27T 2nm))dg

= > (/s 77j+1;j+1,k><¢j+1;j+1,k7g)-
kezZ

The final equality follows from

@j+2(§)£l;/j:1(§ + 2mm)

—

= 0;42(§ +2mm) ;1 (€ + 2mm) = 7511 (€ + 2mm).

Finally, we obtain the desired result.

Lemma 2.5 Suppose that the 27— periodic trigonometric
polynomials a;, j € N satisfies the conditions of Lemma 2.1
and define ¢;, j € Ny by (1.1), then

lim ¢, (27"¢) = 1.
o #n(2776)

Proof By Lemma 2.1, ¢;, j € Ny are well defined, which
means that for all j € NV,

Jm o127 = 05-1(8) = [[ Arrj1(27).
k=1 k=1
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In particular, lim ﬁ ap(27%€) = o(€) = ﬁ ax(277¢)
n—-+o0 p - k=1
Note that -
(En(g) = H an+k(27k§)'
k=1
Therefore,
¢n (27 5 Han+k(2 (n+k)£)
k=1
- [T ac2~¢)
= [l aeo="2
t=nt1 IT ar(27)
=1

Obviously, we have

lim ¢n(2 ") =

n—-+o0o0

III. PROOF OF THEOREM

Proof of Theorem 2.1: Since v(¢) > s, we can take ¢ such
that v(¢) > t > s, then [gzﬁj,gbj]t <M (j € No) and ¢; €
H*(R%). By Lemma 2.2, X*(¢o; {w YieNo, te{1,2,,L})
is a nonstationary Bessel sequence in HS(Rd) Similarly,
X ~*(no; {w‘y}jeNO, ¢e{1,2,.,0}) is a nonstationary Bessel

sequence in H—*(R%), which is then equivalent to

Z‘  P00.k) ‘2_'—22 Z|g, i)

keza =1 j=0keZz?

< Collgl -« (ray, 9 € H*(RY);

Z|f,n00k|2+222|f¢;’;,:

kezd £=1j=0kezd

1 2 s d
< CTleHHs(Rd): f € H*(RY).

By Lemma 2.3, in order to show the frame property, we only
need to show the left sides of (2.1).

Let B(R?) denote the set of all tempered distributions f
such that f is compactly supported and f € L>(R%), then
B(R%) C H"(Rd) for any v € R. By Lemma 2.4, we obtain

Z Z f 1/)ij ]kv >
(=1 kezd
= (Fjsrrrn) Gtk 9)— > (Fi i) (Bjsins 9)-
kezd keza

Therefore, we have

n—1

> (fonoon)(book9) + DD D (L

kezd =1 j=0 kezd

= Z <f7 nn;n,k><¢n;n,kvg>a fvg S B(Rd)

keze

K—G 2,
g 7 k><¢j-_;,k7 g>

At the end of the proof, we will show that
<f7 g) = lim Z <f7 77n;n,k><¢n;n,k,g>7 fvg € B(Rd)
n—oo

kezd

(%)
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Then
(f.9) =" (Fn00.k) (b0 9)+

kezd

ZZZ AT

(=1 j=0 ke Zzd

WSk 9)s frg € B(RY),

with the series converging absolutely. Moreover, by Holder
inequality,

2 < (3 (fmoou) 2 +

kezd

( Z [(dos0,k, 9)

kJGZd

2.2 2 o0
=

j=0kezd

L oo
D9 3) LT
=1j=0kezd

Therefore, we have

(f9) < oA HfHHS(Rd)(Z [(¢0:0.k, 9) P+
kezd
L oo
ZZZ U5 ). f.g € B(RY).
=1j=0kezd
Furthermore,
N 1

reprinoy 1 e aay

Z [{os0.5, 9)I* +ZZ Z (¥ JJk’

keza =1 j=0kezd

Since B(R?) is dense in H*(R%), then

CillghFi—-ray < Y [bo:0,k:9) +ZZ > g

keza £=1j=0kezd
< Collglly - gay, 9 € B(RY).

Since B(R?) is dense in H~*(R%), the above inequality holds

forallg e H™ (Rd) that is, X*(¢o; {w }JENO 0e{1,2,-- L})
is a nonstationary wavelet frame in H°® (Rd) Similarly, we

know X ~*(no; {wj }ieNo, te{1,2,,0}) 1S a nonstationary
wavelet frame in H ~*(R?). Moreover, they are a pair of dual
wavelet frames in (H*(R?), H=*(R?)).

Now, it remains to prove (x):

Z <f7 nn;n7k> <¢n;n,k: g>

kezd

R R IO ERGE

@ /cm —ng);

Since f,g € B(R?), there exists a pos1t1ve number N such

that f(€) = §(€) = 0 for all £ ¢ [N, N]<. For n > log, (&),
it is easy to show that §(&)f(¢ + 2k7r2") = 0 for all k£ €
ZN\{0} and ¢ € R®. Therefore,

on(277€)3(E)f (2"

, g € B(RY).

)a(E)[f(2™), mlo(27"€)dE.

) Mmlo(277€)
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= 6a(27")3(€) Y f(E + 2km2")ip (277E + 2kn)

kezd

= 6n(27")G(E) f ()T (27TE) = n (27T (2- 7€) F(€)3(E).-
Since [@, a]s < M; and
[@vﬁj]fs = ‘@jﬂ(f)‘ [92537@53] [92517923]}
for all 5 € Ny, then we obtain
175(6)65(€)] < 1731, 185110 ()
< ([, 775)-)2 (67, 851s) 2 < V/MiMs < .

Therefore, for n > 10g2(¥), we have
|6n(27"E)3(E)[F(27), Tnlo(27"€)]
= |6n(27 ") (27 7E) f(€)3(€)] < VM M| f(€)3(E).

Since f,g € B(R?), we know fj € Ll(Rd). Note that

M(277¢) = 9n+1(2_"§)$n(2_"5), by the Lebesgue dom-
inated convergence theorem and Lemma 2.5, then

hIIolo Z <,f, 7]n;n,]€> <¢n;n,/€a g>

n—

kezd

= Gyt [, Jm G ORE 2
1 S
= o o

- gy [ FO#@ = (1.9).
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