Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
Nonstational Dual Wavelet Frames in Sobolev Spaces

Authors: Yingchun Jiang, Yan Tang

Abstract:

In view of the good properties of nonstationary wavelet frames and the better flexibility of wavelets in Sobolev spaces, the nonstationary dual wavelet frames in a pair of dual Sobolev spaces are studied in this paper. We mainly give the oblique extension principle and the mixed extension principle for nonstationary dual wavelet frames in a pair of dual Sobolev spaces Hs(Rd) and H-s(Rd).

Keywords: Nonstationary, dual frames, dual Sobolev spaces, extension principle.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1334183

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298

References:


[1] C. K. Chui, W. He and J. Stockler, Nonstationary tight wavelet frames, I: bounded intervals, Appl. Comput. Harmon. Anal., 17(2), 141-197, 2004.
[2] C. K. Chui, W. He and J. Stockler, Nonstationary tight wavelet frames, II:unbounded interval, Appl. Comput. Harmon. Anal., 18(1), 25-66, 2005.
[3] C. K. Chui, W. He and J. Stockler, Compactly supported tight and sibling frames with maximum vanishing moments, Appl. Comput. Harmon. Anal., 13, 224-262, 2002.
[4] A. Cohen and N. Dyn, Nonstationary subdivision schemes and multiresolution analysis, SIAM J. Math. Anal., 27, 1745-1769, 1996.
[5] I. Daubechies, B. Han, A. Ron and Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal., 14, 1-46, 2003.
[6] B. Dong and Z. Shen, Pseudo-splines wavelets and framelets, Appl. Comput. Harmon. Anal., 22, 78-104, 2007.
[7] B. Han and Z. Shen, Dual wavelet frames and Riesz bases in Sobolev spaces, Constr. Approx., 29(3), 369-406, 2009.
[8] B. Han and Z. Shen, Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight wavelet frames, Israel Journal of Mathematics, 172(1), 371-398, 2009.
[9] B. Han and Z. Shen, Compactly supported symmetric C∞ wavelets with spectral approximation order, SIAM Journal on Mathematical Analysis, 40, 905-938, 2008.
[10] A. Ron and Z. Shen, Affine systems in L2(Rd): the analysis of the analysis operator, J. Funct. Anal., 148, 408-447, 1997.
[11] A. Ron and Z. Shen, Affine systems in L2(Rd) II: dual systems, J. Fourier Anal. Appl., 3, 617-637, 1997.