Classification of Non Stationary Signals Using Ben Wavelet and Artificial Neural Networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Classification of Non Stationary Signals Using Ben Wavelet and Artificial Neural Networks

Authors: Mohammed Benbrahim, Khalid Benjelloun, Aomar Ibenbrahim, Adil Daoudi

Abstract:

The automatic classification of non stationary signals is an important practical goal in several domains. An essential classification task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, we present a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "Ben wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.

Keywords: Seismic signals, Ben Wavelet, Dimensionality reduction, Artificial neural networks, Classification.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1082153

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449

References:


[1] S. Abeysekera and B. Boashash, "Methods of signal classification using the images produced by Wigner distribution" Pattern Recognition Letters, 12, pp. 717-729, 1991.
[2] L. Atlas, J. Droppo and J. McLaughlin, "Optimizing time-frequency distributions for automatic classification" In the International Society for Optical Engineering, 1997.
[3] M. Davy, C. Doncarli, and G. F. Boudreaux-Bartels, "Improved optimization of time-frequency based signal classifiers" IEEE Sig. Proc. Let, 8, pp. 52-57, 2001.
[4] F. Hlawasch and G. F. Boudreaux-Bartels, "Linear and quadratic timefrequency signal representations" IEEE Sig. Proc. Mag, 9, pp. 21-67, 1992.
[5] A. Papandreou-Suppappola, F. Hlawasch and G. Boudreaux-Bartels, "Quadratic time-frequency representations with scale covariance and generalized time-shift covariance: a unified framework for the affine, hyperbolic and power classes" Digital signal Processing, 8, pp.3-48, 1998.
[6] L. Cohen, "Generalized phase-space distribution functions" J. Math. Phys, 7, pp. 781-786, 1966.
[7] L. Cohen, "Time-frequency analysis" Prentice Hall, 1995.
[8] O. Rioul and P. Flandrin, "Time-scale energy distributions : a general class extending wavelet transforms" IEEE Trans on Signal Processing, 40, pp. 1746-1757, 1992.
[9] P. Flandrin, "Temps-fréquence", Academic Press, 1998.
[10] F. Hlawasch, A. F. Papandreou-Suppappola and G. Boudreaux-Bartels, "The power classes of quadratic time-frequency representations : a generalization of the hyperbolic and affine classes" In 27th Asilomar Conf on Signals, Systems and computers, Pacific Grove, CA, 1265-1270, 1993.
[11] F. Hlawasch, A. F. Papandreou-Suppappola and G. Boudreaux-Bartels, "The hyperbolic class of quadratic time-frequency representations. Part II: Subclasses, intersection with affine and power classes, regularity unitarity" IEEE Trans on Signal Processing, 45, pp. 303-315, 1997.
[12] A. Papandreou-Suppappola, F. Hlawasch and G. Boudreaux-Bartels, "Power class time-frequency representations: interference geometry, smoothing and implementation" In IEEE Symposium on Time-Frequency and Time-Scale Analysis, Paris, pp.193-196, 1996.
[13] I. Daubechies, "Ten lectures on wavelets", SIAM, Philadelphia, Pa, 1992.
[14] C. Torrence and G. P. Compo, "A practical guide to wavelet analysis" Bull. Amer. Meteor. Soc, 79, pp. 61-78, 1998.
[15] M. Benbrahim, K. Benjelloun and A. Ibenbrahim, "Discrimination des signaux sismiques par réseaux de neurones artificiels" In Proc of 3èmes journées nationales sur les systèmes intelligents: théorie et applications, Rabat, Morocco, pp. 62-66; 2004.
[16] R. Bellman, "Adaptive control processes: A guided tour" Princeton University Press, Princeton, 1961.
[17] W.B. Johnson and J. Lindenstrauss, "Extensions of Lipshitz mapping into Hilbert space" In Conference in modern analysis and probability, volume 26 of Contemporary Mathematics, Amer. Math. Soc, pp. 189-206, 1984.
[18] I. T. Jolliffe, "Principal component analysis", Springer-Verlag, 1986.
[19] J. E. Jackson, "A user's guide to principal components", John Wiley, New York, 1991.
[20] M. Benbrahim, A. Daoudi, K. Benjelloun and A. Ibenbrahim, "Discrimination of seismic signals using artificial neural networks" In Proc of the second world enformatika congress, WEC'05, Istanbul, Turkey, pp 4-7, 2005.
[21] A. Daoudi, M. Benbrahim and K. Benjelloun, "An intelligent system to classify leaks in water distribution pipes" In Proc of the second world enformatika congress, WEC'05, Istanbul, Turkey, pp 1-3, 2005.