Search results for: Difference equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2341

Search results for: Difference equations

2311 The Pell Equation x2 − (k2 − k)y2 = 2t

Authors: Ahmet Tekcan

Abstract:

Let k, t, d be arbitrary integers with k ≥ 2, t ≥ 0 and d = k2 - k. In the first section we give some preliminaries from Pell equations x2 - dy2 = 1 and x2 - dy2 = N, where N be any fixed positive integer. In the second section, we consider the integer solutions of Pell equations x2 - dy2 = 1 and x2 - dy2 = 2t. We give a method for the solutions of these equations. Further we derive recurrence relations on the solutions of these equations

Keywords: Pell equation, solutions of Pell equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
2310 The Euler Equations of Steady Flow in Terms of New Dependent and Independent Variables

Authors: Peiangpob Monnuanprang

Abstract:

In this paper we study the transformation of Euler equations  1 , u u u Pf t (ρ ∂) + ⋅∇ = − ∇ + ∂ G G G G ∇⋅ = u 0, G where (ux, t) G G is the velocity of a fluid, P(x, t) G is the pressure of a fluid andρ (x, t) G is density. First of all, we rewrite the Euler equations in terms of new unknown functions. Then, we introduce new independent variables and transform it to a new curvilinear coordinate system. We obtain the Euler equations in the new dependent and independent variables. The governing equations into two subsystems, one is hyperbolic and another is elliptic.

Keywords: Euler equations, transformation, hyperbolic, elliptic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
2309 Automatic Iterative Methods for the Multivariate Solution of Nonlinear Algebraic Equations

Authors: Rafat Alshorman, Safwan Al-Shara', I. Obeidat

Abstract:

Most real world systems express themselves formally as a set of nonlinear algebraic equations. As applications grow, the size and complexity of these equations also increase. In this work, we highlight the key concepts in using the homotopy analysis method as a methodology used to construct efficient iteration formulas for nonlinear equations solving. The proposed method is experimentally characterized according to a set of determined parameters which affect the systems. The experimental results show the potential and limitations of the new method and imply directions for future work.

Keywords: Nonlinear Algebraic Equations, Iterative Methods, Homotopy Analysis Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
2308 A New Approach to the Approximate Solutions of Hamilton-Jacobi Equations

Authors: Joe Imae, Kenjiro Shinagawa, Tomoaki Kobayashi, Guisheng Zhai

Abstract:

We propose a new approach on how to obtain the approximate solutions of Hamilton-Jacobi (HJ) equations. The process of the approximation consists of two steps. The first step is to transform the HJ equations into the virtual time based HJ equations (VT-HJ) by introducing a new idea of ‘virtual-time’. The second step is to construct the approximate solutions of the HJ equations through a computationally iterative procedure based on the VT-HJ equations. It should be noted that the approximate feedback solutions evolve by themselves as the virtual-time goes by. Finally, we demonstrate the effectiveness of our approximation approach by means of simulations with linear and nonlinear control problems.

Keywords: Nonlinear Control, Optimal Control, Hamilton-Jacobi Equation, Virtual-Time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
2307 Integrable Heisenberg Ferromagnet Equations with Self-Consistent Potentials

Authors: Gulgassyl Nugmanova, Zhanat Zhunussova, Kuralay Yesmakhanova, Galya Mamyrbekova, Ratbay Myrzakulov

Abstract:

In this paper, we consider some integrable Heisenberg Ferromagnet Equations with self-consistent potentials. We study their Lax representations. In particular we derive their equivalent counterparts in the form of nonlinear Schr¨odinger type equations. We present the integrable reductions of the Heisenberg Ferromagnet Equations with self-consistent potentials. These integrable Heisenberg Ferromagnet Equations with self-consistent potentials describe nonlinear waves in ferromagnets with some additional physical fields.

Keywords: Spin systems, equivalent counterparts, integrable reductions, self-consistent potentials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
2306 Exp-Function Method for Finding Some Exact Solutions of Rosenau Kawahara and Rosenau Korteweg-de Vries Equations

Authors: Ehsan Mahdavi

Abstract:

In this paper, we apply the Exp-function method to Rosenau-Kawahara and Rosenau-KdV equations. Rosenau-Kawahara equation is the combination of the Rosenau and standard Kawahara equations and Rosenau-KdV equation is the combination of the Rosenau and standard KdV equations. These equations are nonlinear partial differential equations (NPDE) which play an important role in mathematical physics. Exp-function method is easy, succinct and powerful to implement to nonlinear partial differential equations arising in mathematical physics. We mainly try to present an application of Exp-function method and offer solutions for common errors wich occur during some of the recent works.

Keywords: Exp-function method, Rosenau Kawahara equation, Rosenau Korteweg-de Vries equation, nonlinear partial differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
2305 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation

Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim

Abstract:

In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results is in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes.

Keywords: Semi-Lagrangian method, Iteration free method, Nonlinear advection-diffusion equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
2304 On Deterministic Chaos: Disclosing the Missing Mathematics from the Lorenz-Haken Equations

Authors: Belkacem Meziane

Abstract:

The original 3D Lorenz-Haken equations -which describe laser dynamics- are converted into 2-second-order differential equations out of which the so far missing mathematics is extracted. Leaning on high-order trigonometry, important outcomes are pulled out: A fundamental result attributes chaos to forbidden periodic solutions, inside some precisely delimited region of the control parameter space that governs self-pulsing.

Keywords: chaos, Lorenz-Haken equations, laser dynamics, nonlinearities

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
2303 Numerical Solution for Integro-Differential Equations by Using Quartic B-Spline Wavelet and Operational Matrices

Authors: Khosrow Maleknejad, Yaser Rostami

Abstract:

In this paper, Semi-orthogonal B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of integro-differential equations.The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this function are presented to reduce the solution of integro-differential equations to the solution of algebraic equations. Here we compute B-spline scaling functions of degree 4 and their dual, then we will show that by using them we have better approximation results for the solution of integro-differential equations in comparison with less degrees of scaling functions

Keywords: Integro-differential equations, Quartic B-spline wavelet, Operational matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3153
2302 Periodic Solutions for a Two-prey One-predator System on Time Scales

Authors: Changjin Xu

Abstract:

In this paper, using the Gaines and Mawhin,s continuation theorem of coincidence degree theory on time scales, the existence of periodic solutions for a two-prey one-predator system is studied. Some sufficient conditions for the existence of positive periodic solutions are obtained. The results provide unified existence theorems of periodic solution for the continuous differential equations and discrete difference equations.

Keywords: Time scales, competitive system, periodic solution, coincidence degree, topological degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1369
2301 Modeling and Visualizing Seismic Wave Propagation in Elastic Medium Using Multi-Dimension Wave Digital Filtering Approach

Authors: Jason Chien-Hsun Tseng, Nguyen Dong-Thai Dao, Chong-Ching Chang

Abstract:

A novel PDE solver using the multidimensional wave digital filtering (MDWDF) technique to achieve the solution of a 2D seismic wave system is presented. In essence, the continuous physical system served by a linear Kirchhoff circuit is transformed to an equivalent discrete dynamic system implemented by a MD wave digital filtering (MDWDF) circuit. This amounts to numerically approximating the differential equations used to describe elements of a MD passive electronic circuit by a grid-based difference equations implemented by the so-called state quantities within the passive MDWDF circuit. So the digital model can track the wave field on a dense 3D grid of points. Details about how to transform the continuous system into a desired discrete passive system are addressed. In addition, initial and boundary conditions are properly embedded into the MDWDF circuit in terms of state quantities. Graphic results have clearly demonstrated some physical effects of seismic wave (P-wave and S–wave) propagation including radiation, reflection, and refraction from and across the hard boundaries. Comparison between the MDWDF technique and the finite difference time domain (FDTD) approach is also made in terms of the computational efficiency.

Keywords: Seismic Wave Propagation, Multi-dimension WaveDigital Filters, Partial Differential Equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
2300 Positive Periodic Solutions in a Discrete Competitive System with the Effect of Toxic Substances

Authors: Changjin Xu, Qianhong Zhang

Abstract:

In this paper, a delayed competitive system with the effect of toxic substances is investigated. With the aid of differential equations with piecewise constant arguments, a discrete analogue of continuous non-autonomous delayed competitive system with the effect of toxic substances is proposed. By using Gaines and Mawhin,s continuation theorem of coincidence degree theory, a easily verifiable sufficient condition for the existence of positive solutions of difference equations is obtained.

Keywords: Competitive system, periodic solution, discrete time delay, topological degree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
2299 Strict Stability of Fuzzy Differential Equations with Impulse Effect

Authors: Sanjay K.Srivastava, Bhanu Gupta

Abstract:

In this paper some results on strict stability heve beeb extended for fuzzy differential equations with impulse effect using Lyapunov functions and Razumikhin technique.

Keywords: Fuzzy differential equations, Impulsive differential equations, Strict stability, Lyapunov function, Razumikhin technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
2298 Toward a New Simple Analytical Formulation of Navier-Stokes Equations

Authors: Gunawan Nugroho, Ahmed M. S. Ali, Zainal A. Abdul Karim

Abstract:

Incompressible Navier-Stokes equations are reviewed in this work. Three-dimensional Navier-Stokes equations are solved analytically. The Mathematical derivation shows that the solutions for the zero and constant pressure gradients are similar. Descriptions of the proposed formulation and validation against two laminar experiments and three different turbulent flow cases are reported in this paper. Even though, the analytical solution is derived for nonreacting flows, it could reproduce trends for cases including combustion.

Keywords: Navier-Stokes Equations, potential function, turbulent flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
2297 Natural Convection Boundary Layer Flow of a Viscoelastic Fluid on Solid Sphere with Newtonian Heating

Authors: A.R.M. Kasim, N.F. Mohammad, Aurangzaib, S. Sharidan

Abstract:

The present paper considers the steady free convection boundary layer flow of a viscoelastic fluid on solid sphere with Newtonian heating. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. Thus, the augmentation an extra boundary condition is needed to perform the numerical computational. The governing boundary layer equations are first transformed into non-dimensional form by using special dimensionless group and then solved by using an implicit finite difference scheme. The results are displayed graphically to illustrate the influence of viscoelastic K and Prandtl Number Pr parameters on skin friction, heat transfer, velocity profiles and temperature profiles. Present results are compared with the published papers and are found to concur very well.

Keywords: boundary layer flow, Newtonian heating, sphere, viscoelastic fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408
2296 Solving Linear Matrix Equations by Matrix Decompositions

Authors: Yongxin Yuan, Kezheng Zuo

Abstract:

In this paper, a system of linear matrix equations is considered. A new necessary and sufficient condition for the consistency of the equations is derived by means of the generalized singular-value decomposition, and the explicit representation of the general solution is provided.

Keywords: Matrix equation, Generalized inverse, Generalized singular-value decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
2295 Laplace Technique to Find General Solution of Differential Equations without Initial Conditions

Authors: Adil Al-Rammahi

Abstract:

Laplace transformations have wide applications in engineering and sciences. All previous studies of modified Laplace transformations depend on differential equation with initial conditions. The purpose of our paper is to solve the linear differential equations (not initial value problem) and then find the general solution (not particular) via the Laplace transformations without needed any initial condition. The study involves both types of differential equations, ordinary and partial.

Keywords: Differential Equations, Laplace Transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3185
2294 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance

Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian

Abstract:

Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.

Keywords: Identification, Hammerstein-Wiener, optimization, quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 801
2293 New Application of EHTA for the Generalized(2+1)-Dimensional Nonlinear Evolution Equations

Authors: Mohammad Taghi Darvishi, Maliheh Najafi, Mohammad Najafi

Abstract:

In this paper, the generalized (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (shortly CBS) equations are investigated. We employ the Hirota-s bilinear method to obtain the bilinear form of CBS equations. Then by the idea of extended homoclinic test approach (shortly EHTA), some exact soliton solutions including breather type solutions are presented.

Keywords: EHTA, (2+1)-dimensional CBS equations, (2+1)-dimensional breaking solution equation, Hirota's bilinear form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
2292 Bifurcation Method for Solving Positive Solutions to a Class of Semilinear Elliptic Equations and Stability Analysis of Solutions

Authors: Hailong Zhu, Zhaoxiang Li

Abstract:

Semilinear elliptic equations are ubiquitous in natural sciences. They give rise to a variety of important phenomena in quantum mechanics, nonlinear optics, astrophysics, etc because they have rich multiple solutions. But the nontrivial solutions of semilinear equations are hard to be solved for the lack of stabilities, such as Lane-Emden equation, Henon equation and Chandrasekhar equation. In this paper, bifurcation method is applied to solving semilinear elliptic equations which are with homogeneous Dirichlet boundary conditions in 2D. Using this method, nontrivial numerical solutions will be computed and visualized in many different domains (such as square, disk, annulus, dumbbell, etc).

Keywords: Semilinear elliptic equations, positive solutions, bifurcation method, isotropy subgroups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
2291 A Semi-Implicit Phase Field Model for Droplet Evolution

Authors: M. H. Kazemi, D. Salac

Abstract:

A semi-implicit phase field method for droplet evolution is proposed. Using the phase field Cahn-Hilliard equation, we are able to track the interface in multiphase flow. The idea of a semi-implicit finite difference scheme is reviewed and employed to solve two nonlinear equations, including the Navier-Stokes and the Cahn-Hilliard equations. The use of a semi-implicit method allows us to have larger time steps compared to explicit schemes. The governing equations are coupled and then solved by a GMRES solver (generalized minimal residual method) using modified Gram-Schmidt orthogonalization. To show the validity of the method, we apply the method to the simulation of a rising droplet, a leaky dielectric drop and the coalescence of drops. The numerical solutions to the phase field model match well with existing solutions over a defined range of variables.

Keywords: Coalescence, leaky dielectric, numerical method, phase field, rising droplet, semi-implicit method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 879
2290 Numerical Investigation of a Slender Delta Wing in Combined Force-Pitch and Free-Roll

Authors: Yang Xiaoliang, Liu Wei, Wang Hongbo, Zhao Yunfei

Abstract:

Numerical investigation of the characteristics of an 80° delta wing in combined force-pitch and free-roll is presented. The implicit, upwind, flux-difference splitting, finite volume scheme and the second-order-accurate finite difference scheme are employed to solve the flow governing equations and Euler rigid-body dynamics equations, respectively. The characteristics of the delta wing in combined free-roll and large amplitude force-pitch is obtained numerically and shows a well agreement with experimental data qualitatively. The motion in combined force-pitch and free-roll significantly reduces the lift force and transverse stabilities of the delta wing, which is closely related to the flying safety. Investigations on sensitive factors indicate that the roll-axis moment of inertia and the structural damping have great influence on the frequency and amplitude, respectively. Moreover, the turbulence model is considered as an influencing factor in the investigation.

Keywords: combined force-pitch and free-roll, numericalsimulation, sensitive factors, slender delta wing, wing rock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
2289 Numerical Solution of Hammerstein Integral Equations by Using Quasi-Interpolation

Authors: M. Zarebnia, S. Khani

Abstract:

In this paper first, a numerical method based on quasiinterpolation for solving nonlinear Fredholm integral equations of the Hammerstein-type is presented. Then, we approximate the solution of Hammerstein integral equations by Nystrom’s method. Also, we compare the methods with some numerical examples.

Keywords: Hammerstein integral equations, quasi-interpolation, Nystrom’s method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4473
2288 1-D Modeling of Hydrate Decomposition in Porous Media

Authors: F. Esmaeilzadeh, M. E. Zeighami, J. Fathi

Abstract:

This paper describes a one-dimensional numerical model for natural gas production from the dissociation of methane hydrate in hydrate-capped gas reservoir under depressurization and thermal stimulation. Some of the hydrate reservoirs discovered are overlying a free-gas layer, known as hydrate-capped gas reservoirs. These reservoirs are thought to be easiest and probably the first type of hydrate reservoirs to be produced. The mathematical equations that can be described this type of reservoir include mass balance, heat balance and kinetics of hydrate decomposition. These non-linear partial differential equations are solved using finite-difference fully implicit scheme. In the model, the effect of convection and conduction heat transfer, variation change of formation porosity, the effect of using different equations of state such as PR and ER and steam or hot water injection are considered. In addition distributions of pressure, temperature, saturation of gas, hydrate and water in the reservoir are evaluated. It is shown that the gas production rate is a sensitive function of well pressure.

Keywords: Hydrate reservoir, numerical modeling, depressurization, thermal stimulation, gas generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
2287 A Modification on Newton's Method for Solving Systems of Nonlinear Equations

Authors: Jafar Biazar, Behzad Ghanbari

Abstract:

In this paper, we are concerned with the further study for system of nonlinear equations. Since systems with inaccurate function values or problems with high computational cost arise frequently in science and engineering, recently such systems have attracted researcher-s interest. In this work we present a new method which is independent of function evolutions and has a quadratic convergence. This method can be viewed as a extension of some recent methods for solving mentioned systems of nonlinear equations. Numerical results of applying this method to some test problems show the efficiently and reliability of method.

Keywords: System of nonlinear equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
2286 Tsunami Inundation Modeling in a Boundary Fitted Curvilinear Grid Model Using the Method of Lines Technique

Authors: M. Ashaque Meah, M. Shah Noor, M Asif Arefin, Md. Fazlul Karim

Abstract:

A numerical technique in a boundary-fitted curvilinear grid model is developed to simulate the extent of inland inundation along the coastal belts of Peninsular Malaysia and Southern Thailand due to 2004 Indian ocean tsunami. Tsunami propagation and run-up are also studied in this paper. The vertically integrated shallow water equations are solved by using the method of lines (MOL). For this purpose the boundary-fitted grids are generated along the coastal and island boundaries and the other open boundaries of the model domain. A transformation is used to the governing equations so that the transformed physical domain is converted into a rectangular one. The MOL technique is applied to the transformed shallow water equations and the boundary conditions so that the equations are converted into ordinary differential equations initial value problem. Finally the 4th order Runge-Kutta method is used to solve these ordinary differential equations. The moving boundary technique is applied instead of fixed sea side wall or fixed coastal boundary to ensure the movement of the coastal boundary. The extent of intrusion of water and associated tsunami propagation are simulated for the 2004 Indian Ocean tsunami along the west coast of Peninsular Malaysia and southern Thailand. The simulated results are compared with the results obtained from a finite difference model and the data available in the USGS website. All simulations show better approximation than earlier research and also show excellent agreement with the observed data.

Keywords: Open boundary condition, moving boundary condition, boundary-fitted curvilinear grids, far field tsunami, Shallow Water Equations, tsunami source, Indonesian tsunami of 2004.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865
2285 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations

Authors: A. M. Sagir

Abstract:

Discrete linear multistep block method of uniform order for the solution of first order initial value problems (IVP­s­) in ordinary differential equations (ODE­s­) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.

Keywords: Block Method, First Order Ordinary Differential Equations, Hybrid, Self starting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2797
2284 Spline Collocation for Solving System of Fredholm and Volterra Integral Equations

Authors: N. Ebrahimi, J. Rashidinia

Abstract:

In this paper, numerical solution of system of Fredholm and Volterra integral equations by means of the Spline collocation method is considered. This approximation reduces the system of integral equations to an explicit system of algebraic equations. The solution is collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. The error analysis of proposed numerical method is studied theoretically. The results are compared with the results obtained by other methods to illustrate the accuracy and the implementation of our method.

Keywords: Convergence analysis, Cubic B-spline, Newton- Cotes formula, System of Fredholm and Volterra integral equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
2283 Magnetohydrodynamics Boundary Layer Flows over a Stretching Surface with Radiation Effect and Embedded in Porous Medium

Authors: Siti Khuzaimah Soid, Zanariah Mohd Yusof, Ahmad Sukri Abd Aziz, Seripah Awang Kechil

Abstract:

A steady two-dimensional magnetohydrodynamics flow and heat transfer over a stretching vertical sheet influenced by radiation and porosity is studied. The governing boundary layer equations of partial differential equations are reduced to a system of ordinary differential equations using similarity transformation. The system is solved numerically by using a finite difference scheme known as the Keller-box method for some values of parameters, namely the radiation parameter N, magnetic parameter M, buoyancy parameter l , Prandtl number Pr and permeability parameter K. The effects of the parameters on the heat transfer characteristics are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M and permeability parameter K increase. Heat transfer rate at the surface decreases as the radiation parameter increases.

Keywords: Keller-box, MHD boundary layer flow, permeability stretching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
2282 Refitting Equations for Peak Ground Acceleration in Light of the PF-L Database

Authors: M. Breška, I. Peruš, V. Stankovski

Abstract:

The number of Ground Motion Prediction Equations (GMPEs) used for predicting peak ground acceleration (PGA) and the number of earthquake recordings that have been used for fitting these equations has increased in the past decades. The current PF-L database contains 3550 recordings. Since the GMPEs frequently model the peak ground acceleration the goal of the present study was to refit a selection of 44 of the existing equation models for PGA in light of the latest data. The algorithm Levenberg-Marquardt was used for fitting the coefficients of the equations and the results are evaluated both quantitatively by presenting the root mean squared error (RMSE) and qualitatively by drawing graphs of the five best fitted equations. The RMSE was found to be as low as 0.08 for the best equation models. The newly estimated coefficients vary from the values published in the original works.

Keywords: Ground Motion Prediction Equations, Levenberg-Marquardt algorithm, refitting PF-L database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495