{"title":"New Application of EHTA for the Generalized(2+1)-Dimensional Nonlinear Evolution Equations","authors":"Mohammad Taghi Darvishi, Maliheh Najafi, Mohammad Najafi","volume":37,"journal":"International Journal of Mathematical and Computational Sciences","pagesStart":87,"pagesEnd":94,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/13986","abstract":"

In this paper, the generalized (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff (shortly CBS) equations are investigated. We employ the Hirota-s bilinear method to obtain the bilinear form of CBS equations. Then by the idea of extended homoclinic test approach (shortly EHTA), some exact soliton solutions including breather type solutions are presented.<\/p>\r\n","references":" J.H. He, Variational iteration method-a kind of non-linear analytical\r\ntechnique: some examples, Int. J. Non-linear Mech. 34(4) (1999) 699-\r\n708.\r\n M.T. Darvishi, F. Khani, A.A. Soliman, The numerical simulation for stiff\r\nsystems of ordinary differential equations, Comput. Math. Appl. 54(7-8)\r\n(2007) 1055-1063.\r\n M.T. Darvishi, F. Khani, Numerical and explicit solutions of the fifth-order\r\nKorteweg-de Vries equations, Chaos, Solitons and Fractals 39 (2009)\r\n2484-2490.\r\n J.H. He, New interpretation of homotopy perturbation method, Int. J.\r\nMod. Phys. B 20(18) (2006) 2561-2568.\r\n J.H. He, Application of homotopy perturbation method to nonlinear wave\r\nequations, Chaos, Solitons and Fractals 26(3) (2005) 695-700.\r\n J.H. He, Homotopy perturbation method for bifurcation of nonlinear\r\nproblems, Int. J. Nonlinear Sci. Numer. Simul. 6(2) (2005) 207-208.\r\n M.T. Darvishi, F. Khani, Application of He-s homotopy perturbation\r\nmethod to stiff systems of ordinary differential equations, Zeitschrift fur\r\nNaturforschung A, 63a (1-2) (2008) 19-23.\r\n M.T. Darvishi, F. Khani, S. Hamedi-Nezhad, S.-W. Ryu, New modification\r\nof the HPM for numerical solutions of the sine-Gordon and coupled sine-\r\nGordon equations, Int. J. Comput. Math. 87(4) (2010) 908-919.\r\n J.H. He, Bookkeeping parameter in perturbation methods, Int. J. Nonlin.\r\nSci. Numer. Simul. 2 (2001) 257-264.\r\n M.T. Darvishi, A. Karami, B.-C. Shin, Application of He-s parameterexpansion\r\nmethod for oscillators with smooth odd nonlinearities, Phys.\r\nLett. A 372(33) (2008) 5381-5384.\r\n B.-C. Shin, M.T. Darvishi, A. Karami, Application of He-s parameterexpansion\r\nmethod to a nonlinear self-excited oscillator system, Int. J.\r\nNonlin. Sci. Num. Simul. 10(1) (2009) 137-143.\r\n M.T. Darvishi, Preconditioning and domain decomposition schemes to\r\nsolve PDEs, Int-l J. of Pure and Applied Math. 1(4) (2004) 419-439.\r\n M.T. Darvishi, S. Kheybari and F. Khani, A numerical solution of the\r\nKorteweg-de Vries equation by pseudospectral method using Darvishi-s\r\npreconditionings, Appl. Math. Comput. 182(1) (2006) 98-105.\r\n M.T. Darvishi, M. Javidi, A numerical solution of Burgers- equation\r\nby pseudospectral method and Darvishi-s preconditioning, Appl. Math.\r\nComput. 173(1) (2006) 421-429.\r\n M.T. Darvishi, F. Khani and S. Kheybari, Spectral collocation solution\r\nof a generalized Hirota-Satsuma KdV equation, Int. J. Comput. Math.\r\n84(4) (2007) 541-551.\r\n M.T. Darvishi, F. Khani, S. Kheybari, Spectral collocation method\r\nand Darvishi-s preconditionings to solve the generalized Burgers-Huxley\r\nequation, Commun., Nonlinear Sci. Numer. Simul. 13(10) (2008) 2091-\r\n2103.\r\n S.J. Liao, An explicit, totally analytic approximate solution for Blasius\r\nviscous flow problems, Int. J. Non-Linear Mech. 34 (1999) 759-778.\r\n S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis\r\nMethod, Chapman & Hall\/CRC Press, Boca Raton, 2003.\r\n S.J. Liao, On the homotopy analysis method for nonlinear problems,\r\nAppl. Math. Comput. 147 (2004) 499-513.\r\n S.J. Liao, A new branch of solutions of boundary-layer flows over an\r\nimpermeable stretched plate, Int. J. Heat Mass Transfer 48 (2005) 2529-\r\n2539.\r\n S.J. Liao, A general approach to get series solution of non-similarity\r\nboundary-layer flows, Commun. Nonlinear Sci. Numer. Simul. 14(5)\r\n(2009) 2144-2159.\r\n M.T. Darvishi, F. Khani, A series solution of the foam drainage equation,\r\nComput. Math. Appl. 58 (2009) 360-368.\r\n J.H. He, M.A. Abdou, New periodic solutions for nonlinear evolution\r\nequations using Exp-function method, Chaos, Solitons and Fractals 34\r\n(2007) 1421-1429.\r\n J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations,\r\nChaos, Solitons and Fractals, 30(3) (2006) 700-708.\r\n J.H. He, X.H. Wu, Construction of solitary solution and compacton-like\r\nsolution by variational iteration method, Chaos, Solitons and Fractals, 29\r\n(2006) 108-113.\r\n F. Khani, S. Hamedi-Nezhad, M.T. Darvishi, S.-W. Ryu, New solitary\r\nwave and periodic solutions of the foam drainage equation using the Expfunction\r\nmethod, Nonlin. Anal.: Real World Appl. 10 (2009) 1904-1911.\r\n B.-C. Shin, M.T. Darvishi, A. Barati, Some exact and new solutions\r\nof the Nizhnik-Novikov-Vesselov equation using the Exp-function method,\r\nComput. Math. Appl. 58(11\/12) (2009) 2147-2151.\r\n X.H. Wu, J.H. He, Exp-function method and its application to nonlinear\r\nequations, Chaos, Solitons and Fractals 38(3) (2008) 903-910.\r\n A.M. Wazwaz, New solutions of distinct physical structures to highdimensional\r\nnonlinear evolution equations, Appl. Math. Comput., 196\r\n(2008) 363-370.\r\n A.M. Wazwaz, The (2+1) and (3+1)-Dimensional CBS Equations: Multiple\r\nSoliton Solutions and Multiple Singular Soliton Solutions, Zeitschrift\r\nfur Naturforschung A 65a, (2010) 173-181.\r\n A.M. Wazwaz, Multiple-soliton solutions for the Calogero-\r\nBogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations, Appl. Math.\r\nComput., 203 (2008) 592-597.\r\n Z.-H. Zhao, Z. Dai, S. Han, The EHTA for nonlinear evolution equations,\r\nAppl. Math. Comput., (in press), doi:10.1016\/j.amc.2010.09.069.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 37, 2010"}