Search results for: Cancer framing
270 On Improving Breast Cancer Prediction Using GRNN-CP
Authors: Kefaya Qaddoum
Abstract:
The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.
Keywords: Neural network, conformal prediction, cancer classification, regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839269 Cytotoxic Effect of Crude Extract of Sea Pen Virgularia gustaviana on HeLa and MDA-MB-231 Cancer Cell Lines
Authors: Sharareh Sharifi, Pargol Ghavam Mostafavi, Ali Mashinchian Moradi, Mohammad Hadi Givianrad, Hassan Niknejad
Abstract:
Marine organisms such as soft coral, sponge, ascidians, and tunicate containing rich source of natural compound have been studied in last decades because of their special chemical compounds with anticancer properties. The aim of this study was to investigate anti-cancer property of ethyl acetate extracted from marine sea pen Virgularia gustaviana found from Persian Gulf coastal (Bandar Abbas). The extraction processes were carried out with ethyl acetate for five days. Thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) were used for qualitative identification of crude extract. The viability of HeLa and MDA-Mb-231 cancer cells was investigated using MTT assay at the concentration of 25, 50, and a 100 µl/ml of ethyl acetate is extracted. The crude extract of Virgularia gustaviana demonstrated ten fractions with different Retention factor (Rf) by TLC and Retention time (Rt) evaluated by HPLC. The crude extract dose-dependently decreased cancer cell viability compared to control group. According to the results, the ethyl acetate extracted from Virgularia gustaviana inhibits the growth of cancer cells, an effect which needs to be further investigated in the future studies.Keywords: Virgularia gustaviana, Cembrane Diterpene, anti-cancer, HeLa cancer Cell, MDA-Md-231 Cancer cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548268 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553267 Oral Cancer Screening Intentions of Residents in Eastern Taiwan
Authors: Chi-Shan Chen, Mao-Chou Hsu, Feng-Chuan Pan
Abstract:
The incidence of oral cancer in Taiwan increased year by year. It replaced the nasopharyngeal as the top incurrence among head and neck cancers since 1994. Early examination and earlier identification for earlier treatment is the most effective medical treatment for these cancers. Although the government fully subsidized the expenses with tremendous promotion program for oral cancer screening, the citizen-s participation remained low. Purpose of this study is to understand the factors affecting the citizens- behavior intensions of taking an oral cancer screening. Based on the Theory of Planned Behavior, this study adopted four distinctive variables in explaining the captioned behavior intentions.700 questionnaires were dispatched with 500 valid responses or 71.4% returned by the citizens with an age 30 or above from the eastern counties of Taiwan. Test results has shown that attitude toward, subjective norms of, and perceived behavioral control over the oral cancer screening varied from some demographic factors to another. The study proofed that attitude toward, subjective norms of, and perceived behavioral control over the oral cancer screening had positive impacts on the corresponding behavior intention. The test concluded that the theory of planned behavior was appropriate as a theoretical framework in explaining the influencing factors of intentions of taking oral cancer screening. This study suggested the healthcare professional should provide high accessibility of screening services other than just delivering knowledge on oral cancer to promote the citizens- intentions of taking the captioned screening. This research also provided a practical implication to the healthcare professionals when formulating and implementing promotion instruments for lifting the screening rate of oral cancer.Keywords: Theory of planned behavior, oral cancer, cancer screening
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953266 Persuasive Communication on Social Egg Freezing in California from a Framing Theory Perspective
Authors: Leila Mohammadi
Abstract:
This paper presents the impact of persuasive communication implemented by fertility clinics websites, and how this information influences women at their decision-making for undertaking this procedure. The influential factors for women decisions to do social egg freezing (SEF) are analyzed from a framing theory perspective, with a specific focus on the impact of persuasive information on women’s decision making. This study follows a quantitative approach. A two-phase survey has been conducted to examine the interest rate to undertake SEF. In the first phase, a questionnaire was available during a month (May 2015) to women to answer whether or not they knew enough information of this process, with a total of 230 answers. The second phase took place in the two last weeks of July 2015. All the respondents were invited to a seminars called ‘All about egg freezing’ and afretwards they were requested to answer the second questionnaire. After the seminar, in which they were given an extensive amount of information about egg freezing, a total of 115 women replied the questionnaire. The collected data during this process were analyzed using descriptive statistics. Most of the respondents changed their opinion in the second questionaire which was after receiving information. Although in the first questionnaire their self-evaluation of having knowledge about this process and the implemented technologies was very high, they realized that they still need to access more information from different sources in order to be able to make a decision. The study reached the conclusion that persuasive and framed information by clinics would affect the decisions of these women. Despite the reasons women have to do egg freezing and their motivations behind it, providing people necessary information and unprejudiced data about this process (such as its positive and negative aspects, requirements, suppositions, possibilities and consequences) would help them to make a more precise and reasonable decision about what they are buying.
Keywords: Decision making, fertility clinics, framing theory, persuasive information, social egg freezing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970265 Diagnostic Evaluation of Urinary Angiogenin (ANG) and Clusterin (CLU) as Biomarker for Bladder Cancer
Authors: Marwa I. Shabayek, Ola A. Said, Hanan A. Attaia, Heba A. Awida
Abstract:
Bladder carcinoma is an important worldwide health problem. Both cystoscopy and urine cytology used in detecting bladder cancer suffer from drawbacks where cystoscopy is an invasive method and urine cytology shows low sensitivity in low grade tumors. This study validates easier and less time-consuming techniques to evaluate the value of combined use of angiogenin and clusterin in comparison and combination with voided urine cytology in the detection of bladder cancer patients. This study includes malignant (bladder cancer patients, n= 50), benign (n=20) and healthy (n=20) groups. The studied groups were subjected to cystoscopic examination, detection of bilharzial antibodies, urine cytology, and estimation of urinary angiogenin and clusterin by ELISA. The overall sensitivity and specificity were 66% and 75% for angiogenin, 70% and 82.5% for clusterin and 46% and 80% for voided urine cytology. Combined sensitivity of angiogenin and clusterin with urine cytology increased from 82 to 88%.
Keywords: Angiogenin, Bladder Cancer, Clusterin, Cytology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835264 In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters
Authors: A. Dashti, M. Eskandari, L. Farahmand, P. Parvin, A. Jafargholi
Abstract:
Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.
Keywords: Breast cancer, electrospun scaffold, polycaprolacton, laser diode, cancer treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819263 The Impact of Web Based Education on Cancer Patients’ Clinical Outcomes
Authors: F. Arıkan, Z. Karakus
Abstract:
Cancer is a widespread disease in the world and is the third reason of deaths among the chronic diseases. Educating patients and caregivers has a vital role for empowering them in managing disease and treatment's symptoms. Informing of the patients about their disease and treatment process decreases patient's distress and decisional conflicts, improves wellbeing of them, increase success of the treatment and survival. In this era, technological education methods are used for patients that have different chronic disease. Many studies indicated that especially web based patient education such as chronic obstructive lung disease; heart failure is more effective than printed materials. Web based education provide easiness to patients while they are reaching health services. It also has more advantages because of it decreases health cost and requirement of staff. It is thought that web based education may be beneficial method for cancer patient's empowerment in coping with the disease's symptoms. The aim of the study is evaluate the effectiveness of web based education for cancer patients' clinical outcomes.
Keywords: Cancer Patients, E-Learning, Nursing, Web Based Education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419262 An Alternative and Complementary Medicine Method in Vulnerable Pediatric Cancer Patients: Yoga
Authors: Ç. Erdoğan, T. Turan
Abstract:
Pediatric cancer patients experience multiple distressing, challenges, physical symptom such as fatigue, pain, sleep disturbance, and balance impairment that continue years after treatment completion. In recent years, yoga is often used in children with cancer to cope with these symptoms. Yoga practice is defined as a unique physical activity that combines physical practice, breath work and mindfulness/meditation. Yoga is an increasingly popular mind-body practice also characterized as a mindfulness mode of exercise. This study aimed to evaluate the impact of yoga intervention of children with cancer. This article planned searching the literature in this field. It has been determined that individualized yoga is feasible and provides benefits for inpatient children, improves health-related quality of life, physical activity levels, physical fitness. After yoga program, children anxiety score decreases significantly. Additionally, individualized yoga is feasible for inpatient children receiving intensive chemotherapy. As a result, yoga is an alternative and complementary medicine that can be safely used in children with cancer.
Keywords: Cancer treatment, children, nursing, yoga.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158261 A Four-Year Study of Thyroid Carcinoma in Hail Region: Increased Incidence
Authors: Laila Seada, Hanan Oreiby, Fawaz Al Rashid, Ashraf Negm
Abstract:
Background and Objective: In most areas of the world, the incidence of thyroid cancer has been increasing over the last decade, mostly due to a combination of early detection of the neoplasm resulting from sensitive procedures and increased population exposure to radiation and unrecognized carcinogens. Methods: Cases of thyroid cancer have been retrieved from the cancer registry at King Khalid Hospital during the period from August 2012 to April 2016. Age, gender and histopathologic types have been recorded. Results: Thyroid carcinoma ranked as the second most common malignancy in females (25%) after breast cancer (31%). It constituted 20.8% of all newly diagnosed cancer cases. As for males, it ranked the 4th type of malignancy after gastrointestinal cancer, lymphomas and soft tissue sarcomas. Mean age for females and males was 38.7 +/- 13.2 and 60.25 +/- 11.5 years, respectively, and the difference between the two groups was statistically significant (p value = 0.0001). Fifty-five (82%) were papillary carcinomas including 10 follicular variant of papillary (FVPC), and eight papillary micro carcinomas (PMC) and two tall cell/oncocytic variants. Follicular carcinomas constituted two (3.1%), while two (3.1%) were anaplastic, and two (3.1%) were medullary. Conclusion: Thyroid cancer incidence in Hail is ranking as the 2nd most common female malignancy similar to other regions in the Kingdom. However, this high incidence contrasts with much lower rates worldwide.
Keywords: Thyroid, Hail, papillary, micro carcinoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180260 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images
Authors: Firas Gerges, Frank Y. Shih
Abstract:
Malignant Melanoma, known simply as Melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient death. When detected early, Melanoma is curable. In this paper we propose a deep learning model (Convolutional Neural Networks) in order to automatically classify skin lesion images as Malignant or Benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.
Keywords: Deep learning, skin cancer, image processing, melanoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540259 Hip and Valley Support Location in Wood Framing
Authors: P. Hajyalikhani, B. Hudson, D. Boll, L. Boren, Z. Sparks, M. Ward
Abstract:
Wood Light frame construction is one of the most common types of construction methods for residential and light commercial building in North America and parts of Europe. The typical roof framing for wood framed building is sloped and consists of several structural members such as rafters, hips, and valleys which are connected to the ridge and ceiling joists. The common slopes for roofs are 3/12, 8/12, and 12/12. Wood framed residential roof failure is most commonly caused by wind damage in such buildings. In the recent study, one of the weaknesses of wood framed roofs is long unsupported structural member lengths, such as hips and valleys. The purpose of this research is to find the critical support location for long hips and valleys with different slopes. ForteWeb software is used to find the critical location. The analysis results demonstrating the maximum unbraced hip and valley length are from 8.5 to 10.25 ft. dependent on the slope and roof type.
Keywords: Light wood framed, bracing, construction, hip, valley, slope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690258 Automatic Threshold Search for Heat Map Based Feature Selection: A Cancer Dataset Analysis
Authors: Carlos Huertas, Reyes Juarez-Ramirez
Abstract:
Public health is one of the most critical issues today; therefore, there is great interest to improve technologies in the area of diseases detection. With machine learning and feature selection, it has been possible to aid the diagnosis of several diseases such as cancer. In this work, we present an extension to the Heat Map Based Feature Selection algorithm, this modification allows automatic threshold parameter selection that helps to improve the generalization performance of high dimensional data such as mass spectrometry. We have performed a comparison analysis using multiple cancer datasets and compare against the well known Recursive Feature Elimination algorithm and our original proposal, the results show improved classification performance that is very competitive against current techniques.Keywords: Feature selection, mass spectrometry, biomarker discovery, cancer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589257 An Immunosensor for Bladder Cancer Screening
Authors: Congo Tak Shing Ching, Hong-Sheng Chen, Tai-Ping Sun, Hsiu-Li Shieh
Abstract:
Nuclear matrix protein 22 (NMP22) is a FDA approved biomarker for bladder cancer. The objective of this study is to develop a simple NMP22 immumosensor (NMP22-IMS) for accurate measurement of NMP22. The NMP22-IMS was constructed with NMP22 antibody immobilized on screen-printed carbon electrodes. The construction procedures and antibody immobilization are simple. Results showed that the NMP22-IMS has an excellent (r2³0.95) response range (20 – 100 ng/mL). In conclusion, a simple and reliable NMP22-IMS was developed, capable of precisely determining urine NMP22 level.Keywords: Bladder Cancer, Immunosensor, Impedance, NMP22
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657256 Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer
Authors: D. A. Binas, M. Konidari, C. Bourgioti, L. Angela Moulopoulou, T. L. Economopoulos, G. K. Matsopoulos
Abstract:
High grade ovarian epithelial cancer (OEC) is the most fatal gynecological cancer and poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study presents a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series, in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor.
Keywords: K-means segmentation, ovarian epithelial cancer, quantitative characteristics, registration, tumor visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698255 Novel Hybrid Method for Gene Selection and Cancer Prediction
Authors: Liping Jing, Michael K. Ng, Tieyong Zeng
Abstract:
Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.Keywords: Gene Selection, Cancer Prediction, Lasso, Clustering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044254 Association of the p53 Codon 72 Polymorphism with Colorectal Cancer in South West of Iran
Authors: A. Doosti, P. Ghasemi Dehkordi, M. Zamani, S. Taheri, M. Banitalebi, M. Mahmoudzadeh
Abstract:
The p53 tumor suppressor gene plays two important roles in genomic stability: blocking cell proliferation after DNA damage until it has been repaired, and starting apoptosis if the damage is too critical. Codon 72 exon4 polymorphism (Arg72Pro) of the P53 gene has been implicated in cancer risk. Various studies have been done to investigate the status of p53 at codon 72 for arginine (Arg) and proline (Pro) alleles in different populations and also the association of this codon 72 polymorphism with various tumors. Our objective was to investigate the possible association between P53 Arg72Pro polymorphism and susceptibility to colorectal cancer among Isfahan and Chaharmahal Va Bakhtiari (a part of south west of Iran) population. We investigated the status of p53 at codon 72 for Arg/Arg, Arg/Pro and Pro/Pro allele polymorphisms in blood samples from 145 colorectal cancer patients and 140 controls by Nested-PCR of p53 exon 4 and digestion with BstUI restriction enzyme and the DNA fragments were then resolved by electrophoresis in 2% agarose gel. The Pro allele was 279 bp, while the Arg allele was restricted into two fragments of 160 and 119 bp. Among the 145 colorectal cancer cases 49 cases (33.79%) were homozygous for the Arg72 allele (Arg/Arg), 18 cases (12.41%) were homozygous for the Pro72 allele (Pro/Pro) and 78 cases (53.8%) found in heterozygous (Arg/Pro). In conclusion, it can be said that p53Arg/Arg genotype may be correlated with possible increased risk of this kind of cancers in south west of Iran.Keywords: TP53, Polymorphism, Colorectal Cancer, Iran
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392253 VHL, PBRM1 and SETD2 Genes in Kidney Cancer: A Molecular Investigation
Authors: Rozhgar A. Khailany, Mehri Igci, Emine Bayraktar, Sakip Erturhan, Metin Karakok, Ahmet Arslan
Abstract:
Kidney cancer is the most lethal urological cancer accounting for 3% of adult malignancies. VHL, a tumor-suppressor gene, is best known to be associated with renal cell carcinoma (RCC). The VHL functions as negative regulator of hypoxia inducible factors. Recent sequencing efforts have identified several novel frequent mutations of histone modifying and chromatin remodeling genes in ccRCC (clear cell RCC) including PBRM1 and SETD2. The PBRM1 gene encodes the BAF180 protein, which involved in transcriptional activation and repression of selected genes. SETD2 encodes a histone methyltransferase, which may play a role in suppressing tumor development. In this study, RNAs of 30 paired tumor and normal samples that were grouped according to the types of kidney cancer and clinical characteristics of patients, including gender and average age were examined by RT-PCR, SSCP and sequencing techniques. VHL, PBRM1 and SETD2 expressions were relatively down-regulated. However, statistically no significance was found (Wilcoxon signed rank test, p>0.05). Interestingly, no mutation was observed on the contrary of previous studies. Understanding the molecular mechanisms involved in the pathogenesis of RCC has aided the development of molecular-targeted drugs for kidney cancer. Further analysis is required to identify the responsible genes rather than VHL, PBRM1 and SETD2 in kidney cancer.Keywords: Kidney cancer, molecular biomarker, expression analysis, mutation screening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011252 Down-Regulated Gene Expression of GKN1 and GKN2 as Diagnostic Markers for Gastric Cancer
Authors: Amer A. Hasan, Mehri Igci, Ersin Borazan, Rozhgar A. Khailany, Emine Bayraktar, Ahmet Arslan
Abstract:
Gastric Cancer (GC) has high morbidity and fatality rate in various countries. It is still one of the most frequent and deadly diseases. Gastrokine1 (GKN1) and gastrokine2 (GKN2) genes are highly expressed in the normal stomach epithelium and play important roles in maintaining the integrity and homeostasis of stomach mucosal epithelial cells. In this study, 47 paired samples that were grouped according to the types of gastric cancer and the clinical characteristics of the patients, including gender and average of age. They were investigated with gene expression analysis and mutation screening by monitoring RT-PCR, SSCP and nucleotide sequencing techniques. Both GKN1 and GKN2 genes were observed significantly reduced found by (Wilcoxon signed rank test; p<0.05). As a result of gene screening, no mutation (no different genotype) was detected. It is considered that gene mutations are not the cause of gastrokines inactivation. In conclusion, the mRNA expression level of GKN1 and GKN2 genes statistically was decreased regardless the gender, age, or cancer type of patients. Reduced of gastrokine genes seem to occur at the initial steps of gastric cancer development.Keywords: Diagnostic biomarker, gastric cancer, nucleotide sequencing, semi-quantitative RT-PCR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465251 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
Authors: Siddhant Rao
Abstract:
Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.Keywords: Object detection, histopathology, breast cancer, mitotic count, deep learning, computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414250 Integrated Social Support through Social Networks to Enhance the Quality of Life of Metastatic Breast Cancer Patients
Authors: B. Thanasansomboon, S. Choemprayong, N. Parinyanitikul, U. Tanlamai
Abstract:
Being diagnosed with metastatic breast cancer, the patients as well as their caretakers are affected physically and mentally. Although the medical systems in Thailand have been attempting to improve the quality and effectiveness of the treatment of the disease in terms of physical illness, the success of the treatment also depends on the quality of mental health. Metastatic breast cancer patients have found that social support is a key factor that helps them through this difficult time. It is recognized that social support in different dimensions, including emotional support, social network support, informational support, instrumental support and appraisal support, are contributing factors that positively affect the quality of life of patients in general, and it is undeniable that social support in various forms is important in promoting the quality of life of metastatic breast patients. However, previous studies have not been dedicated to investigating their quality of life concerning affective, cognitive, and behavioral outcomes. Therefore, this study aims to develop integrated social support through social networks to improve the quality of life of metastatic breast cancer patients in Thailand.Keywords: Social support, metastatic breast cancer, quality of life, social network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587249 The Role and Importance of Genome Sequencing in Prediction of Cancer Risk
Authors: M. Sadeghi, H. Pezeshk, R. Tusserkani, A. Sharifi Zarchi, A. Malekpour, M. Foroughmand, S. Goliaei, M. Totonchi, N. Ansari–Pour
Abstract:
The role and relative importance of intrinsic and extrinsic factors in the development of complex diseases such as cancer still remains a controversial issue. Determining the amount of variation explained by these factors needs experimental data and statistical models. These models are nevertheless based on the occurrence and accumulation of random mutational events during stem cell division, thus rendering cancer development a stochastic outcome. We demonstrate that not only individual genome sequencing is uninformative in determining cancer risk, but also assigning a unique genome sequence to any given individual (healthy or affected) is not meaningful. Current whole-genome sequencing approaches are therefore unlikely to realize the promise of personalized medicine. In conclusion, since genome sequence differs from cell to cell and changes over time, it seems that determining the risk factor of complex diseases based on genome sequence is somewhat unrealistic, and therefore, the resulting data are likely to be inherently uninformative.
Keywords: Cancer risk, extrinsic factors, genome sequencing, intrinsic factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117248 Sociodemographic Risk Factors of Cervical Cancer in Imphal, Manipur
Authors: Arundhati Devi Maibam, K. Ingocha Singh
Abstract:
Cervical cancer is preventable if detected early. Determination of risk factors is essential to plan screening programmes to prevent the disease. To study the demographic risk factors of cervical cancer among Manipuri women, information on age, marital status, educational level, monthly family income and socioeconomic status were collected through a pre-tested interview schedule. In this study, 64 incident cases registered at the RT Dept, RIMS (Regional Institute of Medical Sciences), Imphal, Manipur, India during 2008-09 participated. Data were entered in Microsoft Excel and the results were expressed in percentages. Among the 64 patients with cervical cancer, 56 (88.9%) were in the age group of 40+ years. The majority of the patients were from rural areas (68.75%) and 31.25% were from urban areas. The majority of the patients were Hindus (73%), 55(85.9%) were of low educational level, 43(67.2%) were married, and 36 (56.25%) belonged to Class IV socioeconomic status. In conclusion, if detected early, cervical cancer is preventable and curable. The potential risk factors need to be identified and women in the risk group need to be motivated for screening. Affordable screening programmes and health care resources will help in lessening the burden of the disease.Keywords: Cervical cancer, Manipuri women, RIIMS, Socio-demographic risk factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138247 Biodistribution Studies of 177Lu-DOTATOC in Mouse Tumor Model: Possible Utilization in Adenocarcinoma Breast Cancer Treatment
Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri, S. Kakaei
Abstract:
Despite the appropriate characteristics of 177Lu and DOTATOC, to our best knowledge, the therapeutic benefit of 177Lu-DOTATOC complex in breast cancer has not been reported until now. In this study, biodistribution of 177Lu-DOTA-TOC in mouse tumor model for evaluation of possible utilization of this complex in breast cancer treatment was investigated.177Lu was prepared with the specific activity of 2.6-3 GBq.mg-1 and radionuclidic purity higher than 99%. The radiolabeled complex was prepared in the optimized conditions with the radiochemical purity higher than 99%. The final solution was injected to the BALB/c mice with adenocarcinoma breast cancer. The biodistribution results showed major accumulation in the kidneys as the major excretion route and the somatostatin receptor-positive tissues such as pancreas compared with the other tissues. Also, significant uptake was observed in tumor even in longer time after injection. According to the results obtained in this research study, somatostatin receptors expressed in breast cancers can be targeted with DOTATOC analogues especially with 177Lu-DOTATOC as an ideal therapeutic agent.
Keywords: 177Lu, DOTATOC, adenocarcinoma, breast cancer, BALB/c mice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849246 A study of Cancer-related MicroRNAs through Expression Data and Literature Search
Authors: Chien-Hung Huang, Chia-Wei Weng, Chang-Chih Chiang, Shih-Hua Wu, Chih-Hsien Huang, Ka-Lok Ng
Abstract:
MicroRNAs (miRNAs) are a class of non-coding RNAs that hybridize to mRNAs and induce either translation repression or mRNA cleavage. Recently, it has been reported that miRNAs could possibly play an important role in human diseases. By integrating miRNA target genes, cancer genes, miRNA and mRNA expression profiles information, a database is developed to link miRNAs to cancer target genes. The database provides experimentally verified human miRNA target genes information, including oncogenes and tumor suppressor genes. In addition, fragile sites information for miRNAs, and the strength of the correlation of miRNA and its target mRNA expression level for nine tissue types are computed, which serve as an indicator for suggesting miRNAs could play a role in human cancer. The database is freely accessible at http://ppi.bioinfo.asia.edu.tw/mirna_target/index.html.Keywords: MicroRNA, miRNA expression profile, mRNAexpression profile, cancer genes, oncogene, tumor suppressor gene
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535245 The Effects of Tissue Optical Parameters and Interface Reflectivity on Light Diffusion in Biological Tissues
Authors: MA. Ansari
Abstract:
In cancer progress, the optical properties of tissues like absorption and scattering coefficient change, so by these changes, we can trace the progress of cancer, even it can be applied for pre-detection of cancer. In this paper, we investigate the effects of changes of optical properties on light penetrated into tissues. The diffusion equation is widely used to simulate light propagation into biological tissues. In this study, the boundary integral method (BIM) is used to solve the diffusion equation. We illustrate that the changes of optical properties can modified the reflectance or penetrating light.Keywords: Diffusion equation, boundary element method, refractive index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017244 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming
Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad
Abstract:
Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.Keywords: Breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration (FNA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816243 Design the Bowtie Antenna for the Detection of the Tumor in Microwave Tomography
Authors: Muhammd Hassan Khalil, Xu Jiadong
Abstract:
Early breast cancer detection is an emerging field of research as it can save the women infected by malignant tumors. Microwave breast imaging is based on the electrical property contrast between healthy and malignant tumor. This contrast can be detected by use of microwave energy with an array of antennas that illuminate the breast through coupling medium and by measuring the scattered fields. In this paper, author has been presented the design and simulation results of the bowtie antenna. This bowtie antenna is designed for the detection of breast cancer detection.
Keywords: Breast cancer detection, Microwave Imaging, Tomography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067242 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy
Authors: May Fadheel Estephan, Richard Perks
Abstract:
Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a non-invasive optical technique that can be used to characterize the size and concentration of particles in a solution. An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2 μm, 0.8 μm, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a non-invasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a non-invasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.
Keywords: Elastic Light Scattering Spectroscopy, Polystyrene spheres in suspension, optical probe, fibre optics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141241 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.
Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321