Search results for: soil organic matter
1031 Landcover Mapping Using Lidar Data and Aerial Image and Soil Fertility Degradation Assessment for Rice Production Area in Quezon, Nueva Ecija, Philippines
Authors: Eliza. E. Camaso, Guiller. B. Damian, Miguelito. F. Isip, Ronaldo T. Alberto
Abstract:
Land-cover maps were important for many scientific, ecological and land management purposes and during the last decades, rapid decrease of soil fertility was observed to be due to land use practices such as rice cultivation. High-precision land-cover maps are not yet available in the area which is important in an economy management. To assure accurate mapping of land cover to provide information, remote sensing is a very suitable tool to carry out this task and automatic land use and cover detection. The study did not only provide high precision land cover maps but it also provides estimates of rice production area that had undergone chemical degradation due to fertility decline. Land-cover were delineated and classified into pre-defined classes to achieve proper detection features. After generation of Land-cover map, of high intensity of rice cultivation, soil fertility degradation assessment in rice production area due to fertility decline was created to assess the impact of soils used in agricultural production. Using Simple spatial analysis functions and ArcGIS, the Land-cover map of Municipality of Quezon in Nueva Ecija, Philippines was overlaid to the fertility decline maps from Land Degradation Assessment Philippines- Bureau of Soils and Water Management (LADA-Philippines-BSWM) to determine the area of rice crops that were most likely where nitrogen, phosphorus, zinc and sulfur deficiencies were induced by high dosage of urea and imbalance N:P fertilization. The result found out that 80.00 % of fallow and 99.81% of rice production area has high soil fertility decline.
Keywords: Aerial image, land-cover, LiDAR, soil fertility degradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11421030 Applying Different Working Fluids in a Combined Power and Ejector Refrigeration Cycle with Low Temperature Heat Sources
Authors: Samad Jafarmadar, Amin Habibzadeh
Abstract:
A power and cooling cycle, which combines the organic Rankine cycle and the ejector refrigeration cycle supplied by waste heat energy sources, is discussed in this paper. 13 working fluids including wet, dry, and isentropic fluids are studied in order to find their performances on the combined cycle. Various operating conditions’ effects on the proposed cycle are examined by fixing power/refrigeration ratio. According to the results, dry and isentropic fluids have better performance compared with wet fluids.
Keywords: Combined power and refrigeration cycle, low temperature heat sources, organic rankine cycle, working fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8601029 Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery
Authors: Chun-Wei Lin, Yu-Lin Chen
Abstract:
As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system.
Keywords: Green facility planning, organic rankine cycle, particle swarm optimization, waste heat recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19881028 The Use of Acid-Aluminium Tolerant Bradyrhizobium japonicum Formula for
Authors: Nisa Rachmania Mubarik, Tedja Imas, Aris Tri Wahyudi , Triadiati , Suharyanto, Happy Widiastuti
Abstract:
Land with low pH soil spread widely in Indonesia can be used for soybean (Glycine max) cultivation, however the production is low. The use of acid tolerant soybean and acidaluminium tolerant nitrogen-fixing bacteria formula was an alternative way to increase soybean productivity on acid soils. Bradyrhizobium japonicum is one of the nitrogen fixing bacteria which can symbiose with soybean plants through root nodule formation. Most of the nitrogen source required by soybean plants can be provided by this symbiosis. This research was conducted to study the influence of acid-aluminium tolerant B. japonicum strain BJ 11 formula using peat as carrier on growth of Tanggamus and Anjasmoro cultivar soybean planted on acid soil fields (pH 5.0- 5.5). The results showed that the inoculant was able to increase the growth and production of soybean which were grown on fields acid soil at Sukadana (Lampung) and Tanah Laut (South Kalimantan), Indonesia.Keywords: Bradyrhizobium japonicum, acid-aluminium tolerant mutant, Tanggamus cultivar soybean, acid soils
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20621027 Copper Contamination in the Sediments of Northern Kaohsiung Harbor, Taiwan
Authors: Chiu-Wen Chen, Chih-Feng Chen, Cheng-Di Dong
Abstract:
The distribution, enrichment, accumulation, and potential ecological risk of copper (Cu) in the surface sediments of northern Kaohsiung Harbor, Taiwan were investigated. Sediment samples from 12 locations of northern Kaohsiung Harbor were collected and characterized for Cu, aluminum, water content, organic matter, total nitrogen, total phosphorous, total grease and grain size. Results showed that the Cu concentrations varied from 6.9–244 mg/kg with an average of 109±66 mg/kg. The spatial distribution of Cu reveals that the Cu concentration is relatively high in the river mouth region, and gradually diminishes toward the harbor entrance region. This indicates that upstream industrial and municipal wastewater discharges along the river bank are major sources of Cu pollution. Results from the enrichment factor and geo-accumulation index analyses imply that the sediments collected from the river mouth can be characterized between moderate and moderately severe degree enrichment and between none to medium and moderate accumulation of Cu, respectively. However, results of potential ecological risk index indicate that the sediment has low ecological potential risk.
Keywords: Accumulation, ecological risk, enrichment, copper, sediment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13351026 Field Application of Reduced Crude Conversion Spent Lime
Authors: Brian H. Marsh, John H. Grove
Abstract:
Gypsum is being applied to ameliorate subsoil acidity and to overcome the problem of very slow lime movement from surface lime applications. Reduced Crude Conversion Spent Lime (RCCSL) containing anhydrite was evaluated for use as a liming material with specific consideration given to the movement of sulfate into the acid subsoil. Agricultural lime and RCCSL were applied at 0, 0.5, 1.0, and 1.5 times the lime requirement of 6.72 Mg ha-1 to an acid Trappist silt loam (TypicHapuldult). Corn [Zea mays (L.)]was grown following lime material application and soybean [Glycine max (L.) Merr.]was grown in the second year.Soil pH increased rapidly with the addition of the RCCSL material. Over time there was no difference in soil pH between the materials but there was with increasing rate. None of the observed changes in plant nutrient concentration had an impact on yield. Grain yield was higher for the RCCSL amended treatments in the first year but not in the second. There was a significant increase in soybean grain yield from the full lime requirement treatments over no lime.
Keywords: Soil acidity, corn, soybean, liming materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17721025 Identifying Dynamic Structural Parameters of Soil-Structure System Based on Data Recorded during Strong Earthquakes
Authors: Vahidreza Mahmoudabadi, Omid Bahar, Mohammad Kazem Jafari
Abstract:
In many applied engineering problems, structural analysis is usually conducted by assuming a rigid bed, while imposing the effect of structure bed flexibility can affect significantly on the structure response. This article focuses on investigation and evaluation of the effects arising from considering a soil-structure system in evaluation of dynamic characteristics of a steel structure with respect to elastic and inelastic behaviors. The recorded structure acceleration during Taiwan’s strong Chi-Chi earthquake on different floors of the structure was our evaluation criteria. The respective structure is an eight-story steel bending frame structure designed using a displacement-based direct method assuring weak beam - strong column function. The results indicated that different identification methods i.e. reverse Fourier transform or transfer functions, is capable to determine some of the dynamic parameters of the structure precisely, rather than evaluating all of them at once (mode frequencies, mode shapes, structure damping, structure rigidity, etc.). Response evaluation based on the input and output data elucidated that the structure first mode is not significantly affected, even considering the soil-structure interaction effect, but the upper modes have been changed. Also, it was found that the response transfer function of the different stories, in which plastic hinges have occurred in the structure components, provides similar results.
Keywords: System identification, dynamic characteristics, soil-structure system, bending steel frame structure, displacement-based design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9501024 Impact of Interface Soil Layer on Groundwater Aquifer Behaviour
Authors: Hayder H. Kareem, Shunqi Pan
Abstract:
The geological environment where the groundwater is collected represents the most important element that affects the behaviour of groundwater aquifer. As groundwater is a worldwide vital resource, it requires knowing the parameters that affect this source accurately so that the conceptualized mathematical models would be acceptable to the broadest ranges. Therefore, groundwater models have recently become an effective and efficient tool to investigate groundwater aquifer behaviours. Groundwater aquifer may contain aquitards, aquicludes, or interfaces within its geological formations. Aquitards and aquicludes have geological formations that forced the modellers to include those formations within the conceptualized groundwater models, while interfaces are commonly neglected from the conceptualization process because the modellers believe that the interface has no effect on aquifer behaviour. The current research highlights the impact of an interface existing in a real unconfined groundwater aquifer called Dibdibba, located in Al-Najaf City, Iraq where it has a river called the Euphrates River that passes through the eastern part of this city. Dibdibba groundwater aquifer consists of two types of soil layers separated by an interface soil layer. A groundwater model is built for Al-Najaf City to explore the impact of this interface. Calibration process is done using PEST 'Parameter ESTimation' approach and the best Dibdibba groundwater model is obtained. When the soil interface is conceptualized, results show that the groundwater tables are significantly affected by that interface through appearing dry areas of 56.24 km² and 6.16 km² in the upper and lower layers of the aquifer, respectively. The Euphrates River will also leak water into the groundwater aquifer of 7359 m³/day. While these results are changed when the soil interface is neglected where the dry area became 0.16 km², the Euphrates River leakage became 6334 m³/day. In addition, the conceptualized models (with and without interface) reveal different responses for the change in the recharge rates applied on the aquifer through the uncertainty analysis test. The aquifer of Dibdibba in Al-Najaf City shows a slight deficit in the amount of water supplied by the current pumping scheme and also notices that the Euphrates River suffers from stresses applied to the aquifer. Ultimately, this study shows a crucial need to represent the interface soil layer in model conceptualization to be the intended and future predicted behaviours more reliable for consideration purposes.
Keywords: Al-Najaf City, groundwater aquifer behaviour, groundwater modelling, interface soil layer, Visual MODFLOW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9511023 Application of a Modified BCR Approach to Investigate the Mobility and Availability of Trace Elements (As, Ba, Cd, Co, Cr, Cu, Mo,Ni, Pb, Zn, and Hg) from a Solid Residue Matrix Designed for Soil Amendment
Authors: Mikko Mäkelä, Risto Pöykiö, Gary Watkins, Hannu Nurmesniemi, Olli Dahl
Abstract:
Trace element speciation of an integrated soil amendment matrix was studied with a modified BCR sequential extraction procedure. The analysis included pseudo-total concentration determinations according to USEPA 3051A and relevant physicochemical properties by standardized methods. Based on the results, the soil amendment matrix possessed neutralization capacity comparable to commercial fertilizers. Additionally, the pseudo-total concentrations of all trace elements included in the Finnish regulation for agricultural fertilizers were lower than the respective statutory limit values. According to chemical speciation, the lability of trace elements increased in the following order: Hg < Cr < Co < Cu < As < Zn < Ni < Pb < Cd < V < Mo < Ba. The validity of the BCR approach as a tool for chemical speciation was confirmed by the additional acid digestion phase. Recovery of trace elements during the procedure assured the validity of the approach and indicated good quality of the analytical work.Keywords: BCR, bioavailability, trace element, industrialresidue, sequential extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18441022 Performance of Axially Loaded Single Pile Embedded in Cohesive Soil with Cavities
Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh
Abstract:
The stability of a single model pile located adjacent to a continuous cavity was studied. This paper is an attempt to understand the behaviour of axially loaded single pile embedded in clayey soil with the presences of cavities. The performance of piles located in such soils was studied analytically. A verification analysis was carried out on available studies to assess the ability of analytical model to correctly interpret the system behaviour. The study was adopted by finite element program (PLAXIS). The study included many cases; in each case, there is a critical value in which the presence of cavities has shown minimum effect on the pile performance. Figures including the load carrying capacity of pile with the affecting factors are presented. These figures provide beneficial information for pile design constructed close to underground cavities. It was concluded that the load carrying capacity of the pile is reduced by the presence of the cavity within the soil mass. This reduction varies according to the size and location of cavity.
Keywords: Axial load, cavity, clay, pile, ultimate capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10171021 Selenium Content in Agricultural Soils and Wheat from the Balkan Peninsula
Authors: S. Krustev, V. Angelova, P. Zaprjanova
Abstract:
Selenium (Se) is an essential micro-nutrient for human and animals but it is highly toxic. Its organic compounds play an important role in biochemistry and nutrition of the cells. Concentration levels of this element in the different regions of the world vary considerably. This study aimed to compare the availability and levels of the Se in some rural areas of the Balkan Peninsula and relationship with the concentrations of other trace elements. For this purpose soil samples and wheat grains from different regions of Bulgaria, Serbia, Nord Macedonia, Romania, and Greece situated far from large industrial centers have been analyzed. The main methods for their determination were the atomic spectral techniques – atomic absorption and plasma atomic emission. As a result of this study, data on microelements levels from the main grain-producing regions of the Balkan Peninsula were determined and systematized. The presented results confirm the low levels of Se in this region: 0.222– 0.962 mg.kg-1 in soils and 0.001 - 0.005 mg.kg-1 in wheat grains and require measures to offset the effect of this deficiency.
Keywords: Agricultural soils, Balkan Peninsula, rural areas, selenium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6551020 Development of a Simulator for Explaining Organic Chemical Reactions Based on Qualitative Process Theory
Authors: Alicia Y. C. Tang, Rukaini Hj. Abdullah, Sharifuddin M. Zain
Abstract:
This paper discusses the development of a qualitative simulator (abbreviated QRiOM) for predicting the behaviour of organic chemical reactions. The simulation technique is based on the qualitative process theory (QPT) ontology. The modelling constructs of QPT embody notions of causality which can be used to explain the behaviour of a chemical system. The major theme of this work is that, in a qualitative simulation environment, students are able to articulate his/her knowledge through the inspection of explanations generated by software. The implementation languages are Java and Prolog. The software produces explanation in various forms that stresses on the causal theories in the chemical system which can be effectively used to support learning.Keywords: Chemical reactions, explanation, qualitative processtheory, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15661019 Effectiveness of Moringa oleifera Coagulant Protein as Natural Coagulant aid in Removal of Turbidity and Bacteria from Turbid Waters
Authors: B. Bina, M.H. Mehdinejad, Gunnel Dalhammer, Guna RajaraoM. Nikaeen, H. Movahedian Attar
Abstract:
Coagulation of water involves the use of coagulating agents to bring the suspended matter in the raw water together for settling and the filtration stage. Present study is aimed to examine the effects of aluminum sulfate as coagulant in conjunction with Moringa Oleifera Coagulant Protein as coagulant aid on turbidity, hardness, and bacteria in turbid water. A conventional jar test apparatus was employed for the tests. The best removal was observed at a pH of 7 to 7.5 for all turbidities. Turbidity removal efficiency was resulted between % 80 to % 99 by Moringa Oleifera Coagulant Protein as coagulant aid. Dosage of coagulant and coagulant aid decreased with increasing turbidity. In addition, Moringa Oleifera Coagulant Protein significantly has reduced the required dosage of primary coagulant. Residual Al+3 in treated water were less than 0.2 mg/l and meets the environmental protection agency guidelines. The results showed that turbidity reduction of % 85.9- % 98 paralleled by a primary Escherichia coli reduction of 1-3 log units (99.2 – 99.97%) was obtained within the first 1 to 2 h of treatment. In conclusions, Moringa Oleifera Coagulant Protein as coagulant aid can be used for drinking water treatment without the risk of organic or nutrient release. We demonstrated that optimal design method is an efficient approach for optimization of coagulation-flocculation process and appropriate for raw water treatment.Keywords: MOCP, Coagulant aid, turbidity removal, E.coliremoval, water, treatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35411018 Conjunctive Surface Runoff and Groundwater Management in Salinity Soils
Authors: S. Chuenchooklin, T. Ichikawa, P. Mekpruksawong
Abstract:
This research was conducted in the Lower Namkam Irrigation Project situated in the Namkam River Basin in Thailand. Degradation of groundwater quality in some areas is caused by saline soil spots beneath ground surface. However, the tail regulated gate structure on the Namkam River, a lateral stream of the Mekong River. It is aimed for maintaining water level in the river at +137.5 to +138.5 m (MSL) and flow to the irrigation canals based on a gravity system since July 2009. It might leach some saline soil spots from underground to soil surface if lack of understanding of the conjunctive surface water and groundwater behaviors. This research has been conducted by continuously the observing of both shallow and deep groundwater level and quality from existing observation wells. The simulation of surface water was carried out using a hydrologic modeling system (HEC-HMS) to compute the ungauged side flow catchments as the lateral flows for the river system model (HEC-RAS). The constant water levels in the upstream of the operated gate caused a slight rising up of shallow groundwater level when compared to the water table. However, the groundwater levels in the confined aquifers remained less impacted than in the shallow aquifers but groundwater levels in late of wet season in some wells were higher than the phreatic surface. This causes salinization of the groundwater at the soil surface and might affect some crops. This research aims for the balance of water stage in the river and efficient groundwater utilization in this area.Keywords: Surface water, groundwater observation, irrigation, water balance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18341017 The Modeling of Viscous Microenvironment for the Coupled Enzyme System of Bioluminescence Bacteria
Authors: Irina E. Sukovataya, Oleg S. Sutormin, Valentina A. Kratasyuk
Abstract:
Effect of viscosity of media on kinetic parameters of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase was investigated with addition of organic solvents (glycerol and sucrose), because bioluminescent enzyme systems based on bacterial luciferases offer a unique and general tool for analysis of the many analytes and enzymes in the environment, research and clinical laboratories and other fields. The possibility of stabilization and increase of activity of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase activity in vicious aqueous-organic mixtures have been shown.
Keywords: The coupled enzyme system of bioluminescence bacteria NAD(P)H:FMN-oxidoreductase–luciferase, glycerol, stabilization of enzymes, sucrose.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16371016 A Study of Grounding Grid Characteristics with Conductive Concrete
Authors: Chun-Yao Lee, Siang-Ren Wang
Abstract:
The purpose of this paper is to improve electromagnetic characteristics on grounding grid by applying the conductive concrete. The conductive concrete in this study is under an extra high voltage (EHV, 345kV) system located in a high-tech industrial park or science park. Instead of surrounding soil of grounding grid, the application of conductive concrete can reduce equipment damage and body damage caused by switching surges. The focus of the two cases on the EHV distribution system in a high-tech industrial park is presented to analyze four soil material styles. By comparing several soil material styles, the study results have shown that the conductive concrete can effectively reduce the negative damages caused by electromagnetic transient. The adoption of the style of grounding grid located 1.0 (m) underground and conductive concrete located from the ground surface to 1.25 (m) underground can obviously improve the electromagnetic characteristics so as to advance protective efficiency.
Keywords: Switching surges, grounding gird, electromagnetic transient, conductive concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18471015 Adsorption of Phenol and 4-Hydroxybenzoic Acid onto Functional Materials
Authors: Mourad Makhlouf, Omar Bouchher, Messabih Sidi Mohamed, Benrachedi Khaled
Abstract:
The objective of this study was to investigate the removal of two organic pollutants; 4-hydroxybenzoic acid (p-hydroxybenzoic acid) and phenol from synthetic wastewater by the adsorption on mesoporous materials. In this context, the aim of this work is to study the adsorption of organic compounds phenol and 4AHB on MCM-41 and FSM-16 non-grafted (NG) and other grafted (G) by trimethylchlorosilane (TMCS). The results of phenol and 4AHB adsorption in aqueous solution show that the adsorption capacity tends to increase after grafting in relation to the increase in hydrophobicity. The materials are distinguished by a higher adsorption capacity to the other NG materials. The difference in the phenol is 14.43% (MCM-41), 14.55% (FSM-16), and 16.72% (MCM-41), 13.57% (FSM-16) in the 4AHB. Our adsorption results show that the grafted materials by TMCS are good adsorbent at 25 °C.
Keywords: MCM-41, FSM-16, TMCS, phenol, 4AHB.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10581014 A Comparison Study of the Removal of Selected Pharmaceuticals in Waters by Chemical Oxidation Treatments
Authors: F. Javier Benitez, Juan Luis Acero, Francisco J. Real, Gloria Roldan, Francisco Casas
Abstract:
The degradation of selected pharmaceuticals in some water matrices was studied by using several chemical treatments. The pharmaceuticals selected were the beta-blocker metoprolol, the nonsteroidal anti-inflammatory naproxen, the antibiotic amoxicillin, and the analgesic phenacetin; and their degradations were conducted by using UV radiation alone, ozone, Fenton-s reagent, Fenton-like system, photo-Fenton system, and combinations of UV radiation and ozone with H2O2, TiO2, Fe(II), and Fe(III). The water matrices, in addition to ultra-pure water, were a reservoir water, a groundwater, and two secondary effluents from two municipal WWTP. The results reveal that the presence of any second oxidant enhanced the oxidation rates, with the systems UV/TiO2 and O3/TiO2 providing the highest degradation rates. It is also observed in most of the investigated oxidation systems that the degradation rate followed the sequence: amoxicillin > naproxen > metoprolol > phenacetin. Lower rates were obtained with the pharmaceuticals dissolved in natural waters and secondary effluents due to the organic matter present which consume some amounts of the oxidant agents.Keywords: Pharmaceuticals, UV radiation, ozone, advancedoxidation processes, water matrices, degradation rates
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22351013 The Use of Rice Husk Ash as a Stabilizing Agent in Lateritic Clay Soil
Authors: J. O. Akinyele, R. W. Salim, K. O. Oikelome, O. T. Olateju
Abstract:
Rice Husk (RH) is the major byproduct in the processing of paddy rice. The management of this waste has become a big challenge to some of the rice producers, some of these wastes are left in open dumps while some are burn in the open space, and these two actions have been contributing to environmental pollution. This study evaluates an alternative waste management of this agricultural product for use as a civil engineering material. The RH was burn in a controlled environment to form Rice Husk Ash (RHA). The RHA was mix with lateritic clay at 0, 2, 4, 6, 8, and 10% proportion by weight. Chemical test was conducted on the open burn and controlled burn RHA with the lateritic clay. Physical test such as particle size distribution, Atterberg limits test, and density test were carried out on the mix material. The chemical composition obtained for the RHA showed that the total percentage compositions of Fe2O3, SiO2 and Al2O3 were found to be above 70% (class “F” pozzolan) which qualifies it as a very good pozzolan. The coefficient of uniformity (Cu) was 8 and coefficient of curvature (Cc) was 2 for the soil sample. The Plasticity Index (PI) for the 0, 2, 4, 6, 8. 10% was 21.0, 18.8, 16.7, 14.4, 12.4 and 10.7 respectively. The work concluded that RHA can be effectively used in hydraulic barriers and as a stabilizing agent in soil stabilization.Keywords: Rice husk ash, pozzolans, paddy rice, lateritic clay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28331012 Efficiency of Compact Organic Rankine Cycle System with Rotary-Vane-Type Expander for Low-Temperature Waste Heat Recovery
Authors: Musthafah b. Mohd.Tahir, Noboru Yamada, Tetsuya Hoshino
Abstract:
This paper describes the experimental efficiency of a compact organic Rankine cycle (ORC) system with a compact rotary-vane-type expander. The compact ORC system can be used for power generation from low-temperature heat sources such as waste heat from various small-scale heat engines, fuel cells, electric devices, and solar thermal energy. The purpose of this study is to develop an ORC system with a low power output of less than 1 kW with a hot temperature source ranging from 60°C to 100°C and a cold temperature source ranging from 10°C to 30°C. The power output of the system is rather less due to limited heat efficiency. Therefore, the system should have an economically optimal efficiency. In order to realize such a system, an efficient and low-cost expander is indispensable. An experimental ORC system was developed using the rotary-vane-type expander which is one of possible candidates of the expander. The experimental results revealed the expander performance for various rotation speeds, expander efficiencies, and thermal efficiencies. Approximately 30 W of expander power output with 48% expander efficiency and 4% thermal efficiency with a temperature difference between the hot and cold sources of 80°C was achieved.Keywords: Organic Rankine cycle, Thermodynamic cycle, Thermal efficiency, Turbine efficiency, Waste heat recovery, Powergeneration, Low temperature heat engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35651011 Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing
Authors: V. E. Messerle, O. A. Lavrichshev, A. B. Ustimenko
Abstract:
The article presents a plasma chemical technology for processing solid fuels, using examples of bituminous and brown coals. Thermodynamic and experimental investigation of the technology was made. The technology allows producing synthesis gas from the coal organic mass and valuable components (technical silicon, ferrosilicon, aluminum, and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, etc.) from the mineral mass. The thusly produced highcalorific synthesis gas can be used for synthesis of methanol, as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants.Keywords: Gasification, mineral mass, organic mass, plasma, processing, solid fuel, synthesis gas, valuable components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19651010 Reliability-Based Ductility Seismic Spectra of Structures with Tilting
Authors: Federico Valenzuela-Beltran, Sonia E. Ruiz, Alfredo Reyes-Salazar, Juan Bojorquez
Abstract:
A reliability-based methodology which uses structural demand hazard curves to consider the increment of the ductility demands of structures with tilting is proposed. The approach considers the effect of two orthogonal components of the ground motions as well as the influence of soil-structure interaction. The approach involves the calculation of ductility demand hazard curves for symmetric systems and, alternatively, for systems with different degrees of asymmetry. To get this objective, demand hazard curves corresponding to different global ductility demands of the systems are calculated. Next, Uniform Exceedance Rate Spectra (UERS) are developed for a specific mean annual rate of exceedance value. Ratios between UERS corresponding to asymmetric and to symmetric systems located in soft soil of the valley of Mexico are obtained. Results indicate that the ductility demands corresponding to tilted structures may be several times higher than those corresponding to symmetric structures, depending on several factors such as tilting angle and vibration period of structure and soil.
Keywords: Asymmetric yielding, tilted structures, seismic performance, structural reliability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18051009 Implication to Environmental Education of Indigenous Knowledge and the Ecosystem of Upland Farmers in Aklan, Philippines
Authors: Emily Arangote
Abstract:
This paper defined the association between the indigenous knowledge, cultural practices and the ecosystem its implication to the environmental education to the farmers. Farmers recognize the need for sustainability of the ecosystem they inhabit. The cultural practices of farmers on use of indigenous pest control, use of insect-repellant plants, soil management practices that suppress diseases and harmful pests and conserve soil moisture are deemed to be ecologically-friendly. Indigenous plant materials that were more drought- and pest-resistant were grown. Crop rotation was implemented with various crop seeds to increase their disease resistance. Multi-cropping, planting of perennial crops, categorization of soil and planting of appropriate crops, planting of appropriate and leguminous crops, alloting land as watershed, and preserving traditional palay seed varieties were found to be beneficial in preserving the environment. The study also found that indigenous knowledge about crops are still relevant and useful to the current generation. This ensured the sustainability of our environment and incumbent on policy makers and educators to support and preserve for generations yet to come.Keywords: Cultural practices, ecosystem, environmental education, indigenous knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14281008 Reliability Based Investigation on the Choice of Characteristic Soil Properties
Authors: Jann-Eike Saathoff, Kirill Alexander Schmoor, Martin Achmus, Mauricio Terceros
Abstract:
By using partial factors of safety, uncertainties due to the inherent variability of the soil properties and loads are taken into account in the geotechnical design process. According to the reliability index concept in Eurocode-0 in conjunction with Eurocode-7 a minimum safety level of β = 3.8 for reliability class RC2 shall be established. The reliability of the system depends heavily on the choice of the prespecified safety factor and the choice of the characteristic soil properties. The safety factors stated in the standards are mainly based on experience. However, no general accepted method for the calculation of a characteristic value within the current design practice exists. In this study, a laterally loaded monopile is investigated and the influence of the chosen quantile values of the deterministic system, calculated with p-y springs, will be presented. Monopiles are the most common foundation concepts for offshore wind energy converters. Based on the calculations for non-cohesive soils, a recommendation for an appropriate quantile value for the necessary safety level according to the standards for a deterministic design is given.
Keywords: Asymptotic sampling, characteristic value, monopile foundation, probabilistic design, quantile values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6721007 A Review on Bearing Capacity Factor Nγ of Shallow Foundations with Different Shapes
Authors: S. Taghvamanesh, R. Ziaie Moayed
Abstract:
There are several methods for calculating the bearing capacity factors of foundations and retaining walls. In this paper, the bearing capacity factor Nγ (shape factor) for different types of foundation have been investigated. The formula for bearing capacity on c–φ–γ soil can still be expressed by Terzaghi’s equation except that the bearing capacity factor Nγ depends on the surcharge ratio, and friction angle φ. It is apparent that the value of Nγ increases irregularly with the friction angle of the subsoil, which leads to an excessive increment in Nγ of foundations with larger width. Also, the bearing capacity factor Nγ will significantly decrease with an increase in foundation`s width. It also should be highlighted that the effect of shape and dimension will be less noticeable with a decrease in the relative density of the soil. Hence, the bearing capacity factor Nγ relatively depends on foundation`s width, surcharge and roughness ratio. This paper presents the results of various studies conducted on the bearing capacity factor Nγ of: different types of shallow foundation and foundations with irregular geometry (ring footing, triangular footing, shell foundations and etc.) Further studies on the effect of bearing capacity factor Nγ on mat foundations and the characteristics of this factor with or without consideration for the presence of friction between soil and foundation are recommended.
Keywords: Bearing capacity, Bearing capacity factor, irregular foundation, shallow foundation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7611006 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads
Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill
Abstract:
Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.Keywords: Slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16211005 Evaluating the Small-Strain Mechanical Properties of Cement-Treated Clayey Soils Based on the Confining Pressure
Authors: M. A. Putera, N. Yasufuku, A. Alowaisy, R. Ishikura, J. G. Hussary, A. Rifa’i
Abstract:
Indonesia’s government has planned a project for a high-speed railway connecting the capital cities, Jakarta and Surabaya, about 700 km. Based on that location, it has been planning construction above the lowland soil region. The lowland soil region comprises cohesive soil with high water content and high compressibility index, which in fact, led to a settlement problem. Among the variety of railway track structures, the adoption of the ballastless track was used effectively to reduce the settlement; it provided a lightweight structure and minimized workspace. Contradictorily, deploying this thin layer structure above the lowland area was compensated with several problems, such as lack of bearing capacity and deflection behavior during traffic loading. It is necessary to combine with ground improvement to assure a settlement behavior on the clayey soil. Reflecting on the assurance of strength increment and working period, those were convinced by adopting methods such as cement-treated soil as the substructure of railway track. Particularly, evaluating mechanical properties in the field has been well known by using the plate load test and cone penetration test. However, observing an increment of mechanical properties has uncertainty, especially for evaluating cement-treated soil on the substructure. The current quality control of cement-treated soils was established by laboratory tests. Moreover, using small strain devices measurement in the laboratory can predict more reliable results that are identical to field measurement tests. Aims of this research are to show an intercorrelation of confining pressure with the initial condition of the Young’s modulus (E0), Poisson ratio (υ0) and Shear modulus (G0) within small strain ranges. Furthermore, discrepancies between those parameters were also investigated. Experimental result confirmed the intercorrelation between cement content and confining pressure with a power function. In addition, higher cement ratios have discrepancies, conversely with low mixing ratios.
Keywords: Cement content, confining pressure, high-speed railway, small strain ranges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4221004 Stability and Kinetic Analysis during Vermicomposting of Sewage Sludge
Authors: Ashish Kumar Nayak, Dhamodharan K., Ajay S. Kalamdhad
Abstract:
The present study is aimed at alteration of sewage sludge into stable compost product using vermicomposting of sewage sludge mixed with cattle manure and saw dust in five different proportions based on C/N ratios (C/N 15 (R1), 20 (R2), 25 (R3) and 30 (R4); and control (R5)) by employing an epigeic earthworm Eisenia fetida. Higher reductions in C/N ratio, CO2 evolution and OUR were observed in R4 demonstrated the compost stability. In addition, R4 proved to be best combination for the growth of the earthworms. In order to observe the optimal degradation, kinetics for degradation of organic matter in vermicomposting were quantitatively evaluated. An approach model was developed by assuming that composting process is carried out in a homogeneous way and the kinetics for decomposition reaction is represented by a Monod-type equation. The results exhibit comparable variations in the kinetic constants Km and K3 under varying parameters during vermicomposting process. Results suggested that higher R2 value in R4, enhanced suitability towards Lineweaver-Burke plot. R4 yields higher degradability coefficient (K) reveals that the occurrence of optimal nutrient balance, which not only enhanced the affinity of enzymes towards substrate but also improved its degradation process. Therefore, it can be proved that R4 provided to be the best feed combination for vermicomposting process as compared to other reactors.
Keywords: Vermicomposting, Eisenia fetida, Sewage sludge, C/N ratio, Stability, Enzyme kinetics concept.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23501003 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor
Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar
Abstract:
Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.
Keywords: Hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7561002 Preparation of Sorbent Materials for the Removal of Hardness and Organic Pollutants from Water and Wastewater
Authors: Thanaa Abdel Moghny, Mohamed Keshawy, Mahmoud Fathy, Abdul-Raheim M. Abdul-Raheim, Khalid I. Kabel, Ahmed F. El-Kafrawy, Mahmoud Ahmed Mousa, Ahmed E. Awadallah
Abstract:
Ecological pollution is of great concern for human health and the environment. Numerous organic and inorganic pollutants usually discharged into the water caused carcinogenic or toxic effect for human and different life form. In this respect, this work aims to treat water contaminated by organic and inorganic waste using sorbent based on polystyrene. Therefore, two different series of adsorbent material were prepared; the first one included the preparation of polymeric sorbent from the reaction of styrene acrylate ester and alkyl acrylate. The second series involved syntheses of composite ion exchange resins of waste polystyrene and amorphous carbon thin film (WPS/ACTF) by solvent evaporation using micro emulsion polymerization. The produced ACTF/WPS nanocomposite was sulfonated to produce cation exchange resins ACTF/WPSS nanocomposite. The sorbents of the first series were characterized using FTIR, 1H NMR, and gel permeation chromatography. The thermal properties of the cross-linked sorbents were investigated using thermogravimetric analysis, and the morphology was characterized by scanning electron microscope (SEM). The removal of organic pollutant was determined through absorption tests in a various organic solvent. The chemical and crystalline structure of nanocomposite of second series has been proven by studies of FTIR spectrum, X-rays, thermal analysis, SEM and TEM analysis to study morphology of resins and ACTF that assembled with polystyrene chain. It is found that the composite resins ACTF/WPSS are thermally stable and show higher chemical stability than ion exchange WPSS resins. The composite resin was evaluated for calcium hardness removal. The result is evident that the ACTF/WPSS composite has more prominent inorganic pollutant removal than WPSS resin. So, we recommend the using of nanocomposite resin as new potential applications for water treatment process.
Keywords: Nanocomposite, sorbent materials, waste water, waste polystyrene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407