Search results for: Student support
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2301

Search results for: Student support

1761 Boosting Method for Automated Feature Space Discovery in Supervised Quantum Machine Learning Models

Authors: Vladimir Rastunkov, Jae-Eun Park, Abhijit Mitra, Brian Quanz, Steve Wood, Christopher Codella, Heather Higgins, Joseph Broz

Abstract:

Quantum Support Vector Machines (QSVM) have become an important tool in research and applications of quantum kernel methods. In this work we propose a boosting approach for building ensembles of QSVM models and assess performance improvement across multiple datasets. This approach is derived from the best ensemble building practices that worked well in traditional machine learning and thus should push the limits of quantum model performance even further. We find that in some cases, a single QSVM model with tuned hyperparameters is sufficient to simulate the data, while in others - an ensemble of QSVMs that are forced to do exploration of the feature space via proposed method is beneficial.

Keywords: QSVM, Quantum Support Vector Machines, quantum kernel, boosting, ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 439
1760 Face Recognition with Image Rotation Detection, Correction and Reinforced Decision using ANN

Authors: Hemashree Bordoloi, Kandarpa Kumar Sarma

Abstract:

Rotation or tilt present in an image capture by digital means can be detected and corrected using Artificial Neural Network (ANN) for application with a Face Recognition System (FRS). Principal Component Analysis (PCA) features of faces at different angles are used to train an ANN which detects the rotation for an input image and corrected using a set of operations implemented using another system based on ANN. The work also deals with the recognition of human faces with features from the foreheads, eyes, nose and mouths as decision support entities of the system configured using a Generalized Feed Forward Artificial Neural Network (GFFANN). These features are combined to provide a reinforced decision for verification of a person-s identity despite illumination variations. The complete system performing facial image rotation detection, correction and recognition using re-enforced decision support provides a success rate in the higher 90s.

Keywords: Rotation, Face, Recognition, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
1759 An SVM based Classification Method for Cancer Data using Minimum Microarray Gene Expressions

Authors: R. Mallika, V. Saravanan

Abstract:

This paper gives a novel method for improving classification performance for cancer classification with very few microarray Gene expression data. The method employs classification with individual gene ranking and gene subset ranking. For selection and classification, the proposed method uses the same classifier. The method is applied to three publicly available cancer gene expression datasets from Lymphoma, Liver and Leukaemia datasets. Three different classifiers namely Support vector machines-one against all (SVM-OAA), K nearest neighbour (KNN) and Linear Discriminant analysis (LDA) were tested and the results indicate the improvement in performance of SVM-OAA classifier with satisfactory results on all the three datasets when compared with the other two classifiers.

Keywords: Support vector machines-one against all, cancerclassification, Linear Discriminant analysis, K nearest neighbour, microarray gene expression, gene pair ranking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
1758 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
1757 Integrated Education at Jazan University: Budding Hope for Employability

Authors: Jayanthi Rajendran

Abstract:

Experience is what makes a man perfect. Though we tend to learn many a different things in life through practice still we need to go an extra mile to gain experience which would be profitable only when it is integrated with regular practice. A clear phenomenal idea is that every teacher is a learner. The centralized idea of this paper would focus on the integrated practices carried out among the students of Jizan University which enhances learning through experiences. Integrated practices like student-directed activities, balanced curriculum, phonological based activities and use of consistent language would enlarge the vision and mission of students to earn experience through learning. Students who receive explicit instruction and guidance could practice the skills and strategies through student-directed activities such as peer tutoring and cooperative learning. The second effective practice is to use consistent language. Consistent language provides students a model for talking about the new concepts which also enables them to communicate without hindrances. Phonological awareness is an important early reading skill for all students. Students generally have phonemic awareness in their home language can often transfer that knowledge to a second language. And also a balanced curriculum requires instruction in all the elements of reading. Reading is the most effective skill when both basic and higher-order skills are included on a daily basis. Computer based reading and listening skills will empower students to understand language in a better way. English language learners can benefit from sound reading instruction even before they are fully proficient in English as long as the instruction is comprehensible. Thus, if students have to be well equipped in learning they should foreground themselves in various integrated practices through multifarious experience for which teachers are moderators and trainers. This type of learning prepares the students for a constantly changing society which helps them to meet the competitive world around them for better employability fulfilling the vision and mission of the institution.

Keywords: Consistent language, employability, phonological awareness, balanced curriculum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
1756 The Use of Nuclear Generation to Provide Power System Stability

Authors: Heather Wyman-Pain, Yuankai Bian, Furong Li

Abstract:

The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor development since their commercialisation in the 1950s. The use of nuclear power in four countries with varying levels of capacity provided by nuclear generators is investigated, using the primary frequency response provided by generators as a measure for the electricity networks stability, to assess the need for nuclear generators to provide additional support as their share of the generation capacity increases.

Keywords: Frequency control, nuclear power generation, power system stability, system inertia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1514
1755 New Approach for Load Modeling

Authors: S. Chokri

Abstract:

Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
1754 Business Intelligence and Strategic Decision Simulation

Authors: S. Sabbour, H. Lasi, P. von Tessin

Abstract:

The purpose of this study is two-fold. First, it attempts to explore potential opportunities for utilizing visual interactive simulations along with Business Intelligence (BI) as a decision support tool for strategic decision making. Second, it tries to figure out the essential top-level managerial requirements that would transform strategic decision simulation into an integral component of BI systems. The domain of particular interest was the application of visual interactive simulation capabilities in the field of supply chains. A qualitative exploratory method was applied, through the use of interviews with two leading companies. The collected data was then analysed to demonstrate the difference between the literature perspective and the practical managerial perspective on the issue. The results of the study suggest that although the use of simulation particularly in managing supply chains is very evident in literature, yet, in practice such utilization is still in its infancy, particularly regarding strategic decisions. Based on the insights a prototype of a simulation based BI-solution-extension was developed and evaluated.

Keywords: Business Intelligence, decision support, strategic decisions, simulation, SCM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2806
1753 Effect of Gold Loading on CeO2–Fe2O3 for Oxidative Steam Reforming of Methanol

Authors: Umpawan Satitthai, Apanee Luengnaruemitchai, Erdogan Gulari

Abstract:

In this study, oxidative steam reforming of methanol (OSRM) over a Au/CeO2–Fe2O3 catalyst prepared by a depositionprecipitation (DP) method was studied to produce hydrogen in order to feed a Proton Exchange Membrane Fuel Cell (PEMFC). The support (CeO2, Fe2O3, and CeO2–Fe2O3) were prepared by precipitation and co-precipitation methods. The impact of the support composition on the catalytic performance was studied by varying the Ce/(Ce+Fe) atomic ratio, it was found that the 1%Au/CF(0.25) calcined at 300 °C exhibited the highest catalytic activity in the whole temperature studied. In addition, the effect of Au content was investigated and 3%Au/CF(0.25) exhibited the highest activity under the optimum condition in the temperature range of 200 °C to 400 °C. The catalysts were characterized by various techniques: XRD, TPR, XRF, and UV-vis.

Keywords: CeO2, Fe2O3, Gold catalyst, Hydrogen production, Methanol, Oxidative steam reforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
1752 An Approach to Manage and Evaluate Asset Performance

Authors: Mohammed S. ALSaidi, John P. Mo

Abstract:

Modern engineering assets are complex and very high in value. They are expected to function for years to come, with ability to handle the change in technology and ageing modification. The aging of an engineering asset and continues increase of vendors and contractors numbers forces the asset operation management (or Owner) to design an asset system which can capture these changes. Furthermore, an accurate performance measurement and risk evaluation processes are highly needed. Therefore, this paper explores the nature of the asset management system performance evaluation for an engineering asset based on the System Support Engineering (SSE) principles. The research work explores the asset support system from a range of perspectives, interviewing managers from across a refinery organization. The factors contributing to complexity of an asset management system are described in context which clusters them into several key areas. It is proposed that SSE framework may then be used as a tool for analysis and management of asset. The paper will conclude with discussion of potential application of the framework and opportunities for future research.

Keywords: Asset management, performance, evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358
1751 Identification of the Key Sustainability Issues to Develop New Decision Support Tools in the Spanish Furniture Sector

Authors: P.Cordero, R.Poler, R.Sanchis

Abstract:

The environmental impacts caused by the current production and consumption models, together with the impact that the current economic crisis, bring necessary changes in the European industry toward new business models based on sustainability issues that could allow them to innovate and improve their competitiveness. This paper analyzes the key environmental issues and the current and future market trends in one of the most important industrial sectors in Spain, the furniture sector. It also proposes new decision support tools -diagnostic kit, roadmap and guidelines- to guide companies to implement sustainability criteria into their organizations, including eco-design strategies and other economical and social strategies in accordance with the sustainability definition, and other available tools such as eco-labels, environmental management systems, etc., and to use and combine them to obtain the results the company expects to help improve its competitiveness.

Keywords: Furniture sector, eco-design, sustainability, economical crisis, market trends, roadmap

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
1750 Comparative Study Using Weka for Red Blood Cells Classification

Authors: Jameela Ali Alkrimi, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithms tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital - Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.

Keywords: K-Nearest Neighbors, Neural Network, Radial Basis Function, Red blood cells, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2996
1749 Analysis of a Population of Diabetic Patients Databases with Classifiers

Authors: Murat Koklu, Yavuz Unal

Abstract:

Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.

Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5431
1748 Indoor Air Quality Analysis for Renovating Building: A Case Study of Student Studio, Department of Landscape, Chiangmai, Thailand

Authors: Warangkana Juangjandee

Abstract:

The rapidly increasing number of population in the limited area creates an effect on the idea of the improvement of the area to suit the environment and the needs of people. Faculty of architecture Chiang Mai University is also expanding in both variety fields of study and quality of education. In 2020, the new department will be introduced in the faculty which is Department of Landscape Architecture. With the limitation of the area in the existing building, the faculty plan to renovate some parts of its school for anticipates the number of students who will join the program in the next two years. As a result, the old wooden workshop area is selected to be renovated as student studio space. With such condition, it is necessary to study the restriction and the distinctive environment of the site prior to the improvement in order to find ways to manage the existing space due to the fact that the primary functions that have been practiced in the site, an old wooden workshop space and the new function, studio space, are too different. 72.9% of the annual times in the room are considered to be out of the thermal comfort condition with high relative humidity. This causes non-comfort condition for occupants which could promote mould growth. This study aims to analyze thermal comfort condition in the Landscape Learning Studio Area for finding the solution to improve indoor air quality and respond to local conditions. The research methodology will be in two parts: 1) field gathering data on the case study 2) analysis and finding the solution of improving indoor air quality. The result of the survey indicated that the room needs to solve non-comfort condition problem. This can be divided into two ways which are raising ventilation and indoor temperature, e.g. improving building design and stack driven ventilation, using fan for enhancing more internal ventilation.

Keywords: Relative humidity, renovation, temperature, thermal comfort.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
1747 Performance Evaluation and Modeling of a Conical Plunging Jet Aerator

Authors: Surinder Deswal, D. V. S. Verma

Abstract:

Aeration by a plunging water jet is an energetically attractive way to effect oxygen-transfer than conventional oxygenation systems. In the present study, a new type of conical shaped plunging aeration device is fabricated to generate hollow inclined ined plunging jets (jet plunge angle of π/3 ) to investigate its oxygen transfer capacity. The results suggest that the volumetric oxygen-transfer coefficient and oxygen-transfer efficiency of the conical plunging jet aerator are competitive with other types of aeration systems. Relationships of volumetric oxygen-transfer coefficient with jet power per unit volume and jet parameters are also proposed. The suggested relationships predict the volumetric oxygentransfer coefficient within a scatter of ± 15% . Further, the application of Support Vector Machines on the experimental data revealed its utility in the prediction of volumetric oxygen-transfer coefficient and development of conical plunging jet aerators.

Keywords: Conical plunging jet, oxygen-transfer efficiency, support vector machines, volumetric oxygen-transfer coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
1746 Genetic Algorithms and Kernel Matrix-based Criteria Combined Approach to Perform Feature and Model Selection for Support Vector Machines

Authors: A. Perolini

Abstract:

Feature and model selection are in the center of attention of many researches because of their impact on classifiers- performance. Both selections are usually performed separately but recent developments suggest using a combined GA-SVM approach to perform them simultaneously. This approach improves the performance of the classifier identifying the best subset of variables and the optimal parameters- values. Although GA-SVM is an effective method it is computationally expensive, thus a rough method can be considered. The paper investigates a joined approach of Genetic Algorithm and kernel matrix criteria to perform simultaneously feature and model selection for SVM classification problem. The purpose of this research is to improve the classification performance of SVM through an efficient approach, the Kernel Matrix Genetic Algorithm method (KMGA).

Keywords: Feature and model selection, Genetic Algorithms, Support Vector Machines, kernel matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
1745 Students’ Attitudes Toward Seeking Psychological Help

Authors: P. Gudelj, E. Franić, M. Kolega

Abstract:

Mental health is crucial for personal, social, and socio-economic development, becoming an increasingly relevant topic, especially in the post-global pandemic era. One vulnerable demographic comprises students who, during the pandemic, faced challenges such as adapting to new educational methods, societal or residential changes, heightened stress, responsibilities, and entering the job market. These life challenges proved insurmountable for some individuals during this phase. This research aimed to examine students' attitudes towards individuals seeking psychological help. By gaining a better understanding of young people's perceptions of seeking psychological assistance, a clearer insight into how to make psychological support more accessible and acceptable can be achieved. A questionnaire was completed by 210 students from various disciplines at the University of Zagreb. While the majority of students expressed a positive attitude towards seeking psychological help, a very small percentage reported having sought it. One of the most common obstacles to seeking appropriate help was a lack of financial means, with the most significant motivators being the positive experiences of those who sought help and an affordable cost.

Keywords: Mental health, students, psychological support, attitudes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 90
1744 An Evaluation Model for Semantic Enablement of Virtual Research Environments

Authors: Tristan O'Neill, Trina Myers, Jarrod Trevathan

Abstract:

The Tropical Data Hub (TDH) is a virtual research environment that provides researchers with an e-research infrastructure to congregate significant tropical data sets for data reuse, integration, searching, and correlation. However, researchers often require data and metadata synthesis across disciplines for crossdomain analyses and knowledge discovery. A triplestore offers a semantic layer to achieve a more intelligent method of search to support the synthesis requirements by automating latent linkages in the data and metadata. Presently, the benchmarks to aid the decision of which triplestore is best suited for use in an application environment like the TDH are limited to performance. This paper describes a new evaluation tool developed to analyze both features and performance. The tool comprises a weighted decision matrix to evaluate the interoperability, functionality, performance, and support availability of a range of integrated and native triplestores to rank them according to requirements of the TDH.

Keywords: Virtual research environment, Semantic Web, performance analysis, tropical data hub.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
1743 Innovation Policy and Development of Creative Industries: Case Study of Lithuanian Animation Industry

Authors: Tomas Mitkus, Vaida Nedzinskaitė-Mitkė

Abstract:

The objective of this study is to identify and explore how adequate is modern innovation support mechanism to developed creative industries. We argue that current development and support strategy for creative industries, although acknowledge high correlation between innovation and creativity, do not seek to improve conditions to promote systematic innovation development in the creative sector. Using the Lithuanian animation industry as a case study, this paper will examine innovation contribution to creativity and, for that matter, the competitiveness of animation enterprises. This paper proposes insights that contribute to theoretical and practical discussions on how creative profile companies build national and international competitiveness through innovations. The conclusions suggest that development of creative industries could greatly benefit if policymakers would implement tools that would encourage creative profile enterprises to invest in to development of innovation at a constant rate.

Keywords: Creative industries, animation, innovation, innovation policy, management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032
1742 Integrated ACOR/IACOMV-R-SVM Algorithm

Authors: Hiba Basim Alwan, Ku Ruhana Ku-Mahamud

Abstract:

A direction for ACO is to optimize continuous and mixed (discrete and continuous) variables in solving problems with various types of data. Support Vector Machine (SVM), which originates from the statistical approach, is a present day classification technique. The main problems of SVM are selecting feature subset and tuning the parameters. Discretizing the continuous value of the parameters is the most common approach in tuning SVM parameters. This process will result in loss of information which affects the classification accuracy. This paper presents two algorithms that can simultaneously tune SVM parameters and select the feature subset. The first algorithm, ACOR-SVM, will tune SVM parameters, while the second IACOMV-R-SVM algorithm will simultaneously tune SVM parameters and select the feature subset. Three benchmark UCI datasets were used in the experiments to validate the performance of the proposed algorithms. The results show that the proposed algorithms have good performances as compared to other approaches.

Keywords: Continuous ant colony optimization, incremental continuous ant colony, simultaneous optimization, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
1741 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring

Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata

Abstract:

Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds, and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the number and the location of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.

Keywords: Finite element model, rotordynamic system, model reduction, substructuring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4073
1740 A Foresight into Green Housing Industry in Malaysia

Authors: N. Zainul Abidin, N. Yusof, H. Awang

Abstract:

Bringing change to the housing industry requires multiple efforts from various angles especially to overcome any resistances in the form of technology, human aspects, financial and resources. The transition from conventional to sustainable approach consumes time as it requires changes from different facets in the industry ranging from individual, organisational to industry level. In Malaysia, there are various efforts to bring green into the industry but the progress is low-moderate. Will the current efforts bear larger fruits in the near future? This study examines the perceptions of the developers in Malaysia on the future of the green housing sector for the next 5 years. The introduction of GBI rating system, improvement of awareness and knowledge among the stakeholders, support from the government and local industry and the effect of competitive advantage would support brighter future. Meanwhile, the status quo in rules and regulation, lack of public interest and demand, organization disinterest, local authority enforcement and project cost escalation would hinder a faster progress.

Keywords: Developers, Green Concept, Housing Industry, Sustainable Construction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4583
1739 A Study of Lurking Behavior: The Desire Perspective

Authors: Hsiu-Hua Cheng, Chi-Wei Chen

Abstract:

Lurking behavior is common in information-seeking oriented communities. Transferring users with lurking behavior to be contributors can assist virtual communities to obtain competitive advantages. Based on the ecological cognition framework, this study proposes a model to examine the antecedents of lurking behavior in information-seeking oriented virtual communities. This study argues desire for emotional support, desire for information support, desire for performance-approach, desire for performance -avoidance, desire for mastery-approach, desire for mastery-avoidance, desire for ability trust, desire for benevolence trust, and desire for integrity trust effect on lurking behavior. This study offers an approach to understanding the determinants of lurking behavior in online contexts.

Keywords: Lurking behavior, the ecological cognition framework, Information-seeking oriented virtual communities, Desire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
1738 Evaluating some Feature Selection Methods for an Improved SVM Classifier

Authors: Daniel Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of features selection methods to reduce the dimensionality of the document-representation vector. Four feature selection methods are evaluated: Random Selection, Information Gain (IG), Support Vector Machine (called SVM_FS) and Genetic Algorithm with SVM (GA_FS). We showed that the best results were obtained with SVM_FS and GA_FS methods for a relatively small dimension of the features vector comparative with the IG method that involves longer vectors, for quite similar classification accuracies. Also we present a novel method to better correlate SVM kernel-s parameters (Polynomial or Gaussian kernel).

Keywords: Features selection, learning with kernels, support vector machine, genetic algorithms and classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
1737 Accurate Fault Classification and Section Identification Scheme in TCSC Compensated Transmission Line using SVM

Authors: Pushkar Tripathi, Abhishek Sharma, G. N. Pillai, Indira Gupta

Abstract:

This paper presents a new approach for the protection of Thyristor-Controlled Series Compensator (TCSC) line using Support Vector Machine (SVM). One SVM is trained for fault classification and another for section identification. This method use three phase current measurement that results in better speed and accuracy than other SVM based methods which used single phase current measurement. This makes it suitable for real-time protection. The method was tested on 10,000 data instances with a very wide variation in system conditions such as compensation level, source impedance, location of fault, fault inception angle, load angle at source bus and fault resistance. The proposed method requires only local current measurement.

Keywords: Fault Classification, Section Identification, Feature Selection, Support Vector Machine (SVM), Thyristor-Controlled Series Compensator (TCSC)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2526
1736 Immobilization of Lipase Enzyme by Low Cost Material: A Statistical Approach

Authors: Md. Z. Alam, Devi R. Asih, Md. N. Salleh

Abstract:

Immobilization of lipase enzyme produced from palm oil mill effluent (POME) by the activated carbon (AC) among the low cost support materials was optimized. The results indicated that immobilization of 94% was achieved by AC as the most suitable support material. A sequential optimization strategy based on a statistical experimental design, including one-factor-at-a-time (OFAT) method was used to determine the equilibrium time. Three components influencing lipase immobilization were optimized by the response surface methodology (RSM) based on the face-centered central composite design (FCCCD). On the statistical analysis of the results, the optimum enzyme concentration loading, agitation rate and carbon active dosage were found to be 30 U/ml, 300 rpm and 8 g/L respectively, with a maximum immobilization activity of 3732.9 U/g-AC after 2 hrs of immobilization. Analysis of variance (ANOVA) showed a high regression coefficient (R2) of 0.999, which indicated a satisfactory fit of the model with the experimental data. The parameters were statistically significant at p<0.05.

Keywords: Activated carbon, adsorption, immobilization, POME based lipase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
1735 A New Approach to Workforce Planning

Authors: M. Othman, N. Bhuiyan, G. J. Gouw

Abstract:

In today-s global and competitive market, manufacturing companies are working hard towards improving their production system performance. Most companies develop production systems that can help in cost reduction. Manufacturing systems consist of different elements including production methods, machines, processes, control and information systems. Human issues are an important part of manufacturing systems, yet most companies do not pay sufficient attention to them. In this paper, a workforce planning (WP) model is presented. A non-linear programming model is developed in order to minimize the hiring, firing, training and overtime costs. The purpose is to determine the number of workers for each worker type, the number of workers trained, and the number of overtime hours. Moreover, a decision support system (DSS) based on the proposed model is introduced using the Excel-Lingo software interfacing feature. This model will help to improve the interaction between the workers, managers and the technical systems in manufacturing.

Keywords: Decision Support System, Human Factors, Manufacturing System, Workforce Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548
1734 Effect of the Support Shape on Fischer-Tropsch Cobalt Catalyst Performance

Authors: Jian Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying

Abstract:

Cobalt catalysts were supported on extruded silica carrier and different-type (SiO2, γ-Al2O3) commercial supports with different shapes and sizes to produce heavy hydrocarbons for Fischer-Tropsch synthesis. The catalysts were characterized by N2 physisorption and H2-TPR. The catalytic performance of the catalysts was tested in a fixed bed reactor. The results of Fischer-Tropsch synthesis performance showed that the cobalt catalyst supported on spherical silica supports displayed a higher activity and a higher selectivity to C5+ products, due to the fact that the active components were only distributed in the surface layer of spherical carrier, and the influence of gas diffusion restriction on catalytic performance was weakened. Therefore, it can be concluded that the eggshell cobalt catalyst was superior to precious metals modified catalysts in the synthesis of heavy hydrocarbons.

Keywords: Fischer-Tropsch synthesis, cobalt catalyst, support shape, heavy hydrocarbons.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
1733 Model Transformation with a Visual Control Flow Language

Authors: László Lengyel, Tihamér Levendovszky, Gergely Mezei, Hassan Charaf

Abstract:

Graph rewriting-based visual model processing is a widely used technique for model transformation. Visual model transformations often need to follow an algorithm that requires a strict control over the execution sequence of the transformation steps. Therefore, in Visual Model Processors (VMPs) the execution order of the transformation steps is crucial. This paper presents the visual control flow support of Visual Modeling and Transformation System (VMTS), which facilitates composing complex model transformations of simple transformation steps and executing them. The VMTS Visual Control Flow Language (VCFL) uses stereotyped activity diagrams to specify control flow structures and OCL constraints to choose between different control flow branches. This paper introduces VCFL, discusses its termination properties and provides an algorithm to support the termination analysis of VCFL transformations.

Keywords: Control Flow, Metamodel-Based Visual ModelTransformation, OCL, Termination Properties, UML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
1732 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions

Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi

Abstract:

This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.

Keywords: Beam on nonlinear Winkler foundation method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213