Search results for: Stiffness and damping coefficients
513 Multi-fidelity Fluid-Structure Interaction Analysis of a Membrane Wing
Authors: M. Saeedi, R. Wuchner, K.-U. Bletzinger
Abstract:
In order to study the aerodynamic performance of a semi-flexible membrane wing, Fluid-Structure Interaction simulations have been performed. The fluid problem has been modeled using two different approaches which are the vortex panel method and the numerical solution of the Navier-Stokes equations. Nonlinear analysis of the structural problem is performed using the Finite Element Method. Comparison between the two fluid solvers has been made. Aerodynamic performance of the wing is discussed regarding its lift and drag coefficients and they are compared with those of the equivalent rigid wing.
Keywords: CFD, FSI, Membrane wing, Vortex panel method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318512 Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS
Authors: A. Daftari, W. Kudla
Abstract:
Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modeling of soil behavior is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model.
Keywords: Liquefaction, Plaxis, Pore-Water pressure, UBC3D-PLM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7103511 Real-Coded Genetic Algorithm for Robust Power System Stabilizer Design
Authors: Sidhartha Panda, C. Ardil
Abstract:
Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, real-coded genetic algorithm (RCGA) optimization technique is applied to design robust power system stabilizer for both singlemachine infinite-bus (SMIB) and multi-machine power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.
Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061510 Fuzzy Control of a Quarter-Car Suspension System
Authors: M. M. M. Salem, Ayman A. Aly
Abstract:
An active suspension system has been proposed to improve the ride comfort. A quarter-car 2 degree-of-freedom (DOF) system is designed and constructed on the basis of the concept of a four-wheel independent suspension to simulate the actions of an active vehicle suspension system. The purpose of a suspension system is to support the vehicle body and increase ride comfort. The aim of the work described in the paper was to illustrate the application of fuzzy logic technique to the control of a continuously damping automotive suspension system. The ride comfort is improved by means of the reduction of the body acceleration caused by the car body when road disturbances from smooth road and real road roughness. The paper describes also the model and controller used in the study and discusses the vehicle response results obtained from a range of road input simulations. In the conclusion, a comparison of active suspension fuzzy control and Proportional Integration derivative (PID) control is shown using MATLAB simulations.Keywords: Fuzzy logic control, ride comfort, vehicle dynamics, active suspension system, quarter-car model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4205509 Combined Hashing/Watermarking Method for Image Authentication
Authors: Vlado Kitanovski, Dimitar Taskovski, Sofija Bogdanova
Abstract:
In this paper we present a combined hashing/watermarking method for image authentication. A robust image hash, invariant to legitimate modifications, but fragile to illegitimate modifications is generated from the local image characteristics. To increase security of the system the watermark is generated using the image hash as a key. Quantized Index Modulation of DCT coefficients is used for watermark embedding. Watermark detection is performed without use of the original image. Experimental results demonstrate the effectiveness of the presented method in terms of robustness and fragility.Keywords: authentication, blind watermarking, image hash, semi-fragile watermarking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001508 Ginzburg-Landau Model for Curved Two-Phase Shallow Mixing Layers
Authors: Irina Eglite, Andrei A. Kolyshkin
Abstract:
Method of multiple scales is used in the paper in order to derive an amplitude evolution equation for the most unstable mode from two-dimensional shallow water equations under the rigid-lid assumption. It is assumed that shallow mixing layer is slightly curved in the longitudinal direction and contains small particles. Dynamic interaction between carrier fluid and particles is neglected. It is shown that the evolution equation is the complex Ginzburg-Landau equation. Explicit formulas for the computation of the coefficients of the equation are obtained.Keywords: Shallow water equations, mixing layer, weakly nonlinear analysis, Ginzburg-Landau equation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419507 Synthesis of the Robust Regulators on the Basis of the Criterion of the Maximum Stability Degree
Authors: S. A. Gayvoronsky, T. A. Ezangina
Abstract:
The robust control system objects with interval- undermined parameters is considers in this paper. Initial information about the system is its characteristic polynomial with interval coefficients. On the basis of coefficient estimations of quality indices and criterion of the maximum stability degree, the methods of synthesis of a robust regulator parametric is developed. The example of the robust stabilization system synthesis of the rope tension is given in this article.
Keywords: An interval polynomial, controller synthesis, analysis of quality factors, maximum degree of stability, robust degree of stability, robust oscillation, system accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593506 Theoretical Study on the Forced Vibration of One Degree of Freedom System, Equipped with Inerter, under Load-Type or Displacement-Type Excitation
Authors: Barenten Suciu
Abstract:
In this paper, a theoretical study on the forced vibration of one degree of freedom system equipped with inerter, working under load-type or displacement-type excitation, is presented. Differential equations of movement are solved under cosinusoidal excitation, and explicit relations for the magnitude, resonant magnitude, phase angle, resonant frequency, and critical frequency are obtained. Influence of the inertance and damping on these dynamic characteristics is clarified. From the obtained results, one concludes that the inerter increases the magnitude of vibration and the phase angle of the damped mechanical system. Moreover, the magnitude ratio and difference of phase angles are not depending on the actual type of excitation. Consequently, such kind of similitude allows for the comparison of various theoretical and experimental results, which can be broadly found in the literature.
Keywords: One degree of freedom vibration, inerter, parallel connection, load-type excitation, displacement-type excitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 867505 Effect of Starch and Plasticizer Types and Fiber Content on Properties of Polylactic Acid/Thermoplastic Starch Blend
Authors: Rangrong Yoksan, Amporn Sane, Nattaporn Khanoonkon, Chanakorn Yokesahachart, Narumol Noivoil, Khanh Minh Dang
Abstract:
Polylactic acid (PLA) is the most commercially available bio-based and biodegradable plastic at present. PLA has been used in plastic related industries including single-used containers, disposable and environmentally friendly packaging owing to its renewability, compostability, biodegradability, and safety. Although PLA demonstrates reasonably good optical, physical, mechanical and barrier properties comparable to the existing petroleum-based plastics, its brittleness and mold shrinkage as well as its price are the points to be concerned for the production of rigid and semi-rigid packaging. Blending PLA with other bio-based polymers including thermoplastic starch (TPS) is an alternative not only to achieve a complete bio-based plastic, but also to reduce the brittleness, shrinkage during molding and production cost of the PLA-based products. TPS is a material produced mainly from starch which is cheap, renewable, biodegradable, compostable, and nontoxic. It is commonly prepared by a plasticization of starch under applying heat and shear force. Although glycerol has been reported as one of the most plasticizers used for preparing TPS, its migration caused the surface stickiness of the TPS products. In some cases, mixed plasticizers or natural fibers have been applied to impede the retrogradation of starch or reduce the migration of glycerol. The introduction of fibers into TPS-based materials could reinforce the polymer matrix as well. Therefore, the objective of the present research is to study the effect of starch type (i.e. native starch and phosphate starch), plasticizer type (i.e. glycerol and xylitol with a weight ratio of glycerol to xylitol of 100:0, 75:25, 50:50, 25:75 and 0:100) and fiber content (i.e. in the range of 1-25 %wt) on properties of PLA/TPS blend and composite. PLA/TPS blends and composites were prepared using a twin-screw extruder and then converted into dumbbell-shaped specimens using an injection molding machine. The PLA/TPS blends prepared by using phosphate starch showed higher tensile strength and stiffness than the blends prepared by using native one. In contrast, the blends from native starch exhibited higher extensibility and heat distortion temperature (HDT) than those from the modified starch. Increasing xylitol content resulted in enhanced tensile strength, stiffness and water resistance, but decreased extensibility and HDT of the PLA/TPS blend. Tensile properties and hydrophobicity of the blend could be improved by incorporating silane treated-jute fibers.Keywords: Polylactic acid, Thermoplastic starch, Jute fiber, Composite, Blend.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571504 Material Selection for Footwear Insole Using Analytical Hierarchal Process
Authors: Mohammed A. Almomani, Dina W. Al-Qudah
Abstract:
Product performance depends on the type and quality of its building material. Successful product must be made using high quality material, and using the right methods. Many foot problems took place as a result of using poor insole material. Therefore, selecting a proper insole material is crucial to eliminate these problems. In this study, the analytical hierarchy process (AHP) is used to provide a systematic procedure for choosing the best material adequate for this application among three material alternatives (polyurethane, poron, and plastzote). Several comparison criteria are used to build the AHP model including: density, stiffness, durability, energy absorption, and ease of fabrication. Poron was selected as the best choice. Inconsistency testing indicates that the model is reasonable, and the materials alternative ranking is effective.
Keywords: Materials selection, biomedical insole, footwear insole, AHP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301503 Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads
Authors: Behzad Mohammadzadeh, Huyk Chun Noh
Abstract:
Plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 1mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided.
Keywords: Impulsive loaded plates, dynamic analysis, abaqus, material nonlinearity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821502 Temperature Effect on the Mechanical Properties of Pd3Rh and PdRh3 Ordered Alloys
Authors: J. Davoodi , J. Moradi
Abstract:
The aim of this research was to calculate the mechanical properties of Pd3Rh and PdRh3 ordered alloys. The molecular dynamics (MD) simulation technique was used to obtain temperature dependence of the energy, the Yong modulus, the shear modulus, the bulk modulus, Poisson-s ratio and the elastic stiffness constants at the isobaric-isothermal (NPT) ensemble in the range of 100-325 K. The interatomic potential energy and force on atoms were calculated by Quantum Sutton-Chen (Q-SC) many body potential. Our MD simulation results show the effect of temperature on the cohesive energy and mechanical properties of Pd3Rh as well as PdRh3 alloys. Our computed results show good agreement with the experimental results where they have been available.Keywords: Pd-Rh alloy; Mechanical properties; Moleculardynamics simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601501 Heat Transfer at Convective Solid Melting in Fixed Bed
Authors: Stelian Petrescu, Adina Frunzâ, Camelia Petrescu
Abstract:
A method to determine experimentally the melting rate, rm, and the heat transfer coefficients, αv (W/(m3K)), at convective melting in a fixed bed of particles under adiabatic regime is established in this paper. The method lies in the determining of the melting rate by measuring the fixed bed height in time. Experimental values of rm, α and α v were determined using cylindrical particles of ice (d = 6.8 mm, h = 5.5 mm) and, as a melting agent, aqueous NaCl solution with a temperature of 283 K at different values of the liquid flow rate (11.63·10-6, 28.83·10-6, 38.83·10-6 m3/s). Our experimental results were compared with those existing in literature being noticed a good agreement for Re values higher than 50.Keywords: Convective melting, fixed bed, packed bed, heat transfer, ice melting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825500 Efficient Filtering of Graph Based Data Using Graph Partitioning
Authors: Nileshkumar Vaishnav, Aditya Tatu
Abstract:
An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.Keywords: Graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233499 Robust Power System Stabilizer Design Using Particle Swarm Optimization Technique
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to design a robust power system stabilizer (PSS). The design problem of the proposed controller is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. Further, all the simulations results are compared with a conventionally designed power system stabilizer to show the superiority of the proposed design approach.
Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2358498 Wave Atom Transform Based Two Class Motor Imagery Classification
Authors: Nebi Gedik
Abstract:
Electroencephalography (EEG) investigations of the brain computer interfaces are based on the electrical signals resulting from neural activities in the brain. In this paper, it is offered a method for classifying motor imagery EEG signals. The suggested method classifies EEG signals into two classes using the wave atom transform, and the transform coefficients are assessed, creating the feature set. Classification is done with SVM and k-NN algorithms with and without feature selection. For feature selection t-test approaches are utilized. A test of the approach is performed on the BCI competition III dataset IIIa.
Keywords: motor imagery, EEG, wave atom transform, SVM, k-NN, t-test
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 492497 Comparison of the Existing Methods in Determination of the Characteristic Polynomial
Authors: Mohammad Saleh Tavazoei, Mohammad Haeri
Abstract:
This paper presents comparison among methods of determination of the characteristic polynomial coefficients. First, the resultant systems from the methods are compared based on frequency criteria such as the closed loop bandwidth, gain and phase margins. Then the step responses of the resultant systems are compared on the basis of the transient behavior criteria including overshoot, rise time, settling time and error (via IAE, ITAE, ISE and ITSE integral indices). Also relative stability of the systems is compared together. Finally the best choices in regards to the above diverse criteria are presented.Keywords: Characteristic Polynomial, Transient Response, Filters, Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014496 Liquid-Liquid Equilibrium Data for Butan-2-ol - Ethanol - Water, Pentan-1-ol - Ethanol - Water and Toluene - Acetone - Water Systems
Authors: Tinuade Jolaade Afolabi, Theresa Ibibia Edewor
Abstract:
Experimental liquid-liquid equilibra of butan-2-ol - ethanol -water; pentan-1-ol - ethanol - water and toluene - acetone - water ternary systems were investigated at (25oC). The reliability of the experimental tie-line data was ascertained by using Othmer-Tobias and Hand plots. The distribution coefficients (D) and separation factors (S) of the immiscibility region were evaluated for the three systems.Keywords: Distribution coefficient, Liquid-liquid equilibrium, separation factors, thermodynamic models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3841495 Forced Vibration of a Fiber Metal Laminated Beam Containing a Delamination
Authors: Sh. Mirhosseini, Y. Haghighatfar, M. Sedighi
Abstract:
Forced vibration problem of a delaminated beam made of fiber metal laminates is studied in this paper. Firstly, a delamination is considered to divide the beam into four sections. The classic beam theory is assumed to dominate each section. The layers on two sides of the delamination are constrained to have the same deflection. This hypothesis approves the conditions of compatibility as well. Consequently, dynamic response of the beam is obtained by the means of differential transform method (DTM). In order to verify the correctness of the results, a model is constructed using commercial software ABAQUS 6.14. A linear spring with constant stiffness takes the effect of contact between delaminated layers into account. The attained semi-analytical outcomes are in great agreement with finite element analysis.
Keywords: Delamination, forced vibration, finite element modelling, natural frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831494 Numerical Flow Simulation around HSP Propeller in Open Water and behind a Vessel Wake Using RANS CFD Code
Authors: Kadda Boumediene, Mohamed Bouzit
Abstract:
The prediction of the flow around marine propellers and vessel hulls propeller interaction is one of the challenges of Computational fluid dynamics (CFD). The CFD has emerged as a potential tool in recent years and has promising applications. The objective of the current study is to predict the hydrodynamic performances of HSP marine propeller in open water and behind a vessel. The unsteady 3-D flow was modeled numerically along with respectively the K-ω standard and K-ω SST turbulence models for steady and unsteady cases. The hydrodynamic performances such us a torque and thrust coefficients and efficiency show good agreement with the experiment results.
Keywords: Seiun Maru propeller, steady, unsteady, CFD, HSP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840493 Prediction of Rubberised Concrete Strength by Using Artificial Neural Networks
Authors: A. M. N. El-Khoja, A. F. Ashour, J. Abdalhmid, X. Dai, A. Khan
Abstract:
In recent years, waste tyre problem is considered as one of the most crucial environmental pollution problems facing the world. Thus, reusing waste rubber crumb from recycled tyres to develop highly damping concrete is technically feasible and a viable alternative to landfill or incineration. The utilization of waste rubber in concrete generally enhances the ductility, toughness, thermal insulation, and impact resistance. However, the mechanical properties decrease with the amount of rubber used in concrete. The aim of this paper is to develop artificial neural network (ANN) models to predict the compressive strength of rubberised concrete (RuC). A trained and tested ANN was developed using a comprehensive database collected from different sources in the literature. The ANN model developed used 5 input parameters that include: coarse aggregate (CA), fine aggregate (FA), w/c ratio, fine rubber (Fr), and coarse rubber (Cr), whereas the ANN outputs were the corresponding compressive strengths. A parametric study was also conducted to study the trend of various RuC constituents on the compressive strength of RuC.Keywords: Rubberized concrete, compressive strength, artificial neural network, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908492 Hydrodynamic Modeling of Infinite Reservoir using Finite Element Method
Authors: M. A. Ghorbani, M. Pasbani Khiavi
Abstract:
In this paper, the dam-reservoir interaction is analyzed using a finite element approach. The fluid is assumed to be incompressible, irrotational and inviscid. The assumed boundary conditions are that the interface of the dam and reservoir is vertical and the bottom of reservoir is rigid and horizontal. The governing equation for these boundary conditions is implemented in the developed finite element code considering the horizontal and vertical earthquake components. The weighted residual standard Galerkin finite element technique with 8-node elements is used to discretize the equation that produces a symmetric matrix equation for the damreservoir system. A new boundary condition is proposed for truncating surface of unbounded fluid domain to show the energy dissipation in the reservoir, through radiation in the infinite upstream direction. The Sommerfeld-s and perfect damping boundary conditions are also implemented for a truncated boundary to compare with the proposed far end boundary. The results are compared with an analytical solution to demonstrate the accuracy of the proposed formulation and other truncated boundary conditions in modeling the hydrodynamic response of an infinite reservoir.Keywords: Reservoir, finite element, truncated boundary, hydrodynamic pressure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306491 Turing Pattern in the Oregonator Revisited
Authors: Elragig Aiman, Dreiwi Hanan, Townley Stuart, Elmabrook Idriss
Abstract:
In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities.Keywords: Diffusion driven instability, common Lyapunov function (CLF), turing pattern, positive-definite matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048490 Investigating the Impact of Wind Speed on Active and Reactive Power Penetration to the Distribution Network
Authors: Sidhartha Panda, N.P.Padhy
Abstract:
Wind power is among the most actively developing distributed generation (DG) technology. Majority of the wind power based DG technologies employ wind turbine induction generators (WTIG) instead of synchronous generators, for the technical advantages like: reduced size, increased robustness, lower cost, and increased electromechanical damping. However, dynamic changes of wind speed make the amount of active/reactive power injected/drawn to a WTIG embedded distribution network highly variable. This paper analyzes the effect of wind speed changes on the active and reactive power penetration to the wind energy embedded distribution network. Four types of wind speed changes namely; constant, linear change, gust change and random change of wind speed are considered in the analysis. The study is carried out by three-phase, non-linear, dynamic simulation of distribution system component models. Results obtained from the investigation are presented and discussed.
Keywords: Wind turbine induction generator, distribution network, active and reactive power, wind speed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448489 Fuzzy Logic Control of a Semi-Active Quarter Car System
Authors: Devdutt, M. L. Aggarwal
Abstract:
The development of vehicles having best ride comfort and safety of travelling passengers is of great interest for automotive manufacturers. The effect of transmitted vibrations from car body to passenger seat is required to be controlled for achieving the same. The application of magneto-rheological (MR) shock absorber in suspension system has been considered to achieve significant benefits in this regard. This paper introduces a secondary suspension controlled semi-active quarter car system using MR shock absorber for effective vibration control. Fuzzy logic control system is used for design of controller for actual damping force generation by MR shock absorber. Performance evaluations are done related to passenger seat acceleration and displacement in time and frequency domains, in order to see the effectiveness of the proposed semi-active suspension system. Simulation results show that the semi-active suspension system provides better results compared to passive suspension system in terms of passenger ride comfort improvement.
Keywords: Fuzzy logic control, MR shock absorber, Quarter car model, Semi-active suspension system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3144488 Classification of Right and Left-Hand Movement Using Multi-Resolution Analysis Method
Authors: Nebi Gedik
Abstract:
The aim of the brain-computer interface studies on electroencephalogram (EEG) signals containing motor imagery is to extract the effective features that will provide the highest possible classification accuracy for the detection of the desired motor movement. However, achieving this goal is difficult as the most suitable frequency band and time frame vary from subject to subject. In this study, the classification success of the two-feature data obtained from raw EEG signals and the coefficients of the multi-resolution analysis method applied to the EEG signals were analyzed comparatively. The method was applied to several EEG channels (C3, Cz and C4) signals obtained from the EEG data set belonging to the publicly available BCI competition III.
Keywords: Motor imagery, EEG, wave atom transform, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589487 A Superior Delay Estimation Model for VLSI Interconnect in Current Mode Signaling
Authors: Sunil Jadav, Rajeevan Chandel Munish Vashishath
Abstract:
Today’s VLSI networks demands for high speed. And in this work the compact form mathematical model for current mode signalling in VLSI interconnects is presented.RLC interconnect line is modelled using characteristic impedance of transmission line and inductive effect. The on-chip inductance effect is dominant at lower technology node is emulated into an equivalent resistance. First order transfer function is designed using finite difference equation, Laplace transform and by applying the boundary conditions at the source and load termination. It has been observed that the dominant pole determines system response and delay in the proposed model. The novel proposed current mode model shows superior performance as compared to voltage mode signalling. Analysis shows that current mode signalling in VLSI interconnects provides 2.8 times better delay performance than voltage mode. Secondly the damping factor of a lumped RLC circuit is shown to be a useful figure of merit.
Keywords: Current Mode, Voltage Mode, VLSI Interconnect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450486 Haptics Enabled of ine AFM Image Analysis
Authors: Bhatti A., Nahavandi S., Hossny M.
Abstract:
Current advancements in nanotechnology are dependent on the capabilities that can enable nano-scientists to extend their eyes and hands into the nano-world. For this purpose, a haptics (devices capable of recreating tactile or force sensations) based system for AFM (Atomic Force Microscope) is proposed. The system enables the nano-scientists to touch and feel the sample surfaces, viewed through AFM, in order to provide them with better understanding of the physical properties of the surface, such as roughness, stiffness and shape of molecular architecture. At this stage, the proposed work uses of ine images produced using AFM and perform image analysis to create virtual surfaces suitable for haptics force analysis. The research work is in the process of extension from of ine to online process where interaction will be done directly on the material surface for realistic analysis.
Keywords: Haptics, AFM, force feedback, image analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572485 Static and Dynamical Analysis on Clutch Discs on Different Material and Geometries
Authors: Jairo Aparecido Martins, Estaner Claro Romão
Abstract:
This paper presents the static and cyclic stresses in combination with fatigue analysis resultant of loads applied on the friction discs usually utilized on industrial clutches. The material chosen to simulate the friction discs under load is aluminum. The numerical simulation was done by software COMSOLTM Multiphysics. The results obtained for static loads showed enough stiffness for both geometries and the material utilized. On the other hand, in the fatigue standpoint, failure is clearly verified, what demonstrates the importance of both approaches, mainly dynamical analysis. The results and the conclusion are based on the stresses on disc, counted stress cycles, and fatigue usage factor.
Keywords: Aluminum, industrial clutch, static and dynamic loading, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949484 Adaptive Equalization Using Controlled Equal Gain Combining for Uplink/Downlink MC-CDMA Systems
Authors: Miloud Frikel , Boubekeur Targui, Francois Hamon, Mohammed M'SAAD
Abstract:
In this paper we propose an enhanced equalization technique for multi-carrier code division multiple access (MC-CDMA). This method is based on the control of Equal Gain Combining (EGC) technique. Indeed, we introduce a new level changer to the EGC equalizer in order to adapt the equalization parameters to the channel coefficients. The optimal equalization level is, first, determined by channel training. The new approach reduces drastically the mutliuser interferences caused by interferes, without increasing the noise power. To compare the performances of the proposed equalizer, the theoretical analysis and numerical performances are given.
Keywords: MC-CDMA, Equalization, EGC, Single User Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408