Search results for: Thin shear wall
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1323

Search results for: Thin shear wall

813 Effect of Hormonal Manipulations on the Pattern of the Vaginal Tissue Structure

Authors: Fatahian Dehkordi RF., Parchami A.

Abstract:

Design of experiments made for correlated the hormonal activity of steroids and their effect on the vaginal structure properties. Vaginal wall consists of distinct layers of cells which strongly differ regarding growth in answer to steroid hormones. The presence study carried out for functional evaluation and sustained replacement effect of the reproductive hormones on the vaginal morphometry in the rabbit. Rabbits were maintained control (Co) or ovariectomized (Ovz) and continuously treated with estradiol (Ovz E) and estradiol mixture with testosterone (Ovz ET). Relative to control rabbits with the distinct tissue distribution pattern, ovariectomized animals displayed declined epithelial thickness and atrophy of the muscularis layer that cause the vaginal wall thinning. Estradiol treatment of Orz rabbits inverted these changes to status of the preovariectomy. Histometric measurements in Ovz ET group completely including of thickness of the epithelial and muscular layers was greater in comparison to that of control animals.

Keywords: Vagina, Ovariectomy, Rabbit, Morphometry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
812 Computational Investigation of Secondary Flow Losses in Linear Turbine Cascade by Modified Leading Edge Fence

Authors: K. N. Kiran, S. Anish

Abstract:

It is well known that secondary flow loses account about one third of the total loss in any axial turbine. Modern gas turbine height is smaller and have longer chord length, which might lead to increase in secondary flow. In order to improve the efficiency of the turbine, it is important to understand the behavior of secondary flow and device mechanisms to curtail these losses. The objective of the present work is to understand the effect of a stream wise end-wall fence on the aerodynamics of a linear turbine cascade. The study is carried out computationally by using commercial software ANSYS CFX. The effect of end-wall on the flow field are calculated based on RANS simulation by using SST transition turbulence model. Durham cascade which is similar to high-pressure axial flow turbine for simulation is used. The aim of fencing in blade passage is to get the maximum benefit from flow deviation and destroying the passage vortex in terms of loss reduction. It is observed that, for the present analysis, fence in the blade passage helps reducing the strength of horseshoe vortex and is capable of restraining the flow along the blade passage. Fence in the blade passage helps in reducing the under turning by 70 in comparison with base case. Fence on end-wall is effective in preventing the movement of pressure side leg of horseshoe vortex and helps in breaking the passage vortex. Computations are carried for different fence height whose curvature is different from the blade camber. The optimum fence geometry and location reduces the loss coefficient by 15.6% in comparison with base case.

Keywords: Boundary layer fence, horseshoe vortex, linear cascade, passage vortex, secondary flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
811 Sensor-Based Motion Planning for a Car-like Robot Based On Bug Family Algorithms

Authors: Dong-Hyung Kim, Ji Yeong Lee, Chang-Soo Han

Abstract:

This paper presents a sensor-based motion planning algorithm for 3-DOF car-like robots with a nonholonomic constraint. Similar to the classic Bug family algorithms, the proposed algorithm enables the car-like robot to navigate in a completely unknown environment using only the range sensor information. The car-like robot uses the local range sensor view to determine the local path so that it moves towards the goal. To guarantee that the robot can approach the goal, the two modes of motion are repeated, termed motion-to-goal and wall-following. The motion-to-goal behavior lets the robot directly move toward the goal, and the wall-following behavior makes the robot circumnavigate the obstacle boundary until it meets the leaving condition. For each behavior, the nonholonomic motion for the car-like robot is planned in terms of the instantaneous turning radius. The proposed algorithm is implemented to the real robot and the experimental results show the performance of proposed algorithm.

Keywords: Motion planning, car-like robot, bug algorithm, autonomous motion planning, nonholonomic constraint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2237
810 Stratigraghy and Identifying Boundaries of Mozduran Formation with Magnetite Method in East Kopet-Dagh Basin

Authors: Z. Kadivar, M. Vahidinia, A. Mousavinia

Abstract:

Kopet-Dagh Mountain Range is located in the north and northeast of Iran. Mozduran Formation in the east of Kopet-Dagh is mainly composed of limestone, dolomite, with shale and sandstone interbedded. Mozduran Formation is reservoir rock of the Khangiran gas field. The location of the study was east Kopet-Dagh basin (Northeast Iran) where the deliberate thickness of formation is 418 meters. In the present study, a total of 57 samples were gathered. Moreover, 100 thin sections were made out of 52 samples. According to the findings of the thin section study, 18 genera and nine species of foraminifera and algae were identified. Based on the index fossils, the age of the Mozduran Formation was identified as Upper Jurassic (Kimmerdgian-Tithonian) in the east of Kopet-Dagh basin. According to the magnetite data (total intensity and RTP map), there is a disconformity (low intensity) between the Kashaf-Rood Formation and Mozduran Formation. At the top, where among Mozduran Formation and Shurijeh Formation, is high intensity and a widespread disconformity (high intensity).

Keywords: Upper Jurassic, magnetometer, Mozduran formation, stratigraphy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
809 Thermo-mechanical Deformation Behavior of Functionally Graded Rectangular Plates Subjected to Various Boundary Conditions and Loadings

Authors: Mohammad Talha, B. N. Singh

Abstract:

This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in the thickness direction according to a powerlaw distribution in terms of the volume fractions of the constituents. The temperature field is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. The fundamental equations for the FGM plates are obtained using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite element with thirteen degrees of freedom per node have been employed to accomplish the results. Convergence and comparison studies have been performed to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index and temperature rise with different loading and boundary conditions. Numerical results for the FGM plates are provided in dimensionless tabular and graphical forms. The results proclaim that the temperature field and the gradient in the material properties have significant role on the thermo-mechanical deformation behavior of the FGM plates.

Keywords: Functionally graded material, higher order shear deformation theory, finite element method, independent field variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
808 Effects of Axial Loads and Soil Density on Pile Group Subjected to Triangular Soil Movement

Authors: Ihsan Al-Abboodi, Tahsin Toma-Sabbagh

Abstract:

Laboratory tests have been carried out to investigate the response of 2x2 pile group subjected to triangular soil movement. The pile group was instrumented with displacement and tilting devices at the pile cap and strain gauges on two piles of the group. In this paper, results from four model tests were presented to study the effects of axial loads and soil density on the lateral behavior of piles. The responses in terms of bending moment, shear force, soil pressure, deflection, and rotation of piles were compared. Test results indicate that increasing the soil strength could increase the measured moment, shear, soil pressure, and pile deformations. Most importantly, adding loads to the pile cap induces additional moment to the head of front-pile row unlike the back-pile row which was influenced insignificantly.

Keywords: Pile group, passive piles, lateral soil movement, soil density, axial loads.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158
807 Segmenting Ultrasound B-Mode Images Using RiIG Distributions and Stochastic Optimization

Authors: N. Mpofu, M. Sears

Abstract:

In this paper, we propose a novel algorithm for delineating the endocardial wall from a human heart ultrasound scan. We assume that the gray levels in the ultrasound images are independent and identically distributed random variables with different Rician Inverse Gaussian (RiIG) distributions. Both synthetic and real clinical data will be used for testing the algorithm. Algorithm performance will be evaluated using the expert radiologist evaluation of a soft copy of an ultrasound scan during the scanning process and secondly, doctor’s conclusion after going through a printed copy of the same scan. Successful implementation of this algorithm should make it possible to differentiate normal from abnormal soft tissue and help disease identification, what stage the disease is in and how best to treat the patient. We hope that an automated system that uses this algorithm will be useful in public hospitals especially in Third World countries where problems such as shortage of skilled radiologists and shortage of ultrasound machines are common. These public hospitals are usually the first and last stop for most patients in these countries.

Keywords: Endorcardial Wall, Rician Inverse Distributions, Segmentation, Ultrasound Images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
806 Lattice Boltzmann Simulation of Natural Convection Heat Transfer in an Inclined Open Ended Cavity

Authors: M.Jafari, A.Naysari, K.Bodaghi

Abstract:

In the present study, the lattice Boltzmann Method (LBM) is applied for simulating of Natural Convection in an inclined open ended cavity. The cavity horizontal walls are insulated while the west wall is maintained at a uniform temperature higher than the ambient. Prandtl number is fixed to 0.71 (air) while Rayligh numbers, aspect ratio of the cavity are changed in the range of 103 to 104 and of 1-4, respectively. The numerical code is validated for the previously results for open ended cavities, and then the results of an inclined open ended cavity for various angles of rotating open ended cavity are presented. Result shows by increasing of aspect ratio, the average Nusselt number on hot wall decreases for all rotation angles. When gravity acceleration direction is opposite of standard gravity direction the convection heat transfer has a manner same as conduction.

Keywords: Lattice Boltzmann Method, Open Ended Cavity, Natural Convection, Inclined Cavity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
805 Structural Analysis of Stiffened FGM Thick Walled Cylinders by Application of a New Cylindrical Super Element

Authors: S. A. Moeini, M. T.Ahmadian

Abstract:

Structural behavior of ring stiffened thick walled cylinders made of functionally graded materials (FGMs) is investigated in this paper. Functionally graded materials are inhomogeneous composites which are usually made from a mixture of metal and ceramic. The gradient compositional variation of the constituents from one surface to the other provides an elegant solution to the problem of high transverse shear stresses that are induced when two dissimilar materials with large differences in material properties are bonded. FGM formation of the cylinder is modeled by power-law exponent and the variation of characteristics is supposed to be in radial direction. A finite element formulation is derived for the analysis. According to the property variation of the constituent materials in the radial direction of the wall, it is not convenient to use conventional elements to model and analyze the structure of the stiffened FGM cylinders. In this paper a new cylindrical super-element is used to model the finite element formulation and analyze the static and modal behavior of stiffened FGM thick walled cylinders. By using this super-element the number of elements, which are needed for modeling, will reduce significantly and the process time is less in comparison with conventional finite element formulations. Results for static and modal analysis are evaluated and verified by comparison to finite element formulation with conventional elements. Comparison indicates a good conformity between results.

Keywords: FGMs, Modal analysis, Static analysis, Stiffened cylinders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
804 Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load

Authors: Alireza Fereidooni, Kamran Behdinan, Zouheir Fawaz

Abstract:

The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.

Keywords: Finite element beam model, Composite Beams, stability analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219
803 Computational and Experimental Investigation of Supersonic Flow and their Controls

Authors: Vasana M. Don, Eldad J. Avital, Fariborz Motallebi

Abstract:

Supersonic open and closed cavity flows are investigated experimentally and computationally. Free stream Mach number of two is set. Schlieren imaging is used to visualise the flow behaviour showing stark differences between open and closed. Computational Fluid Dynamics (CFD) is used to simulate open cavity of flow with aspect ratio of 4. A rear wall treatment is implemented in order to pursue a simple passive control approach. Good qualitative agreement is achieved between the experimental flow visualisation and the CFD in terms of the expansion-shock waves system. The cavity oscillations are shown to be dominated by the first and third Rossister modes combining to high fluctuations of non-linear nature above the cavity rear edge. A simple rear wall treatment in terms of a hole shows mixed effect on the flow oscillations, RMS contours, and time history density fluctuations are given and analysed.

Keywords: Supersonic, Schlieren, open-cavity, flow simulation, passive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2395
802 Density Functional Calculations of N-14 andB-11 NQR Parameters in the H-capped (5, 5)Single-Wall BN Nanotube

Authors: Ahmad Seif, Karim Zare, Asadallah Boshra, Mehran Aghaie

Abstract:

Density functional theory (DFT) calculations were performed to compute nitrogen-14 and boron-11 nuclear quadrupole resonance (NQR) spectroscopy parameters in the representative model of armchair boron nitride nanotube (BNNT) for the first time. The considered model consisting of 1 nm length of H-capped (5, 5) single-wall BNNT were first allowed to fully relax and then the NQR calculations were carried out on the geometrically optimized model. The evaluated nuclear quadrupole coupling constants and asymmetry parameters for the mentioned nuclei reveal that the model can be divided into seven layers of nuclei with an equivalent electrostatic environment where those nuclei at the ends of tubes have a very strong electrostatic environment compared to the other nuclei along the length of tubes. The calculations were performed via Gaussian 98 package of program.

Keywords: Armchair Nanotube, Density Functional Theory, Nuclear Quadrupole Resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
801 The TiO2 Refraction Film for CsI Scintillator

Authors: C. C. Chen, C. W. Hun, C. J. Wang, C. Y. Chen, J. S. Lin, K. J. Huang

Abstract:

Cesium iodide (CsI) melt was injected into anodic aluminum oxide (AAO) template and was solidified to CsI column. The controllable AAO channel size (10~500 nm) can makes CsI column size from 10 to 500 nm in diameter. In order to have a shorter light irradiate from each singe CsI column top to bottom the AAO template was coated a TiO2 nano-film. The TiO2 film acts a refraction film and makes X-ray has a shorter irradiation path in the CsI crystal making a stronger the photo-electron signal. When the incidence light irradiate from air (R=1.0) to CsI’s first surface (R=1.84) the first refraction happen, the first refraction continue into TiO2 film (R=2.88) and produces the low angle of the second refraction. Then the second refraction continue into AAO wall (R=1.78) and produces the third refraction after refractions between CsI and AAO wall (R=1.78) produce the fourth refraction. The incidence light through TiO2 filmand the first surface of CsI then arrive to the second surface of CsI. Therefore, the TiO2 film can has shorter refraction path of incidence light and increase the photo-electron conversion efficiency.

Keywords: Cesium iodide, AAO, TiO2, Refraction, X-ray.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
800 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract:

A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: Nano-alumina-zirconia, composite catalyst, thin film, biodiesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
799 The Role of Nozzle-Exit Conditions on the Flow Field of a Plane Jet

Authors: Ravinesh C. Deo

Abstract:

This article reviews the role of nozzle-exit conditions on the flow field of a plane jet. The jet issuing from a sharp-edged orifice plate at a Reynolds number (Re=18000) with nozzle aspect ratio (AR=72) exhibits the greatest shear-layer instabilities, highest entrainment and jet-spreading rates compared to the radially contoured nozzle. The growth rate of the shear-layer is the highest for the orifice-jet although this property could be amplified for larger Re or AR. A local peak in turbulent energy is found at x»10h. The peak appears to be elevated for an orifice-jet with lower Re or AR. The far-field energy sustained by the orifice-jet exceeds the contoured case although a higher Re and AR may enhance this value. The spectra demonstrated the largest eddy structures for the contoured nozzle. However, the frequency of coherent eddies is higher for the orifice-jet, with a larger magnitude achievable for lower Re and AR

Keywords: Plane jet, Reynolds number, nozzle-exit conditions, nozzle geometry, aspect ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2825
798 Thermo-Mechanical Processing of Armor Steel Plates

Authors: Taher El-Bitar, Maha El-Meligy, Eman El-Shenawy, Almosilhy Almosilhy, Nader Dawood

Abstract:

The steel contains 0.3% C and 0.004% B, beside Mn, Cr, Mo, and Ni. The alloy was processed by using 20-ton capacity electric arc furnace (EAF), and then refined by ladle furnace (LF). Liquid steel was cast as rectangular ingots. Dilatation test showed the critical transformation temperatures Ac1, Ac3, Ms and Mf as 716, 835, 356, and 218 °C. The ingots were austenitized and soaked and then rough rolled to thin slabs with 80 mm thickness. The thin slabs were then reheated and soaked for finish rolling to 6.0 mm thickness plates. During the rough rolling, the roll force increases as a result of rolling at temperatures less than recrystallization temperature. However, during finish rolling, the steel reflects initially continuous static recrystallization after which it shows strain hardening due to fall of temperature. It was concluded that, the steel plates were successfully heat treated by quenching-tempering at 250 ºC for 20 min.

Keywords: Armor steel, austenitizing, critical transformation temperatures, dilatation curve, martensite, quenching, rough and finish rolling processes, soaking, tempering, thermo-mechanical processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
797 Strength Characteristics of Shallow Gassy Sand in the Hangzhou Bay

Authors: Wang Yong, Kong Ling-Wei, Guo Ai-Guo

Abstract:

In view of geological origin, formation of the shallow gas reservoir of the Hangzhou Bay, northern Zhejiang Province, eastern China, and original occurrence characteristics of the gassy sand are analyzed. Generally, gassy sand in scale gas reservoirs is in the state of residual moisture content and the approximate scope of initial matric suction of sand ranges about from 0kPa to100kPa. Results based on GDS triaxial tests show that the classical shear strength formulas of unsaturated soil can not effectively describe basic strength characteristics of gassy sand; the relationship between apparent cohesion and matric suction of gassy sand agrees well with the power function, which can reasonably be used to describe the strength of gassy sand. In the stress path of gas release, shear strength of gassy sand will increase and experimental results show the formula proposed in this paper can effectively predict the strength increment. When saturated strength indexes of the sand are used in engineering design, moderate reduction should be considered.

Keywords: Gassy sand, Gas release, Occurrence characteristics, strength

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
796 Proximate Composition and Textural Properties of Cooked Sausages Formulated from Mechanically Deboned Chicken Meat with Addition of Chicken Offal

Authors: Marija R. Jokanović, Vladimir M. Tomović, Mihajlo T. Jović, Branislav V. Šojić, Snežana B. Škaljac, Tatjana A. Tasić, Predrag M. Ikonić

Abstract:

Proximate composition (moisture, protein, total fat, and total ash) and textural characteristics (hardness, adhesiveness, springiness, cohesiveness, chewiness and firmness and work of shear) of cooked sausages formulated from mechanically deboned chicken meat (MDCM) with addition of chicken offal (heart, gizzard or liver) were investigated. Chicken offal replaced equal weight (15 kg) of MDCM in standard sausage formulation. Regarding proximate composition sausage with heart addition was significantly (P<0.05) lower in moisture content (70.45%) than sausage with liver addition (71.35%), and significantly (P<0.05) the highest in total ash content (2.83%). Sausage with gizzard addition was significantly higher in protein content (9.77%) than sausage with liver addition (9.42%). Total fat content didn’t significantly (P>0.05) differ among all three sausages. The effect of offal addition was more notable in Warner-Bratzler shear test results than in texture profile analysis test. Firmness and work of shear were significantly different (P<0.05) among all three sausages. Sausage with liver addition was significantly (P<0.05) lower in hardness (1672 g) and chewiness (1020 g) and numerically the lowest in springiness (0.90) and adhesiveness (–70 g*s) comparing with other two sausages. Sausage with heart addition was significantly (P<0.05) higher in cohesiveness (0.74) comparing with other two sausages.

Keywords: Cooked sausage, mechanically deboned chicken meat, offal, proximate composition, texture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3937
795 Peculiarities of Internal Friction and Shear Modulus in 60Co γ-Rays Irradiated Monocrystalline SiGe Alloys

Authors: I. Kurashvili, G. Darsavelidze, T. Kimeridze, G. Chubinidze, I. Tabatadze

Abstract:

At present, a number of modern semiconductor devices based on SiGe alloys have been created in which the latest achievements of high technologies are used. These devices might cause significant changes to networking, computing, and space technology. In the nearest future new materials based on SiGe will be able to restrict the A3B5 and Si technologies and firmly establish themselves in medium frequency electronics. Effective realization of these prospects requires the solution of prediction and controlling of structural state and dynamical physical –mechanical properties of new SiGe materials. Based on these circumstances, a complex investigation of structural defects and structural-sensitive dynamic mechanical characteristics of SiGe alloys under different external impacts (deformation, radiation, thermal cycling) acquires great importance. Internal friction (IF) and shear modulus temperature and amplitude dependences of the monocrystalline boron-doped Si1-xGex(x≤0.05) alloys grown by Czochralski technique is studied in initial and 60Co gamma-irradiated states. In the initial samples, a set of dislocation origin relaxation processes and accompanying modulus defects are revealed in a temperature interval of 400-800 ⁰C. It is shown that after gamma-irradiation intensity of relaxation internal friction in the vicinity of 280 ⁰C increases and simultaneously activation parameters of high temperature relaxation processes reveal clear rising. It is proposed that these changes of dynamical mechanical characteristics might be caused by a decrease of the dislocation mobility in the Cottrell atmosphere enriched by the radiation defects.

Keywords: Gamma-irradiation, internal friction, shear modulus, SiGe alloys.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 624
794 Effect of Humic Acid on Physical and Engineering Properties of Lime-Treated Organic Clay

Authors: N. Z. Mohd Yunus, D. Wanatowski, L. R. Stace

Abstract:

The present work deals with the stabilisation of organic clay using hydrated lime. Artificial organic clays were prepared by adding kaolin and different humic acid contents. Results given by physical testing show that the presence of humic acid has a drawback effect on the untreated organic clay. The decrease in specific gravity value was accompanied by a decrease in dry density and plasticity of clay at higher humic acid contents. Significant increase in shear strength at 7 days of curing period is observed in the lime-treated samples up to 5% lime content. However shear strength of lime-treated organic clay decreases at longer curing periods. The results given by laboratory testing is further verified by microstructure analysis. Based on the results obtained in this study, it can be concluded that the presence of more than 1.5% humic acid reduces significantly the efficiency of lime stabilization in organic clays.

Keywords: Humic acid, kaolin, lime, organic clay

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
793 Simulation of Roughness Shape and Distribution Effects on Rarefied and Compressible Flows at Slip Flow Regime

Authors: M. Hakak Khadem, S. Hossainpour, M. Shams

Abstract:

A numerical simulation of micro Poiseuille flow has performed for rarefied and compressible flow at slip flow regimes. The wall roughness is simulated in two cases with triangular microelements and random micro peaks distributed on wall surfaces to study the effects of roughness shape and distribution on flow field. Two values of Mach and Knudsen numbers have used to investigate the effects of rarefaction as well as compressibility. The numerical results have also checked with available theoretical and experimental relations and good agreements has achieved. High influence of roughness shape can be seen for both compressible and incompressible rarefied flows. In addition it is found that rarefaction has more significant effect on flow field in microchannels with higher relative roughness. It is also found that compressibility has more significant effects on Poiseuille number when relative roughness increases.

Keywords: Relative roughness, slip flow, Poiseuille number, roughness distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
792 Verifying Environmental Performance through Inventory and Assessment: Case Study of the Los Alamos National Laboratory Waste Compliance and Tracking System

Authors: O. S. Saulters, S. D. Goldberg, W. A. Staples, E. I. Martinez, L. M. Sanchez, D. E. Archuleta, D. L. Williams, S. D. Johnson, A. M. Baker

Abstract:

To address an important set of unverified field conditions, the Los Alamos National Laboratory Waste Compliance and Tracking System (WCATS) Wall-to-Wall Team performed an unprecedented and advanced inventory. This reconciliation involved confirmation analysis for approximately 5850 hazardous, low-level, mixed low-level, and transuranic waste containers located in more than 200 staging and storage areas across 33 Technical Areas. The interdisciplinary team scoped, planned, and developed the multidimensional assessments. Through coordination with cross-functional site hosts, they were able to verify and validate data while resolving discrepancies identified in WCATS. The results were extraordinary with an updated inventory, tailored outreach, more cohesive communications, and timely closed-loop feedbacks.

Keywords: Circular economy, environmental performance data, social-ecological-technological systems, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 478
791 Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization

Authors: Roman Major, Klaudia Trembecka-Wojciga, Juergen Markus Lackner, Boguslaw Major

Abstract:

The future and the development of science is therefore seen in interdisciplinary areas such as biomedical engineering. Selfassembled structures, similar to stem cell niches would inhibit fast division process and subsequently capture the stem cells from the blood flow. By means of surface topography and the stiffness as well as microstructure progenitor cells should be differentiated towards the formation of endothelial cells monolayer which effectively will inhibit activation of the coagulation cascade. The idea of the material surface development met the interest of the clinical institutions, which support the development of science in this area and are waiting for scientific solutions that could contribute to the development of heart assist systems. This would improve the efficiency of the treatment of patients with myocardial failure, supported with artificial heart assist systems. Innovative materials would enable the redesign, in the post project activity, construction of ventricular heart assist.

Keywords: Bio-inspired materials, electron microscopy, haemocompatibility, niche-like structures, thin coatings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
790 Analysis of Cyclic Elastic-Plastic Loading of Shaft Based On Kinematic Hardening Model

Authors: Isa Ahmadi, Ramin Khamedi

Abstract:

In this paper, the elasto-plastic and cyclic torsion of a shaft is studied using a finite element method. The Prager kinematic hardening theory of plasticity with the Ramberg and Osgood stress-strain equation is used to evaluate the cyclic loading behavior of the shaft under the torsional loading. The material of shaft is assumed to follow the non-linear strain hardening property based on the Prager model. The finite element method with C1 continuity is developed and used for solution of the governing equations of the problem. The successive substitution iterative method is used to calculate the distribution of stresses and plastic strains in the shaft due to cyclic loads. The shear stress, effective stress, residual stress and elastic and plastic shear strain distribution are presented in the numerical results.

Keywords: Cyclic Loading, Finite Element Analysis, Prager Kinematic Hardening Model, Torsion of shaft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
789 Influence of Transverse Steel and Casting Direction on Shear Response and Ductility of Reinforced Ultra-High Performance Concrete Beams

Authors: Timothy E. Frank, Peter J. Amaddio, Elizabeth D. Decko, Alexis M. Tri, Darcy A. Farrell, Cole M. Landes

Abstract:

Ultra-high performance concrete (UHPC) is a class of cementitious composites with a relatively large percentage of cement generating high compressive strength. Additionally, UHPC contains disbursed fibers, which control crack width, carry the tensile load across narrow cracks, and limit spalling. These characteristics lend themselves to a wide range of structural applications when UHPC members are reinforced with longitudinal steel. Efficient use of fibers and longitudinal steel is required to keep lifecycle cost competitive in reinforced UHPC members; this requires full utilization of both the compressive and tensile qualities of the reinforced cementitious composite. The objective of this study is to investigate the shear response of steel-reinforced UHPC beams to guide design decisions that keep initial costs reasonable, limit serviceability crack widths, and ensure a ductile structural response and failure path. Five small-scale, reinforced UHPC beams were experimentally tested. Longitudinal steel, transverse steel, and casting direction were varied. Results indicate that an increase in transverse steel in short-spanned reinforced UHPC beams provided additional shear capacity and increased the peak load achieved. Beams with very large longitudinal steel reinforcement ratios did not achieve yield and fully utilized the tension properties of the longitudinal steel. Casting the UHPC beams from the end or from the middle affected load-carrying capacity and ductility, but image analysis determined that the fiber orientation was not significantly different. It is believed that the presence of transverse and longitudinal steel reinforcement minimized the effect of different UHPC casting directions. Results support recent recommendations in the literature suggesting that a 1% fiber volume fraction is sufficient within UHPC to prevent spalling and provide compressive fracture toughness under extreme loading conditions.

Keywords: Fiber orientation, reinforced ultra-high performance concrete beams, shear, transverse steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214
788 Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels

Authors: Foad Hassaninejadafarahani, Scott Ormiston

Abstract:

Reflux condensation occurs in vertical channels and tubes when there is an upward core flow of vapour (or gas-vapour mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapour-gas mixture (or pure vapour) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapour core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces a sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on finite volume method and co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and gas mass fraction profiles, as well as axial variations of film thickness.

Keywords: Reflux Condensation, Heat Transfer, Channel, Laminar Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
787 Thermal and Mechanical Buckling of Short and Long Functionally Graded Cylindrical Shells Using First Order Shear Deformation Theory

Authors: O. Miraliyari, M.M. Najafizadeh, A.R. Rahmani, A. Momeni Hezaveh

Abstract:

This paper presents the buckling analysis of short and long functionally graded cylindrical shells under thermal and mechanical loads. The shell properties are assumed to vary continuously from the inner surface to the outer surface of the shell. The equilibrium and stability equations are derived using the total potential energy equations, Euler equations and first order shear deformation theory assumptions. The resulting equations are solved for simply supported boundary conditions. The critical temperature and pressure loads are calculated for both short and long cylindrical shells. Comparison studies show the effects of functionally graded index, loading type and shell geometry on critical buckling loads of short and long functionally graded cylindrical shells.

Keywords: Buckling, Functionally graded materials, Short and long cylindrical shell, Thermal and mechanical loads.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
786 Buckling Optimization of Radially-Graded, Thin-Walled, Long Cylinders under External Pressure

Authors: Karam Y. Maalawi

Abstract:

This paper presents a generalized formulation for the problem of buckling optimization of anisotropic, radially graded, thin-walled, long cylinders subject to external hydrostatic pressure. The main structure to be analyzed is built of multi-angle fibrous laminated composite lay-ups having different volume fractions of the constituent materials within the individual plies. This yield to a piecewise grading of the material in the radial direction; that is the physical and mechanical properties of the composite material are allowed to vary radially. The objective function is measured by maximizing the critical buckling pressure while preserving the total structural mass at a constant value equals to that of a baseline reference design. In the selection of the significant optimization variables, the fiber volume fractions adjoin the standard design variables including fiber orientation angles and ply thicknesses. The mathematical formulation employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately as well as the inclusion of the coupling stiffness terms is presented. The proposed model deals with dimensionless quantities in order to be valid for thin shells having arbitrary thickness-to-radius ratios. The critical buckling pressure level curves augmented with the mass equality constraint are given for several types of cylinders showing the functional dependence of the constrained objective function on the selected design variables. It was shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.

Keywords: Buckling instability, structural optimization, functionally graded material, laminated cylindrical shells, externalhydrostatic pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359
785 Evaluation of Wind Fragility for Set Anchor Used in Sign Structure in Korea

Authors: WooYoung Jung, Buntheng Chhorn, Min-Gi Kim

Abstract:

Recently, damage to domestic facilities by strong winds and typhoons are growing. Therefore, this study focused on sign structure among various vulnerable facilities. The evaluation of the wind fragility was carried out considering the destruction of the anchor, which is one of the various failure modes of the sign structure. The performance evaluation of the anchor was carried out to derive the wind fragility. Two parameters were set and four anchor types were selected to perform the pull-out and shear tests. The resistance capacity was estimated based on the experimental results. Wind loads were estimated using Monte Carlo simulation method. Based on these results, we derived the wind fragility according to anchor type and wind exposure category. Finally, the evaluation of the wind fragility was performed according to the experimental parameters such as anchor length and anchor diameter. This study shows that the depth of anchor was more significant for the safety of structure compare to diameter of anchor.

Keywords: Sign structure, wind fragility, set anchor, pull-out test, shear test, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791
784 Development of New Control Techniques for Vibration Isolation of Structures using Smart Materials

Authors: Shubha P Bhat, Krishnamurthy, T.C.Manjunath, C. Ardil

Abstract:

In this paper, the effects of the restoring force device on the response of a space frame structure resting on sliding type of bearing with a restoring force device is studied. The NS component of the El - Centro earthquake and harmonic ground acceleration is considered for earthquake excitation. The structure is modeled by considering six-degrees of freedom (three translations and three rotations) at each node. The sliding support is modeled as a fictitious spring with two horizontal degrees of freedom. The response quantities considered for the study are the top floor acceleration, base shear, bending moment and base displacement. It is concluded from the study that the displacement of the structure reduces by the use of the restoring force device. Also, the peak values of acceleration, bending moment and base shear also decreases. The simulation results show the effectiveness of the developed and proposed method.

Keywords: DOF, Space structures, Acceleration, Excitation, Smart structure, Vibration, Isolation, Earthquakes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840