Search results for: Radial basis function network
555 Indirect Solar Desalination: Value Engineering and Cost Benefit Analysis
Authors: Grace Rachid, Mutasem El-Fadel, Mahmoud Al-Hindi, Ibrahim Jamali, Daniel Abdel Nour
Abstract:
This study examines the feasibility of indirect solar desalination in oil producing countries in the Middle East and North Africa (MENA) region. It relies on value engineering (VE) and costbenefit with sensitivity analyses to identify optimal coupling configurations of desalination and solar energy technologies. A comparative return on investment was assessed as a function of water costs for varied plant capacities (25,000 to 75,000 m3/day), project lifetimes (15 to 25 years), and discount rates (5 to 15%) taking into consideration water and energy subsidies, land cost as well as environmental externalities in the form of carbon credit related to greenhouse gas (GHG) emissions reduction. The results showed reverse osmosis (RO) coupled with photovoltaic technologies (PVs) as the most promising configuration, robust across different prices for Brent oil, discount rates, as well as different project lifetimes. Environmental externalities and subsidies analysis revealed that a 16% reduction in existing subsidy on water tariffs would ensure economic viability. Additionally, while land costs affect investment attractiveness, the viability of RO coupled with PV remains possible for a land purchase cost <$ 80/m2 or a lease rate <$1/m2/yr. Beyond those rates, further subsidy lifting is required.Keywords: Solar energy, desalination, value engineering, CBA, carbon credit, subsidies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2594554 Chatter Stability Characterization of Full-Immersion End-Milling Using a Generalized Modified Map of the Full-Discretization Method, Part 1: Validation of Results and Study of Stability Lobes by Numerical Simulation
Authors: Chigbogu G. Ozoegwu, Sam N. Omenyi
Abstract:
The objective in this work is to generate and discuss the stability results of fully-immersed end-milling process with parameters; tool mass m=0.0431kg,tool natural frequency ωn = 5700 rads^-1, damping factor ξ=0.002 and workpiece cutting coefficient C=3.5x10^7 Nm^-7/4. Different no of teeth is considered for the end-milling. Both 1-DOF and 2-DOF chatter models of the system are generated on the basis of non-linear force law. Chatter stability analysis is carried out using a modified form (generalized for both 1-DOF and 2-DOF models) of recently developed method called Full-discretization. The full-immersion three tooth end-milling together with higher toothed end-milling processes has secondary Hopf bifurcation lobes (SHBL’s) that exhibit one turning (minimum) point each. Each of such SHBL is demarcated by its minimum point into two portions; (i) the Lower Spindle Speed Portion (LSSP) in which bifurcations occur in the right half portion of the unit circle centred at the origin of the complex plane and (ii) the Higher Spindle Speed Portion (HSSP) in which bifurcations occur in the left half portion of the unit circle. Comments are made regarding why bifurcation lobes should generally get bigger and more visible with increase in spindle speed and why flip bifurcation lobes (FBL’s) could be invisible in the low-speed stability chart but visible in the high-speed stability chart of the fully-immersed three-tooth miller.
Keywords: Chatter, flip bifurcation, modified full-discretization map stability lobe, secondary Hopf bifurcation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832553 Comparison between Turbo Code and Convolutional Product Code (CPC) for Mobile WiMAX
Authors: Ahmed Ebian, Mona Shokair, Kamal Awadalla
Abstract:
Mobile WiMAX is a broadband wireless solution that enables convergence of mobile and fixed broadband networks through a common wide area broadband radio access technology and flexible network architecture. It adopts Orthogonal Frequency Division Multiple Access (OFDMA) for improved multi-path performance in Non-Line-Of-Sight (NLOS) environments. Scalable OFDMA (SOFDMA) is introduced in the IEEE 802e[1]. WIMAX system uses one of different types of channel coding but The mandatory channel coding scheme is based on binary nonrecursive Convolutional Coding (CC). There are other several optional channel coding schemes such as block turbo codes, convolutional turbo codes, and low density parity check (LDPC). In this paper a comparison between the performance of WIMAX using turbo code and using convolutional product code (CPC) [2] is made. Also a combination between them had been done. The CPC gives good results at different SNR values compared to both the turbo system, and the combination between them. For example, at BER equal to 10-2 for 128 subcarriers, the amount of improvement in SNR equals approximately 3 dB higher than turbo code and equals approximately 2dB higher than the combination respectively. Several results are obtained at different modulating schemes (16QAM and 64QAM) and different numbers of sub-carriers (128 and 512).Keywords: Turbo Code, Convolutional Product Code (CPC), Convolutional Product Code (CPC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3396552 Distribution of Macrobenthic Polychaete Families in Relation to Environmental Parameters in North West Penang, Malaysia
Authors: Mohammad Gholizadeh, Khairun Yahya, Anita Talib, Omar Ahmad
Abstract:
The distribution of macrobenthic polychaetes along the coastal waters of Penang National Park was surveyed to estimate the effect of various environmental parameters at three stations (200m, 600m and 1200m) from the shoreline, during six sampling months, from June 2010 to April 2011.The use of polychaetes in descriptive ecology is surveyed in the light of a recent investigation particularly concerning the soft bottom biota environments. Polychaetes, often connected in the former to the notion of opportunistic species able to proliferate after an enhancement in organic matter, had performed a momentous role particularly with regard to effected soft-bottom habitats. The objective of this survey was to investigate different environment stress over soft bottom polychaete community along Teluk Ketapang and Pantai Acheh (Penang National Park) over a year period. Variations in the polychaete community were evaluated using univariate and multivariate methods. The results of PCA analysis displayed a positive relation between macrobenthic community structures and environmental parameters such as sediment particle size and organic matter in the coastal water. A total of 604 individuals were examined which was grouped into 23 families. Family Nereidae was the most abundant (22.68%), followed by Spionidae (22.02%), Hesionidae (12.58%), Nephtylidae (9.27%) and Orbiniidae (8.61%). It is noticeable that good results can only be obtained on the basis of good taxonomic resolution. We proposed that, in monitoring surveys, operative time could be optimized not only by working at a highertaxonomic level on the entire macrobenthic data set, but by also choosing an especially indicative group and working at lower taxonomic and good level.Keywords: Polychaete families, environment parameters, Bioindicators, Pantai Acheh, Teluk Ketapang.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999551 An Anomaly Detection Approach to Detect Unexpected Faults in Recordings from Test Drives
Authors: Andreas Theissler, Ian Dear
Abstract:
In the automotive industry test drives are being conducted during the development of new vehicle models or as a part of quality assurance of series-production vehicles. The communication on the in-vehicle network, data from external sensors, or internal data from the electronic control units is recorded by automotive data loggers during the test drives. The recordings are used for fault analysis. Since the resulting data volume is tremendous, manually analysing each recording in great detail is not feasible. This paper proposes to use machine learning to support domainexperts by preventing them from contemplating irrelevant data and rather pointing them to the relevant parts in the recordings. The underlying idea is to learn the normal behaviour from available recordings, i.e. a training set, and then to autonomously detect unexpected deviations and report them as anomalies. The one-class support vector machine “support vector data description” is utilised to calculate distances of feature vectors. SVDDSUBSEQ is proposed as a novel approach, allowing to classify subsequences in multivariate time series data. The approach allows to detect unexpected faults without modelling effort as is shown with experimental results on recordings from test drives.
Keywords: Anomaly detection, fault detection, test drive analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2477550 Context Aware Anomaly Behavior Analysis for Smart Home Systems
Authors: Zhiwen Pan, Jesus Pacheco, Salim Hariri, Yiqiang Chen, Bozhi Liu
Abstract:
The Internet of Things (IoT) will lead to the development of advanced Smart Home services that are pervasive, cost-effective, and can be accessed by home occupants from anywhere and at any time. However, advanced smart home applications will introduce grand security challenges due to the increase in the attack surface. Current approaches do not handle cybersecurity from a holistic point of view; hence, a systematic cybersecurity mechanism needs to be adopted when designing smart home applications. In this paper, we present a generic intrusion detection methodology to detect and mitigate the anomaly behaviors happened in Smart Home Systems (SHS). By utilizing our Smart Home Context Data Structure, the heterogeneous information and services acquired from SHS are mapped in context attributes which can describe the context of smart home operation precisely and accurately. Runtime models for describing usage patterns of home assets are developed based on characterization functions. A threat-aware action management methodology, used to efficiently mitigate anomaly behaviors, is proposed at the end. Our preliminary experimental results show that our methodology can be used to detect and mitigate known and unknown threats, as well as to protect SHS premises and services.
Keywords: Internet of Things, network security, context awareness, intrusion detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275549 A Survey on E-Guide to Educational Tour Planning in Environmental Science among Standard Six Primary School Students the Ministry of Education Malaysia
Authors: A. Halim Sahelan, Mohd Halid Abu, Jamaluddin Hashim, Zulisman Maksom, Mohd Afif Md Nasir
Abstract:
This study aims to assess the students' needs for the tour planning e-guide. The study is developing on the contribution and importance of the Educational Tour Planning Guide (ETP) is a multimedia course ware as one of the effective methods in teaching and learning of environmental science among the students in primary schools of the Ministry of Education, Malaysia. It is to provide the student with knowledge and experience about tourism, environmental science activities and process. E-guide to ETP also hopes to strengthen the student understanding toward the subject learn in the tourism environmental science. In order to assess the student's needs on the e-Guide to Educational Tour Planning in Environmental Science, the study has produced a similar e-Guide to ETP in the form as a course ware to be tested during the study. The study has involved several steps in order to be completed. It is such as the formulation of the problem, the review of the literature, the formulation of the study methodology, the production of the e-Guide to ETP, field survey and finally the analyses and discussion made on the data gathered during the study. The survey has involved 100 respondents among the students in standard six primary schools in Kluang Johor. Through the findings, the study indicates that the current tested product is acceptable among the students in learning environmental science as a guide to plan for the tour. The findings also show a slight difference between the respondents who are using the e-Guide to ETP, and those who are not on the basis of the e-Guide to ETP results. Due the important for the study, the researcher hopes to be having a fair discussion and excellence, recommendation for the development of the product of the current study. This report is written also important to provide a written reference for the future related study.Keywords: Tour planning e-guide, educational tour planning guide, environmental science, multimedia course ware.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020548 The Concept of Decentralization: Modern Challenges for the EU Countries, Prospects for Further Implementation in Ukraine
Authors: Alina Murtishcheva
Abstract:
The tendency of globalization, challenges to democracy and peace caused by the Russian invasion of Ukraine, and other global conflicts require searching general orientations of governmental development, including local government. The formation of a common theoretical framework for local government guarantees not only of harmonisation of European legislation but also creates prerequisites for the integration of new members into the European Union. One of the most important milestones of such a theoretical framework is the concept of decentralization. Decentralization as a phenomenon is characteristic of most European Union countries at different historical stages. For Ukraine, as a country that has clearly defined a European integration vector of development, understanding not only the legal but also the theoretical basis of decentralization processes in European countries is an important prerequisite for further reforms. Decentralization takes different forms, which leads to a variety of understandings in doctrine and, consequently, different interpretations in national legislation. Despite this, decentralization is based on common ideas and values such as democracy, participation, the rule of law, and proximity government that are shared by all EU member states. Nevertheless, not all EU countries are currently implementing broad decentralization in their political and legal practices. Some countries are gradually moving in this direction, while others remain quite centralised. There is also a new, insufficiently studied trend today – recentralisation, which can be broadly defined as the strengthening of centralization tendencies in countries that were considered to be decentralized. Consequently, an exploratory theoretical study is needed to identify how the concept of decentralization is combined with the recentralization tendency in EU member states. The purpose of this study is to empirically analyse scientific approaches to the concept of “decentralization”, to highlight the tendency of recentralisation and its consequences, to analyse Ukraine's experience in the field of decentralization of public power, and to outline the prospects for further development of Ukrainian legislation in this area.
Keywords: Centralization, decentralization, local government, recentralization, reforms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15547 Prioritization Assessment of Housing Development Risk Factors: A Fuzzy Hierarchical Process-Based Approach
Authors: Yusuf Garba Baba
Abstract:
The construction industry and housing subsector are fraught with risks that have the potential of negatively impacting on the achievement of project objectives. The success or otherwise of most construction projects depends to large extent on how well these risks have been managed. The recent paradigm shift by the subsector to use of formal risk management approach in contrast to hitherto developed rules of thumb means that risks must not only be identified but also properly assessed and responded to in a systematic manner. The study focused on identifying risks associated with housing development projects and prioritisation assessment of the identified risks in order to provide basis for informed decision. The study used a three-step identification framework: review of literature for similar projects, expert consultation and questionnaire based survey to identify potential risk factors. Delphi survey method was employed in carrying out the relative prioritization assessment of the risks factors using computer-based Analytical Hierarchical Process (AHP) software. The results show that 19 out of the 50 risks significantly impact on housing development projects. The study concludes that although significant numbers of risk factors have been identified as having relevance and impacting to housing construction projects, economic risk group and, in particular, ‘changes in demand for houses’ is prioritised by most developers as posing a threat to the achievement of their housing development objectives. Unless these risks are carefully managed, their effects will continue to impede success in these projects. The study recommends the adoption and use of the combination of multi-technique identification framework and AHP prioritization assessment methodology as a suitable model for the assessment of risks in housing development projects.
Keywords: Risk identification, risk assessment, analytical hierarchical process, multi-criteria decision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734546 Analysis of Linguistic Disfluencies in Bilingual Children’s Discourse
Authors: Sheena Christabel Pravin, M. Palanivelan
Abstract:
Speech disfluencies are common in spontaneous speech. The primary purpose of this study was to distinguish linguistic disfluencies from stuttering disfluencies in bilingual Tamil–English (TE) speaking children. The secondary purpose was to determine whether their disfluencies are mediated by native language dominance and/or on an early onset of developmental stuttering at childhood. A detailed study was carried out to identify the prosodic and acoustic features that uniquely represent the disfluent regions of speech. This paper focuses on statistical modeling of repetitions, prolongations, pauses and interjections in the speech corpus encompassing bilingual spontaneous utterances from school going children – English and Tamil. Two classifiers including Hidden Markov Models (HMM) and the Multilayer Perceptron (MLP), which is a class of feed-forward artificial neural network, were compared in the classification of disfluencies. The results of the classifiers document the patterns of disfluency in spontaneous speech samples of school-aged children to distinguish between Children Who Stutter (CWS) and Children with Language Impairment CLI). The ability of the models in classifying the disfluencies was measured in terms of F-measure, Recall, and Precision.
Keywords: Bilingual, children who stutter, children with language impairment, Hidden Markov Models, multi-layer perceptron, linguistic disfluencies, stuttering disfluencies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029545 Geovisualization of Tourist Activity Travel Patterns Using 3D GIS: An Empirical Study of Tamsui, Taiwan
Authors: Meng-Lung Lin, Chien-Min Chu, Chung-Hung Tsai, Chih-Cheng Chen, Chen-Yuan Chen
Abstract:
The study of tourist activities and the mapping of their routes in space and time has become an important issue in tourism management. Here we represent space-time paths for the tourism industry by visualizing individual tourist activities and the paths followed using a 3D Geographic Information System (GIS). Considerable attention has been devoted to the measurement of accessibility to shopping, eating, walking and other services at the tourist destination. I turns out that GIS is a useful tool for studying the spatial behaviors of tourists in the area. The value of GIS is especially advantageous for space-time potential path area measures, especially for the accurate visualization of possible paths through existing city road networks. This study seeks to apply space-time concepts with a detailed street network map obtained from Google Maps to measure tourist paths both spatially and temporally. These paths are further determined based on data obtained from map questionnaires regarding the trip activities of 40 individuals. The analysis of the data makes it possible to determining the locations of the more popular paths. The results can be visualized using 3D GIS to show the areas and potential activity opportunities accessible to tourists during their travel time.
Keywords: Tourist activity analysis, space-time path, GIS, geovisualization, activity-travel pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493544 Intelligent Temperature Controller for Water-Bath System
Authors: Om Prakash Verma, Rajesh Singla, Rajesh Kumar
Abstract:
Conventional controller’s usually required a prior knowledge of mathematical modelling of the process. The inaccuracy of mathematical modelling degrades the performance of the process, especially for non-linear and complex control problem. The process used is Water-Bath system, which is most widely used and nonlinear to some extent. For Water-Bath system, it is necessary to attain desired temperature within a specified period of time to avoid the overshoot and absolute error, with better temperature tracking capability, else the process is disturbed.
To overcome above difficulties intelligent controllers, Fuzzy Logic (FL) and Adaptive Neuro-Fuzzy Inference System (ANFIS), are proposed in this paper. The Fuzzy controller is designed to work with knowledge in the form of linguistic control rules. But the translation of these linguistic rules into the framework of fuzzy set theory depends on the choice of certain parameters, for which no formal method is known. To design ANFIS, Fuzzy-Inference-System is combined with learning capability of Neural-Network.
It is analyzed that ANFIS is best suitable for adaptive temperature control of above system. As compared to PID and FLC, ANFIS produces a stable control signal. It has much better temperature tracking capability with almost zero overshoot and minimum absolute error.
Keywords: PID Controller, FLC, ANFIS, Non-Linear Control System, Water-Bath System, MATLAB-7.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5548543 Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions
Authors: Hazem M. El-Bakry
Abstract:
In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.Keywords: Boolean Functions, Simplification, KarnoughMap, Implementation of Logic Functions, Modular NeuralNetworks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814542 Finding Pareto Optimal Front for the Multi-Mode Time, Cost Quality Trade-off in Project Scheduling
Authors: H. Iranmanesh, M. R. Skandari, M. Allahverdiloo
Abstract:
Project managers are the ultimate responsible for the overall characteristics of a project, i.e. they should deliver the project on time with minimum cost and with maximum quality. It is vital for any manager to decide a trade-off between these conflicting objectives and they will be benefited of any scientific decision support tool. Our work will try to determine optimal solutions (rather than a single optimal solution) from which the project manager will select his desirable choice to run the project. In this paper, the problem in project scheduling notated as (1,T|cpm,disc,mu|curve:quality,time,cost) will be studied. The problem is multi-objective and the purpose is finding the Pareto optimal front of time, cost and quality of a project (curve:quality,time,cost), whose activities belong to a start to finish activity relationship network (cpm) and they can be done in different possible modes (mu) which are non-continuous or discrete (disc), and each mode has a different cost, time and quality . The project is constrained to a non-renewable resource i.e. money (1,T). Because the problem is NP-Hard, to solve the problem, a meta-heuristic is developed based on a version of genetic algorithm specially adapted to solve multi-objective problems namely FastPGA. A sample project with 30 activities is generated and then solved by the proposed method.Keywords: FastPGA, Multi-Execution Activity Mode, ParetoOptimality, Project Scheduling, Time-Cost-Quality Trade-Off.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1684541 Distributed Generator Placement for Loss Reduction and Improvement in Reliability
Authors: Priyanka Paliwal, N.P. Patidar
Abstract:
Distributed Power generation has gained a lot of attention in recent times due to constraints associated with conventional power generation and new advancements in DG technologies .The need to operate the power system economically and with optimum levels of reliability has further led to an increase in interest in Distributed Generation. However it is important to place Distributed Generator on an optimum location so that the purpose of loss minimization and voltage regulation is dully served on the feeder. This paper investigates the impact of DG units installation on electric losses, reliability and voltage profile of distribution networks. In this paper, our aim would be to find optimal distributed generation allocation for loss reduction subjected to constraint of voltage regulation in distribution network. The system is further analyzed for increased levels of Reliability. Distributed Generator offers the additional advantage of increase in reliability levels as suggested by the improvements in various reliability indices such as SAIDI, CAIDI and AENS. Comparative studies are performed and related results are addressed. An analytical technique is used in order to find the optimal location of Distributed Generator. The suggested technique is programmed under MATLAB software. The results clearly indicate that DG can reduce the electrical line loss while simultaneously improving the reliability of the system.Keywords: AENS, CAIDI, Distributed Generation, lossreduction, Reliability, SAIDI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3101540 Secure Low-Bandwidth Video Streaming through Reliable Multipath Propagation in MANETs
Authors: S. Mohideen Badhusha, K. Duraiswamy
Abstract:
Most of the existing video streaming protocols provide video services without considering security aspects in decentralized mobile ad-hoc networks. The security policies adapted to the currently existing non-streaming protocols, do not comply with the live video streaming protocols resulting in considerable vulnerability, high bandwidth consumption and unreliability which cause severe security threats, low bandwidth and error prone transmission respectively in video streaming applications. Therefore a synergized methodology is required to reduce vulnerability and bandwidth consumption, and enhance reliability in the video streaming applications in MANET. To ensure the security measures with reduced bandwidth consumption and improve reliability of the video streaming applications, a Secure Low-bandwidth Video Streaming through Reliable Multipath Propagation (SLVRMP) protocol architecture has been proposed by incorporating the two algorithms namely Secure Low-bandwidth Video Streaming Algorithm and Reliable Secure Multipath Propagation Algorithm using Layered Video Coding in non-overlapping zone routing network topology. The performances of the proposed system are compared to those of the other existing secure multipath protocols Sec-MR, SPREAD using NS 2.34 and the simulation results show that the performances of the proposed system get considerably improved.Keywords: Bandwidth consumption, layered video coding, multipath propagation, reliability, security threats, video streaming applications, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882539 Integrating AI Visualization Tools to Enhance Student Engagement and Understanding in AI Education
Authors: Yong W. Foo, Lai M. Tang
Abstract:
Artificial Intelligence (AI), particularly the usage of deep neural networks for hierarchical representations from data, has found numerous complex applications across various domains, including computer vision, robotics, autonomous vehicles, and other scientific fields. However, their inherent “black box” nature can sometimes make it challenging for early researchers or school students of various levels to comprehend and trust the results they produce. Consequently, there has been a growing demand for reliable visualization tools in engineering and science education to help learners understand, trust, and explain a deep learning network. This has led to a notable emphasis on the visualization of AI in the research community in recent years. AI visualization tools are increasingly being adopted to significantly improve the comprehension of complex topics in deep learning. This paper presents an approach to empower students to actively explore the inner workings of deep neural networks by integrating the student-centered learning approach of flipped classroom models with the investigative capabilities of AI visualization tools, namely, the TensorFlow Playground, the Local Interpretable Model-agnostic Explanations (LIME), and the SHapley Additive exPlanations (SHAP), for delivering an AI education curriculum. Integrating these two factors is crucial for fostering ownership, responsibility, and critical thinking skills in the age of AI.
Keywords: Deep Learning, Explainable AI, AI Visualization, Representation Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20538 Modelling Hydrological Time Series Using Wakeby Distribution
Authors: Ilaria Lucrezia Amerise
Abstract:
The statistical modelling of precipitation data for a given portion of territory is fundamental for the monitoring of climatic conditions and for Hydrogeological Management Plans (HMP). This modelling is rendered particularly complex by the changes taking place in the frequency and intensity of precipitation, presumably to be attributed to the global climate change. This paper applies the Wakeby distribution (with 5 parameters) as a theoretical reference model. The number and the quality of the parameters indicate that this distribution may be the appropriate choice for the interpolations of the hydrological variables and, moreover, the Wakeby is particularly suitable for describing phenomena producing heavy tails. The proposed estimation methods for determining the value of the Wakeby parameters are the same as those used for density functions with heavy tails. The commonly used procedure is the classic method of moments weighed with probabilities (probability weighted moments, PWM) although this has often shown difficulty of convergence, or rather, convergence to a configuration of inappropriate parameters. In this paper, we analyze the problem of the likelihood estimation of a random variable expressed through its quantile function. The method of maximum likelihood, in this case, is more demanding than in the situations of more usual estimation. The reasons for this lie, in the sampling and asymptotic properties of the estimators of maximum likelihood which improve the estimates obtained with indications of their variability and, therefore, their accuracy and reliability. These features are highly appreciated in contexts where poor decisions, attributable to an inefficient or incomplete information base, can cause serious damages.Keywords: Generalized extreme values (GEV), likelihood estimation, precipitation data, Wakeby distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 674537 Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions
Authors: Hazem M. El-Bakry
Abstract:
In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.
Keywords: Boolean functions, simplification, Karnough map, implementation of logic functions, modular neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070536 A Proposed Hybrid Color Image Compression Based on Fractal Coding with Quadtree and Discrete Cosine Transform
Authors: Shimal Das, Dibyendu Ghoshal
Abstract:
Fractal based digital image compression is a specific technique in the field of color image. The method is best suited for irregular shape of image like snow bobs, clouds, flame of fire; tree leaves images, depending on the fact that parts of an image often resemble with other parts of the same image. This technique has drawn much attention in recent years because of very high compression ratio that can be achieved. Hybrid scheme incorporating fractal compression and speedup techniques have achieved high compression ratio compared to pure fractal compression. Fractal image compression is a lossy compression method in which selfsimilarity nature of an image is used. This technique provides high compression ratio, less encoding time and fart decoding process. In this paper, fractal compression with quad tree and DCT is proposed to compress the color image. The proposed hybrid schemes require four phases to compress the color image. First: the image is segmented and Discrete Cosine Transform is applied to each block of the segmented image. Second: the block values are scanned in a zigzag manner to prevent zero co-efficient. Third: the resulting image is partitioned as fractals by quadtree approach. Fourth: the image is compressed using Run length encoding technique.
Keywords: Fractal coding, Discrete Cosine Transform, Iterated Function System (IFS), Affine Transformation, Run length encoding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570535 Tele-Operated Anthropomorphic Arm and Hand Design
Authors: Namal A. Senanayake, Khoo B. How, Quah W. Wai
Abstract:
In this project, a tele-operated anthropomorphic robotic arm and hand is designed and built as a versatile robotic arm system. The robot has the ability to manipulate objects such as pick and place operations. It is also able to function by itself, in standalone mode. Firstly, the robotic arm is built in order to interface with a personal computer via a serial servo controller circuit board. The circuit board enables user to completely control the robotic arm and moreover, enables feedbacks from user. The control circuit board uses a powerful integrated microcontroller, a PIC (Programmable Interface Controller). The PIC is firstly programmed using BASIC (Beginner-s All-purpose Symbolic Instruction Code) and it is used as the 'brain' of the robot. In addition a user friendly Graphical User Interface (GUI) is developed as the serial servo interface software using Microsoft-s Visual Basic 6. The second part of the project is to use speech recognition control on the robotic arm. A speech recognition circuit board is constructed with onboard components such as PIC and other integrated circuits. It replaces the computers- Graphical User Interface. The robotic arm is able to receive instructions as spoken commands through a microphone and perform operations with respect to the commands such as picking and placing operations.Keywords: Tele-operated Anthropomorphic Robotic Arm and Hand, Robot Motion System, Serial Servo Controller, Speech Recognition Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766534 Event Information Extraction System (EIEE): FSM vs HMM
Authors: Shaukat Wasi, Zubair A. Shaikh, Sajid Qasmi, Hussain Sachwani, Rehman Lalani, Aamir Chagani
Abstract:
Automatic Extraction of Event information from social text stream (emails, social network sites, blogs etc) is a vital requirement for many applications like Event Planning and Management systems and security applications. The key information components needed from Event related text are Event title, location, participants, date and time. Emails have very unique distinctions over other social text streams from the perspective of layout and format and conversation style and are the most commonly used communication channel for broadcasting and planning events. Therefore we have chosen emails as our dataset. In our work, we have employed two statistical NLP methods, named as Finite State Machines (FSM) and Hidden Markov Model (HMM) for the extraction of event related contextual information. An application has been developed providing a comparison among the two methods over the event extraction task. It comprises of two modules, one for each method, and works for both bulk as well as direct user input. The results are evaluated using Precision, Recall and F-Score. Experiments show that both methods produce high performance and accuracy, however HMM was good enough over Title extraction and FSM proved to be better for Venue, Date, and time.Keywords: Emails, Event Extraction, Event Detection, Finite state machines, Hidden Markov Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2317533 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment
Authors: P. K. Singhal, R. Naresh, V. Sharma
Abstract:
This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076532 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment
Authors: P. K. Singhal, R. Naresh, V. Sharma
Abstract:
This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182531 Response Delay Model: Bridging the Gap in Urban Fire Disaster Response System
Authors: Sulaiman Yunus
Abstract:
The need for modeling response to urban fire disaster cannot be over emphasized, as recurrent fire outbreaks have gutted most cities of the world. This necessitated the need for a prompt and efficient response system in order to mitigate the impact of the disaster. Promptness, as a function of time, is seen to be the fundamental determinant for efficiency of a response system and magnitude of a fire disaster. Delay, as a result of several factors, is one of the major determinants of promptgness of a response system and also the magnitude of a fire disaster. Response Delay Model (RDM) intends to bridge the gap in urban fire disaster response system through incorporating and synchronizing the delay moments in measuring the overall efficiency of a response system and determining the magnitude of a fire disaster. The model identified two delay moments (pre-notification and Intra-reflex sequence delay) that can be elastic and collectively plays a significant role in influencing the efficiency of a response system. Due to variation in the elasticity of the delay moments, the model provides for measuring the length of delays in order to arrive at a standard average delay moment for different parts of the world, putting into consideration geographic location, level of preparedness and awareness, technological advancement, socio-economic and environmental factors. It is recommended that participatory researches should be embarked on locally and globally to determine standard average delay moments within each phase of the system so as to enable determining the efficiency of response systems and predicting fire disaster magnitudes.
Keywords: Delay moment, fire disaster, reflex sequence, response, response delay moment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733530 Utilizing Biological Models to Determine the Recruitment of the Irish Republican Army
Authors: Erika Ann Schaub, Christian J Darken
Abstract:
Sociological models (e.g., social network analysis, small-group dynamic and gang models) have historically been used to predict the behavior of terrorist groups. However, they may not be the most appropriate method for understanding the behavior of terrorist organizations because the models were not initially intended to incorporate violent behavior of its subjects. Rather, models that incorporate life and death competition between subjects, i.e., models utilized by scientists to examine the behavior of wildlife populations, may provide a more accurate analysis. This paper suggests the use of biological models to attain a more robust method for understanding the behavior of terrorist organizations as compared to traditional methods. This study also describes how a biological population model incorporating predator-prey behavior factors can predict terrorist organizational recruitment behavior for the purpose of understanding the factors that govern the growth and decline of terrorist organizations. The Lotka-Volterra, a biological model that is based on a predator-prey relationship, is applied to a highly suggestive case study, that of the Irish Republican Army. This case study illuminates how a biological model can be utilized to understand the actions of a terrorist organization.
Keywords: Biological Models, Lotka-Volterra Predator-Prey Model, Terrorist Organizational Behavior, Terrorist Recruitment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524529 JaCoText: A Pretrained Model for Java Code-Text Generation
Authors: Jessica Lòpez Espejel, Mahaman Sanoussi Yahaya Alassan, Walid Dahhane, El Hassane Ettifouri
Abstract:
Pretrained transformer-based models have shown high performance in natural language generation task. However, a new wave of interest has surged: automatic programming language generation. This task consists of translating natural language instructions to a programming code. Despite the fact that well-known pretrained models on language generation have achieved good performance in learning programming languages, effort is still needed in automatic code generation. In this paper, we introduce JaCoText, a model based on Transformers neural network. It aims to generate java source code from natural language text. JaCoText leverages advantages of both natural language and code generation models. More specifically, we study some findings from the state of the art and use them to (1) initialize our model from powerful pretrained models, (2) explore additional pretraining on our java dataset, (3) carry out experiments combining the unimodal and bimodal data in the training, and (4) scale the input and output length during the fine-tuning of the model. Conducted experiments on CONCODE dataset show that JaCoText achieves new state-of-the-art results.
Keywords: Java code generation, Natural Language Processing, Sequence-to-sequence Models, Transformers Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855528 Ensemble Approach for Predicting Student's Academic Performance
Authors: L. A. Muhammad, M. S. Argungu
Abstract:
Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.
Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760527 Buckling of Plates on Foundation with Different Types of Sides Support
Authors: Ali N. Suri, Ahmad A. Al-Makhlufi
Abstract:
In this paper the problem of buckling of plates on foundation of finite length and with different side support is studied.
The Finite Strip Method is used as tool for the analysis. This method uses finite strip elastic, foundation, and geometric matrices to build the assembly matrices for the whole structure, then after introducing boundary conditions at supports, the resulting reduced matrices is transformed into a standard Eigenvalue-Eigenvector problem. The solution of this problem will enable the determination of the buckling load, the associated buckling modes and the buckling wave length.
To carry out the buckling analysis starting from the elastic, foundation, and geometric stiffness matrices for each strip a computer program FORTRAN list is developed.
Since stiffness matrices are function of wave length of buckling, the computer program used an iteration procedure to find the critical buckling stress for each value of foundation modulus and for each boundary condition.
The results showed the use of elastic medium to support plates subject to axial load increase a great deal the buckling load, the results found are very close with those obtained by other analytical methods and experimental work.
The results also showed that foundation compensates the effect of the weakness of some types of constraint of side support and maximum benefit found for plate with one side simply supported the other free.
Keywords: Buckling, Finite Strip, Different Sides Support, Plates on Foundation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147526 Simulation Study of Asphaltene Deposition and Solubility of CO2 in the Brine during Cyclic CO2 Injection Process in Unconventional Tight Reservoirs
Authors: Rashid S. Mohammad, Shicheng Zhang, Sun Lu, Syed Jamal-Ud-Din, Xinzhe Zhao
Abstract:
A compositional reservoir simulation model (CMG-GEM) was used for cyclic CO2 injection process in unconventional tight reservoir. Cyclic CO2 injection is an enhanced oil recovery process consisting of injection, shut-in, and production. The study of cyclic CO2 injection and hydrocarbon recovery in ultra-low permeability reservoirs is mainly a function of rock, fluid, and operational parameters. CMG-GEM was used to study several design parameters of cyclic CO2 injection process to distinguish the parameters with maximum effect on the oil recovery and to comprehend the behavior of cyclic CO2 injection in tight reservoir. On the other hand, permeability reduction induced by asphaltene precipitation is one of the major issues in the oil industry due to its plugging onto the porous media which reduces the oil productivity. In addition to asphaltene deposition, solubility of CO2 in the aquifer is one of the safest and permanent trapping techniques when considering CO2 storage mechanisms in geological formations. However, the effects of the above uncertain parameters on the process of CO2 enhanced oil recovery have not been understood systematically. Hence, it is absolutely necessary to study the most significant parameters which dominate the process. The main objective of this study is to improve techniques for designing cyclic CO2 injection process while considering the effects of asphaltene deposition and solubility of CO2 in the brine in order to prevent asphaltene precipitation, minimize CO2 emission, optimize cyclic CO2 injection, and maximize oil production.
Keywords: Tight reservoirs, cyclic O2 injection, asphaltene, solubility, reservoir simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819