Search results for: simulation study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15305

Search results for: simulation study

14825 Thermal Analysis of a Transport Refrigeration Power Pack Unit Using a Coupled 1D/3D Simulation Approach

Authors: A. Kospach, A. Mladek, M. Waltenberger, F. Schilling

Abstract:

In this work, a coupled 1D/3D simulation approach for thermal protection and optimization of a trailer refrigeration power pack unit was developed. With the developed 1D/3D simulation approach thermal critical scenarios, such as summer, high-load scenarios are investigated. The 1D thermal model was built up consisting of the thermal network, which includes different point masses and associated heat transfers, the coolant and oil circuits, as well as the fan unit. The 3D computational fluid dynamics (CFD) model was developed to model the air flow through the power pack unit considering convective heat transfer effects. In the 1D thermal model the temperatures of the individual point masses were calculated, which served as input variables for the 3D CFD model. For the calculation of the point mass temperatures in the 1D thermal model, the convective heat transfer rates from the 3D CFD model were required as input variables. These two variables (point mass temperatures and convective heat transfer rates) were the main couple variables for the coupled 1D/3D simulation model. The coupled 1D/3D model was validated with measurements under normal operating conditions. Coupled simulations for summer high-load case were than performed and compared with a reference case under normal operation conditions. Hot temperature regions and components could be identified. Due to the detailed information about the flow field, temperatures and heat fluxes, it was possible to directly derive improvement suggestions for the cooling design of the transport refrigeration power pack unit.

Keywords: Coupled thermal simulation, thermal analysis, transport refrigeration unit, 3D computational fluid dynamics, 1D thermal modelling, thermal management systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207
14824 Performance Evaluation of Prioritized Limited Processor-Sharing System

Authors: Yoshiaki Shikata, Wataru Katagiri, Yoshitaka Takahashi

Abstract:

We propose a novel prioritized limited processor-sharing (PS) rule and a simulation algorithm for the performance evaluation of this rule. The performance measures of practical interest are evaluated using this algorithm. Suppose that there are two classes and that an arriving (class-1 or class-2) request encounters n1 class-1 and n2 class-2 requests (including the arriving one) in a single-server system. According to the proposed rule, class-1 requests individually and simultaneously receive m / (m * n1+ n2) of the service-facility capacity, whereas class-2 requests receive 1 / (m *n1 + n2) of it, if m * n1 + n2 ≤ C. Otherwise (m * n1 + n2 > C), the arriving request will be queued in the corresponding class waiting room or rejected. Here, m (1) denotes the priority ratio, and C ( ∞), the service-facility capacity. In this rule, when a request arrives at [or departs from] the system, the extension [shortening] of the remaining sojourn time of each request receiving service can be calculated using the number of requests of each class and the priority ratio. Employing a simulation program to execute these events and calculations enables us to analyze the performance of the proposed prioritized limited PS rule, which is realistic in a time-sharing system (TSS) with a sufficiently small time slot. Moreover, this simulation algorithm is expanded for the evaluation of the prioritized limited PS system with N  3 priority classes.

Keywords: PS rule, priority ratio, service-facility capacity, simulation algorithm, sojourn time, performance measures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
14823 Process Optimization Regarding Geometrical Variation and Sensitivity Involving Dental Drill- and Implant-Guided Surgeries

Authors: T. Kero, R. Söderberg, M. Andersson, L. Lindkvist

Abstract:

Within dental-guided surgery, there has been a lack of analytical methods for optimizing the treatment of the rehabilitation concepts regarding geometrical variation. The purpose of this study is to find the source of the greatest geometrical variation contributor and sensitivity contributor with the help of virtual variation simulation of a dental drill- and implant-guided surgery process using a methodical approach. It is believed that lower geometrical variation will lead to better patient security and higher quality of dental drill- and implant-guided surgeries. It was found that the origin of the greatest contributor to the most variation, and hence where the foci should be set, in order to minimize geometrical variation was in the assembly category (surgery). This was also the category that was the most sensitive for geometrical variation.

Keywords: Variation Simulation, Process Optimization, Guided Surgeries, Dental Prosthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
14822 Heuristics Analysis for Distributed Scheduling using MONARC Simulation Tool

Authors: Florin Pop

Abstract:

Simulation is a very powerful method used for highperformance and high-quality design in distributed system, and now maybe the only one, considering the heterogeneity, complexity and cost of distributed systems. In Grid environments, foe example, it is hard and even impossible to perform scheduler performance evaluation in a repeatable and controllable manner as resources and users are distributed across multiple organizations with their own policies. In addition, Grid test-beds are limited and creating an adequately-sized test-bed is expensive and time consuming. Scalability, reliability and fault-tolerance become important requirements for distributed systems in order to support distributed computation. A distributed system with such characteristics is called dependable. Large environments, like Cloud, offer unique advantages, such as low cost, dependability and satisfy QoS for all users. Resource management in large environments address performant scheduling algorithm guided by QoS constrains. This paper presents the performance evaluation of scheduling heuristics guided by different optimization criteria. The algorithms for distributed scheduling are analyzed in order to satisfy users constrains considering in the same time independent capabilities of resources. This analysis acts like a profiling step for algorithm calibration. The performance evaluation is based on simulation. The simulator is MONARC, a powerful tool for large scale distributed systems simulation. The novelty of this paper consists in synthetic analysis results that offer guidelines for scheduler service configuration and sustain the empirical-based decision. The results could be used in decisions regarding optimizations to existing Grid DAG Scheduling and for selecting the proper algorithm for DAG scheduling in various actual situations.

Keywords: Scheduling, Simulation, Performance Evaluation, QoS, Distributed Systems, MONARC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
14821 Modeling and Simulation of Position Estimation of Switched Reluctance Motor with Artificial Neural Networks

Authors: Oguz Ustun, Erdal Bekiroglu

Abstract:

In the present study, position estimation of switched reluctance motor (SRM) has been achieved on the basis of the artificial neural networks (ANNs). The ANNs can estimate the rotor position without using an extra rotor position sensor by measuring the phase flux linkages and phase currents. Flux linkage-phase current-rotor position data set and supervised backpropagation learning algorithm are used in training of the ANN based position estimator. A 4-phase SRM have been used to verify the accuracy and feasibility of the proposed position estimator. Simulation results show that the proposed position estimator gives precise and accurate position estimations for both under the low and high level reference speeds of the SRM

Keywords: Artificial neural networks, modeling andsimulation, position observer, switched reluctance motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
14820 Computational Fluid Dynamics Simulation and Comparison of Flow through Mechanical Heart Valve Using Newtonian and Non-Newtonian Fluid

Authors: D. Šedivý, S. Fialová

Abstract:

The main purpose of this study is to show differences between the numerical solution of the flow through the artificial heart valve using Newtonian or non-Newtonian fluid. The simulation was carried out by a commercial computational fluid dynamics (CFD) package based on finite-volume method. An aortic bileaflet heart valve (Sorin Bicarbon) was used as a pattern for model of real heart valve replacement. Computed tomography (CT) was used to gain the accurate parameters of the valve. Data from CT were transferred in the commercial 3D designer, where the model for CFD was made. Carreau rheology model was applied as non-Newtonian fluid. Physiological data of cardiac cycle were used as boundary conditions. Outputs were taken the leaflets excursion from opening to closure and the fluid dynamics through the valve. This study also includes experimental measurement of pressure fields in ambience of valve for verification numerical outputs. Results put in evidence a favorable comparison between the computational solutions of flow through the mechanical heart valve using Newtonian and non-Newtonian fluid.

Keywords: Computational modeling, dynamic mesh, mechanical heart valve, non-Newtonian fluid, SDOF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
14819 Using Emotional Learning in Rescue Simulation Environment

Authors: Maziar Ahmad Sharbafi, Caro Lucas, Abolfazel Toroghi Haghighat, Omid AmirGhiasvand, Omid Aghazade

Abstract:

RoboCup Rescue simulation as a large-scale Multi agent system (MAS) is one of the challenging environments for keeping coordination between agents to achieve the objectives despite sensing and communication limitations. The dynamicity of the environment and intensive dependency between actions of different kinds of agents make the problem more complex. This point encouraged us to use learning-based methods to adapt our decision making to different situations. Our approach is utilizing reinforcement leaning. Using learning in rescue simulation is one of the current ways which has been the subject of several researches in recent years. In this paper we present an innovative learning method implemented for Police Force (PF) Agent. This method can cope with the main difficulties that exist in other learning approaches. Different methods used in the literature have been examined. Their drawbacks and possible improvements have led us to the method proposed in this paper which is fast and accurate. The Brain Emotional Learning Based Intelligent Controller (BELBIC) is our solution for learning in this environment. BELBIC is a physiologically motivated approach based on a computational model of amygdale and limbic system. The paper presents the results obtained by the proposed approach, showing the power of BELBIC as a decision making tool in complex and dynamic situation.

Keywords: Emotional learning, rescue, simulation environment, RoboCup, multi-agent system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
14818 DEVS Modeling of Network Vulnerability

Authors: Hee Suk Seo, Tae Kyung Kim

Abstract:

As network components grow larger and more diverse, and as securing them on a host-by-host basis grow more difficult, more sites are turning to a network security model. We concentrate on controlling network access to various hosts and the services they offer, rather than on securing them one by one with a network security model. We present how the policy rules from vulnerabilities stored in SVDB (Simulation based Vulnerability Data Base) are inducted, and how to be used in PBN. In the network security environment, each simulation model is hierarchically designed by DEVS (Discrete EVent system Specification) formalism.

Keywords: SVDB, PBN, DEVS, Network security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
14817 Incorporation of SVS CBVLC Supplementary Controller for Damping SSR in Power System

Authors: Narendra Kumar, Sanjiv Kumar

Abstract:

Static VAR System (SVS) is a kind of FACTS device which is used in power system primarily for the purpose of voltage and reactive power control. In this paper presents a systematic approach for designing SVS supplementary controller, which is used to improve the damping of power system oscillation. The combined bus voltage and line current (CBVLC) supplementary controller has been developed and incorporated in the SVS control system located at the middle of the series compensated long transmission line. Damping of torsional stresses due to subsynchronous resonance resulting from series capacitive compensation using CBVLC is investigated in this paper. Simulation results are carried out with MATLAB/Simulink on the IEEE first benchmark model (FBM). The simulation results show that the oscillations are satisfactorily damped out by the SVS supplementary controller. Time domain simulation is performed on power system and the results demonstrate the effectiveness of the proposed controller.

Keywords: Bus voltage and line current (BVLC), series compensation, sub synchronous resonance (SSR), supplementary controller, eigenvalue investigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
14816 Characteristic Function in Estimation of Probability Distribution Moments

Authors: Vladimir S. Timofeev

Abstract:

In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications.

Keywords: Characteristic function, distributional moments, robustness, outlier, statistical estimation problem, statistical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254
14815 Enhance the Modeling of BLDC Motor Based on Fuzzy Logic

Authors: Murugan Marimuthu, Jeyabharath Rajaih

Abstract:

This paper describes a simple way to control the speed of PMBLDC motor using Fuzzy logic control method. In the conventional PI controller the performance of the motor system is simulated and the speed is regulated by using PI controller. These methods used to improve the performance of PMSM drives, but in some cases at different operating conditions when the dynamics of the system also vary over time and it can change the reference speed, parameter variations and the load disturbance. The simulation is powered with the MATLAB program to get a reliable and flexible simulation. In order to highlight the effectiveness of the speed control method the FLC method is used. The proposed method targeted in achieving the improved dynamic performance and avoids the variations of the motor drive. This drive has high accuracy, robust operation from near zero to high speed. The effectiveness and flexibility of the individual techniques of the speed control method will be thoroughly discussed for merits and demerits and finally verified through simulation and experimental results for comparative analysis.

Keywords: Hall position sensors, permanent magnet brushless DC motor, PI controller, Fuzzy Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
14814 Simulation of the Performance of Novel Nonlinear Optimal Control Technique on Two Cart-inverted Pendulum System

Authors: B. Baigzadeh, V.Nazarzehi, H.Khaloozadeh

Abstract:

The two cart inverted pendulum system is a good bench mark for testing the performance of system dynamics and control engineering principles. Devasia introduced this system to study the asymptotic tracking problem for nonlinear systems. In this paper the problem of asymptotic tracking of the two-cart with an inverted-pendulum system to a sinusoidal reference inputs via introducing a novel method for solving finite-horizon nonlinear optimal control problems is presented. In this method, an iterative method applied to state dependent Riccati equation (SDRE) to obtain a reliable algorithm. The superiority of this technique has been shown by simulation and comparison with the nonlinear approach.

Keywords: Nonlinear optimal control, State dependent Riccatiequation, Asymptotic tracking, inverted pendulum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
14813 Modeling and Simulation of a Hybrid Scooter

Authors: W. K. Yap, V. Karri

Abstract:

This paper presents a hybrid electric scooter model developed and simulated using Matlab/Simulink. This hybrid scooter modeled has a parallel hybrid structure. The main propulsion units consist of a two stroke internal combustion engine and a hub motor attached to the front wheel of the scooter. The methodology used to optimize the energy and fuel consumption of the hybrid electric scooter is the multi-mode approach. Various case studies were presented to check the model and were compared to the literatures. Results shown that the model developed was feasible and valuable.

Keywords: Hybrid electric scooters, modeling and simulation, hybrid scooter energy management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3345
14812 Designing a Fuzzy Logic Controller to Enhance Directional Stability of Vehicles under Difficult Maneuvers

Authors: Mehrdad N. Khajavi , Golamhassan Paygane, Ali Hakima

Abstract:

Vehicle which are turning or maneuvering at high speeds are susceptible to sliding and subsequently deviate from desired path. In this paper the dynamics governing the Yaw/Roll behavior of a vehicle has been simulated. Two different simulations have been used one for the real vehicle, for which a fuzzy controller is designed to increase its directional stability property. The other simulation is for a hypothetical vehicle with much higher tire cornering stiffness which is capable of developing the required lateral forces at the tire-ground patch contact to attain the desired lateral acceleration for the vehicle to follow the desired path without slippage. This simulation model is our reference model. The logic for keeping the vehicle on the desired track in the cornering or maneuvering state is to have some braking forces on the inner or outer tires based on the direction of vehicle deviation from the desired path. The inputs to our vehicle simulation model is steer angle δ and vehicle velocity V , and the outputs can be any kinematical parameters like yaw rate, yaw acceleration, side slip angle, rate of side slip angle and so on. The proposed fuzzy controller is a feed forward controller. This controller has two inputs which are steer angle δ and vehicle velocity V, and the output of the controller is the correcting moment M, which guides the vehicle back to the desired track. To develop the membership functions for the controller inputs and output and the fuzzy rules, the vehicle simulation has been run for 1000 times and the correcting moment have been determined by trial and error. Results of the vehicle simulation with fuzzy controller are very promising and show the vehicle performance is enhanced greatly over the vehicle without the controller. In fact the vehicle performance with the controller is very near the performance of the reference ideal model.

Keywords: Vehicle, Directional Stability, Fuzzy Logic Controller, ANFIS..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
14811 IVE: Virtual Humans AI Prototyping Toolkit

Authors: Cyril Brom, Zuzana Vlckova

Abstract:

IVE toolkit has been created for facilitating research,education and development in the ?eld of virtual storytelling andcomputer games. Primarily, the toolkit is intended for modellingaction selection mechanisms of virtual humans, investigating level-of-detail AI techniques for large virtual environments, and for exploringjoint behaviour and role-passing technique (Sec. V). Additionally, thetoolkit can be used as an AI middleware without any changes. Themain facility of IVE is that it serves for prototyping both the AI andvirtual worlds themselves. The purpose of this paper is to describeIVE?s features in general and to present our current work - includingan educational game - on this platform.Keywords? AI middleware, simulation, virtual world.

Keywords: AI middleware, simulation, virtual world

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
14810 Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner

Authors: Loke Kean Koay, Mani Maran Ratnam

Abstract:

A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of mirror was selected since it attains minimum stress level, while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.

Keywords: Computer-aided design, design optimization, torsional scanner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
14809 Numerical Simulation for Self-Loosening Phenomenon Analysis of Bolt Joint under Vibration

Authors: Long Kim Vu, Ban Dang Nguyen

Abstract:

In this paper, the finite element method (FEM) is utilized to simulate the comprehensive process including tightening, releasing and self-loosening of a bolt joint under transverse vibration. Following to the accurate geometry of helical threads, an absolutely hexahedral meshing is implemented. The accuracy of simulation process is verified and validated by comparison with the experimental results on clamping force-vibration relationship, which shows the sufficient correlation. Further analysis with different amplitude and frequency of transverse vibration is done to determine the dominant factor inducing the failure.

Keywords: Bolt self-loosening, contact state, FEM, transverse vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
14808 A Theoretical Study of the SI Engine Performance Operating with Different Fuels

Authors: Osama H. Ghazal

Abstract:

The intension in this work is to investigate the effect of different fuels type on engine performance for different engine speed. Brake Power, Brake Torque, and specific fuel consumption were calculated and presented to show the effect of varying fuel type on them for all cases considered. A special program used to carry out the calculations. A simulation model for one-cylinder spark ignition engine has been built and calculated.

The analysis of the results shows that for methanol the power increases about 30% at 1000 rpm and 16% at 6000 rpm comparing with methane. For the same compared fuels the increment in fuel consumption is about 100% at 1000 rpm and 115% at 6000 rpm. The increment in brake thermal efficiency for gasoline is around 11% comparing with methane at 1000 rpm and 7% for methanol comparing with methane at 4000 rpm.

Keywords: Natural gas fuel, spark ignition engines, performance, engine simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3002
14807 Optimal Design of UPFC Based Damping Controller Using Iteration PSO

Authors: Amin Safari, Hossein Shayeghi

Abstract:

This paper presents a novel approach for tuning unified power flow controller (UPFC) based damping controller in order to enhance the damping of power system low frequency oscillations. The design problem of damping controller is formulated as an optimization problem according to the eigenvalue-based objective function which is solved using iteration particle swarm optimization (IPSO). The effectiveness of the proposed controller is demonstrated through eigenvalue analysis and nonlinear time-domain simulation studies under a wide range of loading conditions. The simulation study shows that the designed controller by IPSO performs better than CPSO in finding the solution. Moreover, the system performance analysis under different operating conditions show that the δE based controller is superior to the mB based controller.

Keywords: UPFC, Optimization Problem, Iteration ParticleSwarm Optimization, Damping Controller, Low FrequencyOscillations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
14806 A Novel Slip Correction Factor for Spherical Aerosol Particles

Authors: Abouzar Moshfegh, Mehrzad Shams, Goodarz Ahmadi, Reza Ebrahimi

Abstract:

A 3D simulation study for an incompressible slip flow around a spherical aerosol particle was performed. The full Navier-Stokes equations were solved and the velocity jump at the gas-particle interface was treated numerically by imposition of the slip boundary condition. Analytical solution to the Stokesian slip flow past a spherical particle was used as a benchmark for code verification, and excellent agreement was achieved. The Simulation results showed that in addition to the Knudsen number, the Reynolds number affects the slip correction factor. Thus, the Cunningham-based slip corrections must be augmented by the inclusion of the effect of Reynolds number for application to Lagrangian tracking of fine particles. A new expression for the slip correction factor as a function of both Knudsen number and Reynolds number was developed.

Keywords: CFD, Cunningham correction, Slip correction factor, Spherical aerosol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3542
14805 Improving Patients Discharge Process in Hospitals by using Six Sigma Approach

Authors: Mahmoud A. El-Banna

Abstract:

The need to increase the efficiency of health care systems is becoming an obligation, and one of area of improvement is the discharge process. The objective of this work is to minimize the patients discharge time (for insured patients) to be less than 50 minutes by using six sigma approach, this improvement will also: lead to an increase in customer satisfaction, increase the number of admissions and turnover on the rooms, increase hospital profitability.Three different departments were considered in this study: Female, Male, and Paediatrics. Six Sigma approach coupled with simulation has been applied to reduce the patients discharge time for pediatrics, female, and male departments at hospital. Upon applying these recommendations at hospital: 60%, 80%, and 22% of insured female, male, and pediatrics patients respectively will have discharge time less than the upper specification time i.e. 50 min.

Keywords: Discharge Time, Healthcare, Hospitals, Patients, Process Improvement, Six Sigma, Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4744
14804 Three Dimensional Modeling of Mixture Formation and Combustion in a Direct Injection Heavy-Duty Diesel Engine

Authors: A. R. Binesh, S. Hossainpour

Abstract:

Due to the stringent legislation for emission of diesel engines and also increasing demand on fuel consumption, the importance of detailed 3D simulation of fuel injection, mixing and combustion have been increased in the recent years. In the present work, FIRE code has been used to study the detailed modeling of spray and mixture formation in a Caterpillar heavy-duty diesel engine. The paper provides an overview of the submodels implemented, which account for liquid spray atomization, droplet secondary break-up, droplet collision, impingement, turbulent dispersion and evaporation. The simulation was performed from intake valve closing (IVC) to exhaust valve opening (EVO). The predicted in-cylinder pressure is validated by comparing with existing experimental data. A good agreement between the predicted and experimental values ensures the accuracy of the numerical predictions collected with the present work. Predictions of engine emissions were also performed and a good quantitative agreement between measured and predicted NOx and soot emission data were obtained with the use of the present Zeldowich mechanism and Hiroyasu model. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the internal combustion engine design, optimization and performance analysis.

Keywords: Diesel engine, Combustion, Pollution, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
14803 Error-Robust Nature of Genome Profiling Applied for Clustering of Species Demonstrated by Computer Simulation

Authors: Shamim Ahmed Koichi Nishigaki

Abstract:

Genome profiling (GP), a genotype based technology, which exploits random PCR and temperature gradient gel electrophoresis, has been successful in identification/classification of organisms. In this technology, spiddos (Species identification dots) and PaSS (Pattern similarity score) were employed for measuring the closeness (or distance) between genomes. Based on the closeness (PaSS), we can buildup phylogenetic trees of the organisms. We noticed that the topology of the tree is rather robust against the experimental fluctuation conveyed by spiddos. This fact was confirmed quantitatively in this study by computer-simulation, providing the limit of the reliability of this highly powerful methodology. As a result, we could demonstrate the effectiveness of the GP approach for identification/classification of organisms.

Keywords: Fluctuation, Genome profiling (GP), Pattern similarity score (PaSS), Robustness, Spiddos-shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
14802 Simulation Study of DFIG Wind Turbine under Grid Fault

Authors: N. Zerzouri, H. Labar, S. Kechida

Abstract:

During recent years wind turbine technology has undergone rapid developments. Growth in size and the optimization of wind turbines has enabled wind energy to become increasingly competitive with conventional energy sources. As a result today-s wind turbines participate actively in the power production of several countries around the world. These developments raise a number of challenges to be dealt with now and in the future. The penetration of wind energy in the grid raises questions about the compatibility of the wind turbine power production with the grid. In particular, the contribution to grid stability, power quality and behavior during fault situations plays therefore as important a role as the reliability. In the present work, we addressed two fault situations that have shown their influence on the generator and the behavior of the wind over the defects which are briefly discussed based on simulation results.

Keywords: Doubly fed induction generator (DFIG), Wind energy, grid fault

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
14801 New Design of a Broadband Microwave Zero Bias Power Limiter

Authors: K. Echchakhaoui, E. Abdelmounim, J. Zbitou, H. Bennis, N. Ababssi, M. Latrach

Abstract:

In this paper a new design of a broadband microwave power limiter is presented and validated into simulation by using ADS software (Advanced Design System) from Agilent technologies. The final circuit is built on microstrip lines by using identical Zero Bias Schottky diodes. The power limiter is designed by Associating 3 stages Schottky diodes. The obtained simulation results permit to validate this circuit with a threshold input power level of 0 dBm until a maximum input power of 30 dBm.

Keywords: Limiter, microstrip, zero-biais.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3790
14800 A Review on Design and Fabrication of Fuel Fired Crucible Furnace

Authors: Oluwaseyi O. Taiwo, Adeolu A. Adediran, Abayomi A. Akinwande, Frank C. Okoyeh

Abstract:

The use of fuel fired crucible furnace is essential in the foundries of developing countries owing to the luxury of electricity. Fuel fired crucible furnace are commonly used in recycling, casting, research and training activities in tertiary institutions, therefore, several attempts are being made to improve the performance and service life of fuel fired crucible. The current study reviews the sequential stages involved in the designs and fabrication of fuel fired crucible furnace which include; design, material selection, modelling and simulation as well as performance evaluation. The study shows that selecting appropriate materials for the different units in the fabrication process is important to the efficiency and service life of fuel fired crucible furnaces. Also, efficiency and performance of fuel fired furnaces are independent of cost of fabrication and their capacity. The importance of modelling and simulation tools in the fabrication process are identified while their non-frequent usage in several works is observed. The need to widen performance evaluations in further studies beyond efficiency determination to give a more detailed assessment of fuel fired crucible furnaces is also observed.

Keywords: Crucible furnace, furnace design, fabrication, fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 478
14799 Dynamic Modelling and Virtual Simulation of Digital Duty-Cycle Modulation Control Drivers

Authors: J. Mbihi

Abstract:

This paper presents a dynamic architecture of digital duty-cycle modulation control drivers. Compared to most oversampling digital modulation schemes encountered in industrial electronics, its novelty is founded on a number of relevant merits including; embedded positive and negative feedback loops, internal modulation clock, structural simplicity, elementary building operators, no explicit need of samples of the nonlinear duty-cycle function when computing the switching modulated signal, and minimum number of design parameters. A prototyping digital control driver is synthesized and well tested within MATLAB/Simulink workspace. Then, the virtual simulation results and performance obtained under a sample of relevant instrumentation and control systems are presented, in order to show the feasibility, the reliability, and the versatility of target applications, of the proposed class of low cost and high quality digital control drivers in industrial electronics.

Keywords: Dynamic architecture, virtual simulation, duty-cycle modulation, digital control drivers, industrial electronics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
14798 A Simulation Model for the H-gate PDSOI MOSFET

Authors: Bu Jianhui, Bi Jinshun, Liu Mengxin, Luo Jiajun, Han Zhengsheng

Abstract:

The floating body effect is a serious problem for the PDSOI MOSFET, and the H-gate layout is frequently used as the body contact to eliminate this effect. Unfortunately, most of the standard commercial SOI MOSFET model is for the device with finger gate, the necessity of the new models for the H-gate device arises. A simulation model for the H-gate PDSOI MOSFET is proposed based on the 0.35μm PDSOI process developed by the Institute of Microelectronics of the Chinese Academy of Sciences (IMECAS), and then the model is well verified by the ring-oscillator.

Keywords: PDSOI H-gate Device model Body contact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
14797 The Effect of Different Nozzle Configurations on Airflow Behaviour and Yarn Quality

Authors: D. Yilmaz, M.R. Usal

Abstract:

Nozzle is the main part of various spinning systems such as air-jet and Murata air vortex systems. Recently, many researchers worked on the usage of the nozzle on different spinning systems such as conventional ring and compact spinning systems. In these applications, primary purpose is to improve the yarn quality. In present study, it was produced the yarns with two different nozzle types and determined the changes in yarn properties. In order to explain the effect of the nozzle, airflow structure in the nozzle was modelled and airflow variables were determined. In numerical simulation, ANSYS 12.1 package program and Fluid Flow (CFX) analysis method was used. As distinct from the literature, Shear Stress Turbulent (SST) model is preferred. And also air pressure at the nozzle inlet was measured by electronic mass flow meter and these values were used for the simulation of the airflow. At last, the yarn was modelled and the area from where the yarn is passing was included to the numerical analysis.

Keywords: Nozzle, compressed air, swirling airflow, yarn properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
14796 Plant Layout Analysis by Computer Simulation for Electronic Manufacturing Service Plant

Authors: Visuwan D., Phruksaphanrat B

Abstract:

In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyze and design the possible cellular layouts for the factory. The cellular layout was selected based on the main criteria of the plant. Computer simulation was used to analyze and compare the performance of the proposed cellular layout and the current layout. It found that the proposed cellular layout can generate better performances than the current layout. In this research, computer simulation is used for Electronic Manufacturing Service (EMS) plant layout analysis. The current layout of this manufacturing plant is a process layout, which is not suitable due to the nature of an EMS that has high-volume and high-variety environment. Moreover, quick response and high flexibility are also needed. Then, cellular manufacturing layout design was determined for the selected group of products. Systematic layout planning (SLP) was used to analyze and design the possible cellular layouts for the factory. The cellular layout was selected based on the main criteria of the plant. Computer simulation was used to analyze and compare the performance of the proposed cellular layout and the current layout. It found that the proposed cellular layout can generate better performances than the current layout. 

Keywords: Layout, Electronic Manufacturing Service Plant (EMS), Computer Simulation, Cellular Manufacturing System (CMS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3461