Search results for: micro modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2647

Search results for: micro modeling

2167 Support Vector Fuzzy Based Neural Networks For Exchange Rate Modeling

Authors: Prof. Chokri SLIM

Abstract:

A Novel fuzzy neural network combining with support vector learning mechanism called support-vector-based fuzzy neural networks (SVBFNN) is proposed. The SVBFNN combine the capability of minimizing the empirical risk (training error) and expected risk (testing error) of support vector learning in high dimensional data spaces and the efficient human-like reasoning of FNN.

Keywords: Neural network, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16687
2166 A Physically-Based Analytical Model for Reduced Surface Field Laterally Double Diffused MOSFETs

Authors: M. Abouelatta, A. Shaker, M. El-Banna, G. T. Sayah, C. Gontrand, A. Zekry

Abstract:

In this paper, a methodology for physically modeling the intrinsic MOS part and the drift region of the n-channel Laterally Double-diffused MOSFET (LDMOS) is presented. The basic physical effects like velocity saturation, mobility reduction, and nonuniform impurity concentration in the channel are taken into consideration. The analytical model is implemented using MATLAB. A comparison of the simulations from technology computer aided design (TCAD) and that from the proposed analytical model, at room temperature, shows a satisfactory accuracy which is less than 5% for the whole voltage domain.

Keywords: LDMOS, MATLAB, RESURF, modeling, TCAD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
2165 Advanced Neural Network Learning Applied to Pulping Modeling

Authors: Z. Zainuddin, W. D. Wan Rosli, R. Lanouette, S. Sathasivam

Abstract:

This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of pulping problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified odified problem M-1 Ax= M-1b where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.

Keywords: Convergence, pulping modeling, neural networks, preconditioned conjugate gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
2164 Numerical Modeling of Temperature Fields in Aviation Gas Turbine Elements

Authors: A. M. Pashaev, R. A. Sadihov, A. S. Samedov, C. Ardil

Abstract:

A mathematical model and a numerical method for computing the temperature field of the profile part of convectionally cooled blades are developed. The theoretical substantiation of the method is proved by corresponding theorems. To this end, convergent quadrature processes were developed and error estimates were obtained in terms of the Zygmund continuity moduli. The boundary conditions for heat exchange are determined from the solution of the corresponding integral equations and empirical relations. The reliability of the developed methods is confirmed by calculation and experimental studies of the thermohydraulic characteristics of the nozzle apparatus of the first stage of the gas turbine.

Keywords: Aviation gas turbine, temperature field, cooled blades, numerical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752
2163 Back Analysis of Tehran Metro Tunnel Construction Using FLAC-3D

Authors: M. Mahdi, N. Shariatmadari

Abstract:

An important aspect of planning for shallow tunneling under urban areas is the determination of likely surface movements and interaction with existing structures. Back analysis of built tunnels that their settlements magnitude is available, could aid the designers to have a more accuracy in future projects.

In this paper, one single Tehran Metro Tunnel (at west of Hor square, Jang University Street) was selected. At first, surface settlements of this tunnel were measured in situ. Then this tunnel was modeled using the commercial finite deference software FLAC-3D. Finally, Results of modeling and in situ measurements compared for verification.

Keywords: Shallow Tunnel, Back Analysis, Surface Movement, Numerical Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3818
2162 Simulation of Reflection Loss for Carbon and Nickel-Carbon Thin Films

Authors: M. Emami, R. Tarighi, R. Goodarzi

Abstract:

Maximal radar wave absorbing cannot be achieved by shaping alone. We have to focus on the parameters of absorbing materials such as permittivity, permeability, and thickness so that best absorbing according to our necessity can happen. The real and imaginary parts of the relative complex permittivity (εr' and εr") and permeability (µr' and µr") were obtained by simulation. The microwave absorbing property of carbon and Ni(C) is simulated in this study by MATLAB software; the simulation was in the frequency range between 2 to 12 GHz for carbon black (C), and carbon coated nickel (Ni(C)) with different thicknesses. In fact, we draw reflection loss (RL) for C and Ni-C via frequency. We have compared their absorption for 3-mm thickness and predicted for other thicknesses by using of electromagnetic wave transmission theory. The results showed that reflection loss position changes in low frequency with increasing of thickness. We found out that, in all cases, using nanocomposites as absorbance cannot get better results relative to pure nanoparticles. The frequency where absorption is maximum can determine the best choice between nanocomposites and pure nanoparticles. Also, we could find an optimal thickness for long wavelength absorbing in order to utilize them in protecting shields and covering.

Keywords: Absorbing, carbon, carbon nickel, frequency, thicknesses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
2161 Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel

Authors: Sanjeev Kumar, S. K. Nath

Abstract:

Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300°C, 1150°C, 1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat temperatures of 30°C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900ºC. For parent steel, impact toughness value is 26.8J at -50°C in transverse direction.

Keywords: HAZ Simulation, Mechanical Properties, Peak Temperature, Ship hull steel, and Weldability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
2160 TSM: A Design Pattern to Make Ad-hoc BPMs Easy and Inexpensive in Workflow-aware MISs

Authors: Haitao Yang

Abstract:

Despite so many years- development, the mainstream of workflow solutions from IT industries has not made ad-hoc workflow-support easy or inexpensive in MIS. Moreover, most of academic approaches tend to make their resulted BPM (Business Process Management) more complex and clumsy since they used to necessitate modeling workflow. To cope well with various ad-hoc or casual requirements on workflows while still keeping things simple and inexpensive, the author puts forth first the TSM design pattern that can provide a flexible workflow control while minimizing demand of predefinitions and modeling workflow, which introduces a generic approach for building BPM in workflow-aware MISs (Management Information Systems) with low development and running expenses.

Keywords: Ad-hoc workflow, BPM, Design pattern, TSM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496
2159 Experimental and Analytical Dose Assessment of Patient's Family Members Treated with I-131

Authors: Marzieh Ebrahimi, Vahid Changizi, Mohammad Reza Kardan, Seyed Mahdi Hosseini Pooya, Parham Geramifar

Abstract:

Radiation exposure to the patient's family members is one of the major concerns during thyroid cancer radionuclide therapy. The aim of this study was to measure the total effective dose of the family members by means of thermoluminescence personal dosimeter, and compare with those calculated by analytical methods. Eighty-five adult family members of fifty-one patients volunteered to participate in this research study. Considering the minimum and maximum range of dose rate from 15 µsv/h to 120 µsv/h at patients' release time, the calculated mean and median dose values of family members were 0.45 mSv and 0.28 mSv, respectively. Moreover, almost all family members’ doses were measured to be less than the dose constraint of 5 mSv recommended by Basic Safety Standards. Considering the influence parameters such as patient dose rate and administrated activity, the total effective doses of family members were calculated by TEDE and NRC formulas and compared with those of experimental results. The results indicated that, it is fruitful to use the quantitative calculations for releasing patients treated with I-131 and correct estimation of patients' family doses.

Keywords: Effective dose, thermoluminescence, I-131, Thyroid cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
2158 One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen

Authors: Hongfang Ma, Mingchuan Zhou, Haitao Zhang, Weiyong Ying

Abstract:

One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.

Keywords: Reactor, modeling, methanol, steam reforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 747
2157 Surface Topography Assessment Techniques based on an In-process Monitoring Approach of Tool Wear and Cutting Force Signature

Authors: A. M. Alaskari, S. E. Oraby

Abstract:

The quality of a machined surface is becoming more and more important to justify the increasing demands of sophisticated component performance, longevity, and reliability. Usually, any machining operation leaves its own characteristic evidence on the machined surface in the form of finely spaced micro irregularities (surface roughness) left by the associated indeterministic characteristics of the different elements of the system: tool-machineworkpart- cutting parameters. However, one of the most influential sources in machining affecting surface roughness is the instantaneous state of tool edge. The main objective of the current work is to relate the in-process immeasurable cutting edge deformation and surface roughness to a more reliable easy-to-measure force signals using a robust non-linear time-dependent modeling regression techniques. Time-dependent modeling is beneficial when modern machining systems, such as adaptive control techniques are considered, where the state of the machined surface and the health of the cutting edge are monitored, assessed and controlled online using realtime information provided by the variability encountered in the measured force signals. Correlation between wear propagation and roughness variation is developed throughout the different edge lifetimes. The surface roughness is further evaluated in the light of the variation in both the static and the dynamic force signals. Consistent correlation is found between surface roughness variation and tool wear progress within its initial and constant regions. At the first few seconds of cutting, expected and well known trend of the effect of the cutting parameters is observed. Surface roughness is positively influenced by the level of the feed rate and negatively by the cutting speed. As cutting continues, roughness is affected, to different extents, by the rather localized wear modes either on the tool nose or on its flank areas. Moreover, it seems that roughness varies as wear attitude transfers from one mode to another and, in general, it is shown that it is improved as wear increases but with possible corresponding workpart dimensional inaccuracy. The dynamic force signals are found reasonably sensitive to simulate either the progressive or the random modes of tool edge deformation. While the frictional force components, feeding and radial, are found informative regarding progressive wear modes, the vertical (power) components is found more representative carrier to system instability resulting from the edge-s random deformation.

Keywords: Dynamic force signals, surface roughness (finish), tool wear and deformation, tool wear modes (nose, flank)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349
2156 Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning

Authors: W. D. Wan Rosli, Z. Zainuddin, R. Lanouette, S. Sathasivam

Abstract:

This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.

Keywords: Convergence, Modeling, Neural Networks, Preconditioned Conjugate Gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
2155 The Impact of Bank Consolidation on the Performance of SMES in Nigeria

Authors: Okolo Chimaobi Valentine

Abstract:

This paper seeks to assess the implications of bank consolidation on the performance of small and medium scale enterprises in the Nigerian economy. Multiple linear regression technique and correlation matrix test were employed to measure the extent to which small and medium scale enterprises asset size, survival and access to credit were influenced. The result showed that bank deposit (BD) and bank credit (L or BC) impacted on asset size and survival of small and medium scale enterprises. None of the variables had significant impact on SMEs access to credit. There is a shift of focus by commercial banks away from small and medium scale enterprises (small customers), which is evidenced by the significant negative influence of bank credit to both the survival and asset size of small and medium enterprises. While micro finance banks work hard at providing funds to small and medium scale entrepreneurs, their capacity to meet the needs of these entrepreneurs is constrained. CBN should make policies that will boost micro finance bank’s capital and also monitor closely the management of the banks to ensure prudent financing of small and medium scale investments.

Keywords: Bank consolidation, small and medium enterprises.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3909
2154 Study on Influencing Factors of Walkability of Rail Transit Station Area

Authors: Yang Wenjuan, Xu Yilun

Abstract:

Based on the comparative analysis of the relevant evaluation methods of walking environment, this paper selects the combined evaluation method of macro urban morphology analysis and micro urban design quality survey, then investigates and analyzes the walking environment of three rail transit station area in Nanjing to explore the influence factor and internal relation of walkability of rail transit station area. Analysis shows that micro urban design factors have greater impact on the walkability of rail transit station area compared with macro urban morphology factors, the convenience is the key factor in the four aspects of convenience, security, identity and comfortability of the urban design factors, the convenience is not only affected by the block network form, but also related to the quality of the street space. The overall evaluation of walkability comes from the overlapping and regrouping of the walking environment at different levels, but some environmental factors play a leading role. The social attributes of pedestrians also partly influence their walking perception and evaluation.

Keywords: Rail transit station area, walkability, evaluation, influence factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 838
2153 Fast and Accurate Reservoir Modeling: Genetic Algorithm versus DIRECT Method

Authors: Mohsen Ebrahimi, Milad M. Rabieh

Abstract:

In this paper, two very different optimization algorithms, Genetic and DIRECT algorithms, are used to history match a bottomhole pressure response for a reservoir with wellbore storage and skin with the best possible analytical model. No initial guesses are available for reservoir parameters. The results show that the matching process is much faster and more accurate for DIRECT method in comparison with Genetic algorithm. It is furthermore concluded that the DIRECT algorithm does not need any initial guesses, whereas Genetic algorithm needs to be tuned according to initial guesses.

Keywords: DIRECT algorithm, Genetic algorithm, Analytical modeling, History match

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
2152 Real-time Haptic Modeling and Simulation for Prosthetic Insertion

Authors: Catherine A. Todd, Fazel Naghdy

Abstract:

In this work a surgical simulator is produced which enables a training otologist to conduct a virtual, real-time prosthetic insertion. The simulator provides the Ear, Nose and Throat surgeon with real-time visual and haptic responses during virtual cochlear implantation into a 3D model of the human Scala Tympani (ST). The parametric model is derived from measured data as published in the literature and accounts for human morphological variance, such as differences in cochlear shape, enabling patient-specific pre- operative assessment. Haptic modeling techniques use real physical data and insertion force measurements, to develop a force model which mimics the physical behavior of an implant as it collides with the ST walls during an insertion. Output force profiles are acquired from the insertion studies conducted in the work, to validate the haptic model. The simulator provides the user with real-time, quantitative insertion force information and associated electrode position as user inserts the virtual implant into the ST model. The information provided by this study may also be of use to implant manufacturers for design enhancements as well as for training specialists in optimal force administration, using the simulator. The paper reports on the methods for anatomical modeling and haptic algorithm development, with focus on simulator design, development, optimization and validation. The techniques may be transferrable to other medical applications that involve prosthetic device insertions where user vision is obstructed.

Keywords: Haptic modeling, medical device insertion, real-time visualization of prosthetic implantation, surgical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
2151 Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs

Authors: Surinder Deswal, Mahesh Pal

Abstract:

An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.

Keywords: Artificial neural network, evaporation losses, multiple linear regression, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
2150 Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling

Authors: Erfan Niazi, Marianne Fenech

Abstract:

Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.

Keywords: Red blood cell, Rouleaux, microfluidics, image processing, population balance modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1058
2149 An Automation of Check Focusing on CRUD for Requirements Analysis Model in UML

Authors: Shinpei Ogata, Yoshitaka Aoki, Hirotaka Okuda, Saeko Matsuura

Abstract:

A key to success of high quality software development is to define valid and feasible requirements specification. We have proposed a method of model-driven requirements analysis using Unified Modeling Language (UML). The main feature of our method is to automatically generate a Web user interface mock-up from UML requirements analysis model so that we can confirm validity of input/output data for each page and page transition on the system by directly operating the mock-up. This paper proposes a support method to check the validity of a data life cycle by using a model checking tool “UPPAAL" focusing on CRUD (Create, Read, Update and Delete). Exhaustive checking improves the quality of requirements analysis model which are validated by the customers through automatically generated mock-up. The effectiveness of our method is discussed by a case study of requirements modeling of two small projects which are a library management system and a supportive sales system for text books in a university.

Keywords: CRUD, Model Checking, Model Driven Development, Requirements Analysis, Unified Modeling Language, UPPAAL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
2148 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis

Authors: Akinola Ikudayisi, Josiah Adeyemo

Abstract:

The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.

Keywords: Irrigation, principal component analysis, reference evapotranspiration, Vaalharts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061
2147 Auto Regressive Tree Modeling for Parametric Optimization in Fuzzy Logic Control System

Authors: Arshia Azam, J. Amarnath, Ch. D. V. Paradesi Rao

Abstract:

The advantage of solving the complex nonlinear problems by utilizing fuzzy logic methodologies is that the experience or expert-s knowledge described as a fuzzy rule base can be directly embedded into the systems for dealing with the problems. The current limitation of appropriate and automated designing of fuzzy controllers are focused in this paper. The structure discovery and parameter adjustment of the Branched T-S fuzzy model is addressed by a hybrid technique of type constrained sparse tree algorithms. The simulation result for different system model is evaluated and the identification error is observed to be minimum.

Keywords: Fuzzy logic, branch T-S fuzzy model, tree modeling, complex nonlinear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
2146 Modeling of Surface Roughness for Flow over a Complex Vegetated Surface

Authors: Wichai Pattanapol, Sarah J. Wakes, Michael J. Hilton, Katharine J.M. Dickinson

Abstract:

Turbulence modeling of large-scale flow over a vegetated surface is complex. Such problems involve large scale computational domains, while the characteristics of flow near the surface are also involved. In modeling large scale flow, surface roughness including vegetation is generally taken into account by mean of roughness parameters in the modified law of the wall. However, the turbulence structure within the canopy region cannot be captured with this method, another method which applies source/sink terms to model plant drag can be used. These models have been developed and tested intensively but with a simple surface geometry. This paper aims to compare the use of roughness parameter, and additional source/sink terms in modeling the effect of plant drag on wind flow over a complex vegetated surface. The RNG k-ε turbulence model with the non-equilibrium wall function was tested with both cases. In addition, the k-ω turbulence model, which is claimed to be computationally stable, was also investigated with the source/sink terms. All numerical results were compared to the experimental results obtained at the study site Mason Bay, Stewart Island, New Zealand. In the near-surface region, it is found that the results obtained by using the source/sink term are more accurate than those using roughness parameters. The k-ω turbulence model with source/sink term is more appropriate as it is more accurate and more computationally stable than the RNG k-ε turbulence model. At higher region, there is no significant difference amongst the results obtained from all simulations.

Keywords: CFD, canopy flow, surface roughness, turbulence models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2963
2145 Comparison of Polynomial and Radial Basis Kernel Functions based SVR and MLR in Modeling Mass Transfer by Vertical and Inclined Multiple Plunging Jets

Authors: S. Deswal, M. Pal

Abstract:

Presently various computational techniques are used in modeling and analyzing environmental engineering data. In the present study, an intra-comparison of polynomial and radial basis kernel functions based on Support Vector Regression and, in turn, an inter-comparison with Multi Linear Regression has been attempted in modeling mass transfer capacity of vertical (θ = 90O) and inclined (θ multiple plunging jets (varying from 1 to 16 numbers). The data set used in this study consists of four input parameters with a total of eighty eight cases, forty four each for vertical and inclined multiple plunging jets. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 along with corresponding root mean square error values of 0.0025 and 0.0020 were achieved by using polynomial and radial basis kernel functions based Support Vector Regression respectively. An intra-comparison suggests improved performance by radial basis function in comparison to polynomial kernel based Support Vector Regression. Further, an inter-comparison with Multi Linear Regression (correlation coefficient = 0.973 and root mean square error = 0.0024) reveals that radial basis kernel functions based Support Vector Regression performs better in modeling and estimating mass transfer by multiple plunging jets.

Keywords: Mass transfer, multiple plunging jets, polynomial and radial basis kernel functions, Support Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
2144 A Holistic Workflow Modeling Method for Business Process Redesign

Authors: Heejung Lee

Abstract:

In a highly competitive environment, it becomes more important to shorten the whole business process while delivering or even enhancing the business value to the customers and suppliers. Although the workflow management systems receive much attention for its capacity to practically support the business process enactment, the effective workflow modeling method remain still challenging and the high degree of process complexity makes it more difficult to gain the short lead time. This paper presents a workflow structuring method in a holistic way that can reduce the process complexity using activity-needs and formal concept analysis, which eventually enhances the key performance such as quality, delivery, and cost in business process.

Keywords: Workflow management, reengineering, formal concept analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
2143 Implementation of Building Information Modeling in Turkish Government Sector Projects

Authors: Mohammad Lemar Zalmai, Mustafa Nabi Kocakaya, Cemil Akcay, Ekrem Manisali

Abstract:

In recent years, the Building Information Modeling (BIM) approach has been developed expeditiously. As people see the benefits of this approach, it has begun to be used widely in construction projects and some countries made it mandatory to get more benefits from it. To promote the implementation of BIM in construction projects, it will be helpful to get some relevant information from surveys and interviews. The purpose of this study is to research the current adoption and implementation of BIM in public projects in Turkey. This study specified the challenges of BIM implementation in Turkey and proposed some solutions to overcome them. In this context, the challenges for BIM implementation and the factors that affect the BIM usage are determined based on previous academic researches and expert opinions by conducting interviews and questionnaire surveys. Several methods are used to process information in order to obtain weights of different factors to make BIM widespread in Turkey. This study concluded interviews' and questionnaire surveys' outcomes and proposed some suggestions to promote the implementation of BIM in Turkey. We believe research findings will be a good reference for boosting BIM implementation in Turkey.

Keywords: Building Information Modeling, BIM, BIM implementations, Turkish construction industry, Turkish government sector projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832
2142 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint

Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, ¬G. A. P. Thé

Abstract:

This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.

Keywords: Modeling, AC servomotor, Permanent Magnet Synchronous Motor-PMSM, Genetic Algorithm, Vector Control, Robotic Manipulator, Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485
2141 Access of Small and Medium Enterprises to Finance in Rural Areas: Case of Indonesia and Thailand

Authors: N. Ikasari, T. Sumransat, U. Eko, R. Kusumastuti

Abstract:

Small and medium enterprises (SMEs) are regarded as the engine for economic development, notwithstanding their continuous financing conundrum. In the case of developing countries, access to finance is a reflection of the effectiveness of government policy. The widely accepted perspective to assess small businesses’ access to finance is that of economic view. The existing body of literature presents access to finance in three dimensions; they are accessibility, eligibility and affordability. Within this perspective, the role of socio-cultural has not explored. This study is aimed at investigating the existence of any socio-cultural factors within access to finance issue in Asian countries where governance is enriched by countries’ values and beliefs. The significance of this study is the instigation of supplementary dimension to assess access to finance that eventually contributes to the development of micro-finance policy. Indonesia and Thailand are selected as cases in point, where distinction is drawn on the level of cultural diversity and micro-finance policy in respective country. A questionnaire is used to collect information related to the three dimensions of access to finance as well as to explore alternative financing reasoning to elaborate the issue from the demand side. Questionnaires are distributed to 60 small business owners operating in Indonesia and the same number in Thailand. In order to present a complete understanding on the matter at hand, interviews with banks are conducted to capture the perspective as presented by the supply side. Research findings show that small business owners and banks in Indonesia and Thailand are in agreement that access to finance is not deemed as an issue. However, trust issue that exists mutually between financing users and providers leads small business owners in Indonesia to look for alternative financing other than banks. The findings contribute to the refinement of micro-financing policy in Indonesia and Thailand.

Keywords: Access to finance, Indonesia, small and medium enterprises, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
2140 Evaluation of Antioxidant Activities of Cabbage (Brassica oleracea L. var. capitata L.)

Authors: Rutanachai Thaipratum

Abstract:

At present, it is widely-known that free radicals are the causes of illness such as cancers, coronary heart disease, Alzheimer’s disease and aging. One method of protection from free radical is the consumption of antioxidant-containing foods or herbs. Several analytical methods have been used for qualitative and quantitative determination of antioxidants. This project aimed to evaluate antioxidant activity of ethanolic and aqueous extracts from cabbage (Brassicca oleracea L. var. capitata L.) measured by DPPH and Hydroxyl radical scavenging method. The results show that averaged antioxidant activity measured in ethanolic extract (µmol Ascorbic acid equivalent/g fresh mass) were 7.316 ± 0.715 and 4.66 ± 1.029 as determined by DPPH and Hydroxyl radical scavenging activity assays respectively. Averaged antioxidant activity measured in aqueous extract (µmol Ascorbic acid equivalent/g fresh mass) were 15.141 ± 2.092 and 4.955 ± 1.975 as determined by DPPH and Hydroxyl radical scavenging activity assays respectively.

Keywords: Free radical, antioxidant, cabbage, Brassicca oleracea L. var. capitata L.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
2139 Dynamic Modeling and Simulation of Industrial Naphta Reforming Reactor

Authors: Gholamreza Zahedi, M. Tarin, M. Biglari

Abstract:

This work investigated the steady state and dynamic simulation of a fixed bed industrial naphtha reforming reactors. The performance of the reactor was investigated using a heterogeneous model. For process simulation, the differential equations are solved using the 4th order Runge-Kutta method .The models were validated against measured process data of an existing naphtha reforming plant. The results of simulation in terms of components yields and temperature of the outlet were in good agreement with empirical data. The simple model displays a useful tool for dynamic simulation, optimization and control of naphtha reforming.

Keywords: Dynamic simulation, fixed bed reactor, modeling, reforming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2965
2138 The Relationship of the Dentate Nucleus with the Pyramid of Vermis: A Microneurosurgical Anatomical Study

Authors: Santhosh K. S. Annayappa, Nupur Pruthi

Abstract:

The region of dentate nucleus is a common site for various pathologies like hematomas, tumours, etc. We aimed to study in detail the relationship of this region with the vermis, especially the pyramid using microscopic fibre dissection technique. To achieve this aim, 20 cerebellar hemispheres were studied from the 11 cerebellums. Dissection was performed using wooden spatulas and micro dissectors under a microscope following Klingler’s preservation technique. The relationship between the pyramid of vermis and the dentate nucleus was studied in detail. A similar relationship was studied on the MRI of randomly selected trigeminal neuralgia patients and correlated with anatomical findings. Results show the mean distance of the lateral margin of the dentate nucleus from the midline on anatomic specimens was 21.4 ± 1.8 mm (19-25 mm) and 23.4 ± 3.4 mm (15-29 mm) on right and left side, respectively. Similar measurements made on the MRI were 22.97 ± 2.0 mm (20.03-26.15 mm) on the right side and 23.98 ± 2.1 mm (21.47-27.67 mm) on the left side. The amount of white matter dissection required to reach the dentate nucleus at the pyramidal attachment area was 7.3 ± 1.0 mm (6-9 mm) on the right side and 6.8 ± 1.4 mm (5-10 mm) on the left side. It was concluded that the pyramid of vermis has a constant relationship with the dentate nucleus and can be used as an excellent landmark during surgery to localise the dentate nucleus on the suboccipital surface.

Keywords: Fiber dissection, micro neurosurgery, dentate nucleus of cerebellum, pyramid of vermis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1240