
  

Abstract—Presently various computational techniques are used 

in modeling and analyzing environmental engineering data. In the 

present study, an intra-comparison of polynomial and radial basis 

kernel functions based on Support Vector Regression and, in turn, an 

inter-comparison with Multi Linear Regression has been attempted in 

modeling mass transfer capacity of vertical (θ = 90O) and inclined (θ 

multiple plunging jets (varying from 1 to 16 numbers). The data set 

used in this study consists of four input parameters with a total of 

eighty eight cases, forty four each for vertical and inclined multiple 

plunging jets. For testing, tenfold cross validation was used. 

Correlation coefficient values of 0.971 and 0.981 along with 

corresponding root mean square error values of 0.0025 and 0.0020 

were achieved by using polynomial and radial basis kernel functions 

based Support Vector Regression respectively. An intra-comparison 

suggests improved performance by radial basis function in 

comparison to polynomial kernel based Support Vector Regression. 

Further, an inter-comparison with Multi Linear Regression 

(correlation coefficient = 0.973 and root mean square error = 0.0024) 

reveals that radial basis kernel functions based Support Vector 

Regression performs better in modeling and estimating mass transfer 

by multiple plunging jets. 

 

Keywords—Mass transfer, multiple plunging jets, polynomial 

and radial basis kernel functions, Support Vector Regression.  

I. INTRODUCTION 

LUNGING jets have wide applications in environmental 

and chemical engineering, including aeration and 

floatation in water and wastewater treatment, bubble floatation 

of minerals, oxygenation of mammalian-cell bio-reactors, 

biological aerated filter, fermentation, stirring of chemicals as 

well as increasing gas-liquid transfer, cooling system in power 

plants, plunging columns, breakers and waterfalls [1]-[7]. 

Plunging jet aeration/oxygenation system provides a simple 

and inexpensive mode of mass transfer and it is an attractive 

way to effect mass/oxygen transfer than conventional systems 

for various reasons [1], [7]-[9] such as simplicity in design, 

construction and operation; facilitation in the make-up of 

“closed” system, which enhance complete utilization of 

oxygen and volatile reactants; absence of compressor blower; 

absence of stirring devices because the water jet itself achieves 
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aeration and mixing; energetically attractive as a means of 

straightforward contacting mechanism in fouling or hazardous 

environments; and free from operational difficulties like 

clogging in air diffusers, limitations on the installation of 

mechanical aerators by the tank width, etc. Due to these 

potential advantages, there has been a growing interest in the 

aeration/oxygenation by plunging water jets in the last few 

years.  

Numerous studies have been reported on air-water oxygen 

transfer by single plunging jets [10]-[18]. Empirical 

relationships between various jet parameters for estimating 

mass/oxygen transfer capacity have also been suggested in 

some of these studies. The simplest relationships for single 

water jets plunging vertically (i.e. jet impact angle, θ = 90
O
) as 

proposed by [19], [15] and [14] respectively are: 

 

( )
2324

20 1085.4101.3 jjL dvAK −− ×+×=                (1) 

 

( ) PAK L

5

20 109 −×=   (2)     

                                  (2)

( ) ( ) 65.0

20 029.0 VPaK L =   (3)                 

 

where 
( )20AK L

 is volumetric oxygen transfer factor at standard 

conditions (m
3
/h); 

jv  is jet velocity at exit (m/s); 
jd  is jet 

diameter (m); P  is jet power (W); 
( )20aK L

 is volumetric 

oxygen transfer coefficient at standard conditions (1/s); and 

VP  is jet power per unit volume (kW/m
3
). 

Few of the studies have also been reported on air-water 

oxygen transfer by multiple plunging jets [20]-[22], and have 

suggested relationships between various jet parameters for 

estimating and predicting oxygen transfer by multiple 

plunging jets. The relationships for vertical multiple plunging 

jets (θ = 90
O
) as proposed by [20] and for inclined multiple 

plunging jets (θ = 60
O
) as proposed by [21] respectively are: 

 

( )
53.114.284.0

20 113.0 jjL dvnaK =               (4) 

 

( )
43.111.281.0

20 103.0 jjL dvnaK =               (5) 

 

where, 
( )20aK L

 is the volumetric mass/oxygen transfer 
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coefficient at standard conditions (per sec) and n  is the 

number of jets in multiple plunging jets oxygenation system. 

 Recently, [23] has used multi linear regression (MLR) 

approach and proposed a joint equation for estimating oxygen 

transfer capacity by multiple plunging jets, both vertical (θ = 

90
O
) and inclined jets (θ = 60

O
), as under: 

 

( )
48.113.282.0

20 095.0 jjfL dvnIaK =                     (6)  

 

where, �� is Inclination Factor. For vertical jets (θ=90
O
), �� = 

1; and for inclined jets (θ=60
O
), �� = 1.29.  

 In last few years, computational techniques have been used 

successfully in civil and environmental engineering 

applications [24]-[32]. In this paper, an attempt has been made 

to utilize and check the applicability and performance of 

polynomial and radial basis kernel functions based on Support 

Vector Regression and, in turn, an inter-comparison with 

Multi Linear Regression in modeling mass transfer by vertical 

and inclined multiple plunging jets.  

II. SUPPORT VECTOR REGRESSION 

Support vector machines (SVMs) are classification or 

regression methods derived from statistical learning theory 

[33]. The SVMs classification methods are based on the 

principle of optimal separation of classes.  

If the classes are separable – this method selects, from 

among the infinite number of linear classifiers, the one that 

minimize the generalization error, or at least an upper bound 

on this error, derived from structural risk minimization. Thus, 

the selected hyper plane will be one that leaves the maximum 

margin between the two classes, where margin is defined as 

the sum of the distances of the hyper plane from the closest 

point of the two classes [33]. 

If the two classes are non-separable, the SVMs try to find 

the hyper plane that maximizes the margin and at the same 

time, minimizes a quantity proportional to the number of 

misclassification errors. The trade-off between margin and 

misclassification error is controlled by a positive constant that 

has to be chosen beforehand. This technique of designing 

SVMs can be extended to allow for non-linear decision 

surfaces. This can be achieved by projecting the original set of 

variables into a higher dimensional feature space and 

formulating a linear classification problem in the feature space 

[33]. The support vector machines can be applied to regression 

problems and can be formulated as given below: 

Vapnik [33] proposed Support Vector Regression (SVR) by 

introducing an alternative insensitive loss function (ε ). This 

loss function allows the concept of margin to be used for 

regression problems. Purpose of the SVR is to find a function 

having at the most ε deviation from the actual target vectors 

for all given training data and have to be as flat as possible 

[34]. This can be put in other words as the error on any 

training data has to be less than ε  . For a given training data 

with 'k' number of samples, represented by 

( ) ( )kk yy ,x...,,.........,x 11
 a linear decision function can be 

represented by 

 

( ) bf += xw,,x α                                              (7) 

 

where ( ) Λ∈⇒ αα,xf  (where Λ  is a set of parameters used 

in the decision rule; for example, in a multilayer neural 

network, Λ  is a set of weights of the network), 'x' is an N 

dimensional observed data vector, R is set of all real numbers, 

'b' is the bias term that determine the offset of the hyperplane 

from origin and 'w' determines the orientation of hyperplane. 

Further, xw,  represents the dot product in space 
NR . A 

smaller value of 'w' indicates the flatness of (7), which can be 

achieved by minimizing the Euclidean norm [34] as defined 

by 
2

w . Thus, an optimization problem for regression can be 

written as: 

 

minimize 2

2

1
w subject to





 ≤−−

≤−+
ε
ε

by

yb
ii

ii

xw,

xw,

         (8) 

 

The optimization problem in (8) is based on the assumption 

that there exists a function that provides an error on all 

training pairs which is less than or equal to ε . In real life 

problems, there may be a situation like one defined for 

classification by [33]. Therefore, to allow some more error, 

slack variables '
, ξξ can be introduced in (8), and the 

optimization problem defined above can be rewritten as: 

 

minimize ( )∑
=

++
k

i

iiC
1

'2

2

1
ξξw   

 

subject to 
iii

by ξε +≤−− xw,  

 

'

iii yb ξε +≤−+xw,                                          (9) 

 

and 0≥'
,

ii
ξξ for all    i = 1, 2,……, k. 

 

The parameter 'C' is determined by the user and determines 

the trade-off between the flatness of the function and the 

amount by which the deviations to the error more than ε  can 

be tolerated. The optimization problem in (9) can be solved by 

replacing the inequalities with a simpler form by transforming 

the problem to a dual space representation using Lagrangian 

multipliers [35].  

The Lagrangian is formed by introducing positive Lagrange 

multipliers 
i

λ , ''
iii η,η,λ  where i = 1,….,k and multiplying 

the constraint equations by these multipliers, and finally 

subtracting the results from the objective function (i.e. 2
w ). 

The Lagrangian for (9) can be written as: 
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( ) ( )

( ) ( )∑∑

∑ ∑

==

= =

+−−−++−

++−+−++=

k

i

iiii

k

i

iiii

k

i

k

i

iiiiii

by

byCL

1

''

1

''

1 1

'2

x,w

x,ww
2

1

ξηξηξελ

ξελξξ
       (10) 

 

The solution of this optimization problem can be obtained 

by locating the saddle point of the Lagrange function defined 

in (10). The Saddle points of (10) can be obtained by equating 

partial derivative of 'L' with respect to w, b, 
'

ii
and ξξ  to 

zero. Thus, (7) can now be written as: 

 

( ) ( ) bf i

k

i
ii +−= ∑

=
xxx ,,

1

' λλα                     (11) 

 

The technique discussed above can be extended to allow for 

non-linear support vector regression by introducing the 

concept of the kernel function [33]. This is achieved by 

mapping the data into a higher dimensional feature space, thus 

performing linear regression in feature space. The regression 

problem in feature space can be written by replacing ji xx ⋅  

in (11) with ( ) ( )
ji xΦxΦ ⋅ , where ( )xΦ is the mapping to the 

feature space.  

 

( ) ( ) ( )
jiji xΦxΦx,x ⋅≡K

 
             (12) 

 

Regression function given in (11) can now be written as: 

 

( ) ( ) ( ) bKf i

k

i

ii +−= ∑
=

xxx ,,
1

' λλα                     (13) 

 

TABLE I 

VALUES OF USER-DEFINED PARAMETERS 

Kernel C d � 

Polynomial (poly) 25 2 -- 

Radial basis (rbf) 25 -- 1 

 

TABLE II 
CORRELATION COEFFICIENT AND RMSE VALUES 

Approach 
Correlation 
coefficient 

Root mean 
square error 

MLR: (6) proposed by [23] 0.973 0.0024 

SVR poly 0.971 0.0025 

SVR rbf 0.981 0.0020 

III. DATA SET AND METHODOLOGY 

Data used in the present study is taken from two earlier 

studies [20] and [21] on mass transfer by multiple vertical (jet 

impact angle, θ = 90
O
) and multiple inclined (jet impact angle, 

θ = 60
O
) plunging jets respectively. The dataset consists of 

eighty eight experimental observations, forty four each for 

vertical and inclined multiple plunging jets, on different 

configurations in terms of jet diameter and number of jets 

(varying from 1 to 16). 

Four input parameters, namely jet velocity at exit (
jv , in 

m/s), jet diameter (
jd , in m), number of jets ( n ) and 

inclination factor (��) representing jet impact angle (θ, in 

degree) were used to predict volumetric mass/oxygen transfer 

coefficient at standard conditions (
( )20aK L

, in per sec) in the 

present study. These are the same input parameters as used in 

(6) derived by using Multi Linear Regression by [23].  

Support Vector Regression (SVR) requires selection of a 

suitable kernel. The two most frequently used kernel functions 

namely, polynomial and a radial basis kernel function were 

used in present study for intra-comparison. The use of SVR 

requires setting of user-defined parameters such as 

regularisation parameter (C), kernel specific parameters (d and 

�) and error-insensitive zone ε . Variation in error-insensitive 

zone ε  found to have no effect on the predicted volumetric 

mass/oxygen transfer coefficient in present study so a default 

value of 0.0010 was chosen for all experiments [36]. The 

optimal values of parameters C, d and � were obtained after 

several trials with the dataset. In order to test the performance 

of the used algorithm with both kernel functions, a ten-fold 

cross-validation was used. Correlation coefficient and root 

mean square error (RMSE) were used to compare the 

performance in the present study. 

IV. RESULTS 

Table I provides the optimal values of user-defined 

parameters; whereas, Table II provides the correlation 

coefficient and RMSE values using both kernels and (6). For 

intra-comparison of the performances of two kernel functions 

of SVR, as well as for inter-comparison with (6) proposed by 

[23], a graph between actual and predicted volumetric 

mass/oxygen transfer coefficient at standard conditions (

( )20aK L
, in per sec) is plotted in a way to show the scatter 

around a line of perfect agreement (i.e. a line at 45
O
). The 

performance of SVMpoly, SVMrbf and MLR represented by (6) 

are shown in Fig. 1. 

 

 

Fig. 1 Actual v/s predicted volumetric mass transfer coefficient 
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Results suggest effectiveness of both kernel functions in 

modeling and predicting volumetric mass/oxygen transfer 

coefficient with this dataset as majority of points are lying 

within ±15 % of the line of perfect agreement as shown in Fig. 

1. A correlation coefficient of 0.971 (RMSE = 0.0025) and 

0.981 (RMSE = 0.0020) was achieved with polynomial and 

radial basis function kernels respectively in comparison to a 

correlation coefficient of 0.973 (RMSE = 0.0024) by (6) as 

proposed by [23] (Table II). A coefficient of determination 

(R
2
) of 0.943 and 0.961 was achieved with polynomial and 

radial basis function kernels respectively in comparison to a 

coefficient of determination of 0.946 by (6) and provided in 

Fig. 1. Further, Fig. 1 suggests that MLR, represented by (6), 

under-predict the volumetric mass transfer coefficient in 

comparison to SVRrbf and over-predict in comparison to 

SVRpoly for this dataset. The average ratio of actual to 

predicted volumetric mass transfer coefficient of all 

experiments is 0.992 using (6), in comparison to 1.443 and 

1.056 with polynomial and radial basis kernel function 

respectively. The statistical results indicate the applicability of 

SVR in predicting the overall mass transfer coefficient by 

multiple plunging jets (both vertical and inclined); however, 

radial basis kernel function works well in comparison to 

polynomial kernel function. 

Fig. 2 represents the variation of actual and predicted 

overall mass transfer coefficient by multiple plunging jets with 

the number of test data. The first 44 test data numbers are for 

inclined multiple plunging jets and the rest 45 to 88 test data 

numbers are for vertical multiple plunging jets. It is evident 

from this plot that overall mass transfer coefficient predicted 

by radial basis kernel function of SVR is in good agreement 

with actual experimental values of both vertical and inclined 

multiple plunging jets in comparison with polynomial kernel 

function of SVR and MLR represented by (6) as proposed by 

[23]. 

 

 

Fig. 2 Variation in predicted values by SVR in comparison to (6) and 

the actual values of overall oxygen transfer coefficient at standard 

condition (KLa) by vertical and inclined multiple plunging jets 

V. CONCLUSION 

 Results from this study suggests that SVR is a powerful 

computational tool and can effectively be used in modeling 

and predicting overall oxygen mass transfer coefficient by 

multiple plunging jets, both vertical and inclined. The 

proposed modeling approach works quite well with radial 

basis kernel, while it works well with polynomial kernel. 

Thus, SVR can effectively be used in modeling physical 

processes like one predicting the overall oxygen mass transfer 

coefficient by plunging jets, within the range of input 

parameters used to train the model, rather than referring to 

costly experimental investigation.  

REFERENCES  

[1] A. K. Bin, “Gas entrainment by plunging liquid jets”, Chem. Eng. Sci. J. 
Great Britain, vol. 48, pp. 3585-3630, 1993. 

[2] P. D. Cummings, and H. Chanson, “Air entrainment in the developing 
flow region of plunging jets-part 1: theoretical development”, Fluids 

Eng. J. ASME, vol. 119, pp. 597-602, 1997. 

[3] H. Chanson, S. Aoki, and A. Hoque, “Similitude of air entrainment at 
vertical circular plunging jets”, in Proc. ASME FEDSM’02, Montreal, 

Quebec, 2002, pp. 1-6. 

[4] H. Chanson, S. Aoki, and A. Hoque, “Physical modelling and similitude 
of air bubble entrainment at vertical circular plunging jets”, Chem. Eng. 

Sc., vol. 59, pp. 747-758, 2004. 

[5] S. M. Leung, J. C. Little, T. Hoist, and N.G. Love, “Air/water oxygen 
transfer in a biological aerated filter”, J. Environmental Eng., vol. 132, 

pp. 181-189, 2006. 

[6] S. Deswal, D. V. S. Verma, and M. Pal, “Multiple plunging jet aeration 
system and parameter modelling by neural network and support vector 

machines”, in Proc. Water Pollution VIII: Modelling, Monitoring and 

Management, Italy, 2006, vol. 95, pp. 595-604.  
[7] S. Deswal, and D. V. S. Verma, “Performance evaluation and modeling 

of a conical plunging jets aerator”, Int. J. of Mathematical, Physical and 

Engineering Sciences, vol. 2, pp. 33-37, 2008. 
[8] D. Kusabiraki, H. Niki K. Yamagiwa, and A. Ohkawa, “Gas entrainment 

rate and flow pattern of vertical plunging liquid jets”, The Canadian J. 

Chem. Eng., vol. 68, pp. 893-903, 1990. 
[9] M. E. Emiroglu, and A. Baylar, “Study of the influence of air holes 

along length of convergent-divergent passage of a venture device on 

aeration”, J. Hyd. Res., vol. 41, pp. 513-520, 2003. 
[10] K. Tojo, N. Naruko, and K. Miyanami, “Oxygen transfer and liquid 

mixing characteristics of plunging jet reactors”, Chem. Eng. J. 

Netherlands, vol. 25, pp. 107-109, 1982. 
[11] A. Ahmed, “Aeration by plunging liquid jet”, Ph.D. thesis, 

Loughborough Univ. of Tech. UK, 1974. 

[12] E. van de Sande, and J. .M. Smith, “Mass transfer from plunging water 
jets”, Chem. Eng. J. Netherlands, vol. 10, pp. 225-233, 1975.  

[13] J. A. C. van de Donk, “Water aeration with plunging jets”, Ph.D. thesis, 

Technische Hogeschool Delft, Netherlands, 1981. 
[14] K. Tojo, and K. Miyanami, “Oxygen transfer in jet mixers”, Chem. Eng. 

J. Netherlands, vol. 24, pp. 89-97, 1982. 

[15] A. K. Bin, and J. M. Smith, “Mass transfer in a plunging liquid jet 
absorber”, Chem. Engng. Commun, vol. 15, pp. 367-383, 1982. 

[16] D. Bonsignore, G. Volpicelli, A. Campanile, L. Santoro, and R. 

Valentino, “Mass transfer in plunging jet absorbers”, Chem. Eng. 
Process, vol. 19, pp. 85-94, 1985. 

[17] A. Ohkawa, D. Kusabiraki, Y. Shiokawa, M. Sakal, and M. Fujii, “Flow 

and oxygen transfer in a plunging water system using inclined short 
nozzles in performance characteristics of its system in aerobic treatment 

of wastewater”, Biotech. Bioeng., vol. 28, pp. 1845-1856, 1986. 

[18] K. Funatsu, Y. Ch. Hsu, M. Noda, and S. Sugawa, “Oxygen transfer in 
the water jet vessel”, Chem. Eng. Commun., vol. 73. pp. 121-139, 1988. 

[19] A. Ahmed, and J. Glover, Conf. on Farm Wastes Disposal, Glasgow, 

Sept. 1972. In E. van de Sande, and J. M. Smith, “Mass transfer from 
plunging water jets”, Chem. Eng. J. Netherlands, vol. 10, pp.225-233, 

1975. 

[20] S. Deswal, and D. V. S. Verma, “Air-water oxygen transfer with 
multiple plunging jets”, Water Qual. Res. J. Canada; vol. 42, pp. 295-

302, 2007. 

0,000

0,010

0,020

0,030

0,040

0,050

0,060

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

K
 L

 a
 (

p
er

 s
ec

)

TEST DATA NUMBER

Actual KLa MLR: Eq. (6)

SVM poly SVM rbf

World Academy of Science, Engineering and Technology
International Journal of Civil and Environmental Engineering

 Vol:9, No:9, 2015 

1271International Scholarly and Scientific Research & Innovation 9(9) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
iv

il 
an

d 
E

nv
ir

on
m

en
ta

l E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
9,

 2
01

5 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

02
82

3.
pd

f



[21] S. Deswal, “Oxygen transfer by multiple inclined plunging water jets”, 

International Journal of Mathematical, Physical and Engineering 

Sciences, vol. 2, pp. 170-176, 2008. 
[22] M. Ide, H. Uchiyama, and T. Ishikura, "Performance of multi-plunging 

jet absorbers using liquid jets containing small solute bubbles", 

Canadian J. Chemical Engineering; vol. 81(3-4), pp. 613-620, 2008. 
[23] S. Deswal, and M. Pal, ""Multi-linear regression based prediction of 

mass transfer by multiple plunging jets", Int. J. of Mathematical, 

Computational, Physical, Electrical and Computer Engineering, vol. 8 
(3), pp.493-496, 2014. 

[24] M. Pal, and S. Deswal, “Modeling pile capacity using support vector 

machines and generalized regression neural network” J. of Geotechnical 
and Geoenvironmental Engineering ASCE, vol. 134, pp. 1021-1024, 

2008. 

[25] S. Deswal, and M. Pal, “Artificial neural network based modeling of 
evaporation losses in reservoirs”, Int. J. of Mathematical, Physical and 

Engineering Sciences, vol. 2, pp. 177-181, 2008. 

[26] M. Pal, and S. Deswal, "Support vector regression based shear strength 
modelling of deep beams", Computers & Structures, vol. 89(13), pp. 

1430-1439, 2011. 

[27] Y. K. Chow, W. T. Chan, I. F., Liu, and S. L. Lee, “Predication of pile 
capacity from stress-wave measurements: a neural network approach” 

Int. J. Numer. Analyt. Meth. Geomech., vol. 19, pp. 107–126, 1995. 

[28] M. Pal, and P. M. Mather, “Support vector classifiers for land cover 
classification”, in Proc. Map India 2003. Available: 

www.gisdevelopment.net/ technology/rs/pdf/23.pdf>. 

[29] M. Pal, “Support vector machines-based modelling of seismic 
liquefaction potential”, Int. J. Numer. Analyt. Meth. Geomech., vol. 30, 

pp. 983–996, 2006. 

[30] S. Deswal, "Computational techniques and their potential in predicting 
oxygen transfer by multiple oblique jets", Int. J. of Environmental 

Science, vol. 1(5), pp. 986-999, 2011. 

[31] S. Deswal, "Modeling Oxygen-transfer by Multiple Plunging Jets using 
Support Vector Machines and Gaussian Process Regression 

Techniques", Int. J. of Civil and Environmental Engineering, vol. 3(1); 

pp. 28-33, 2011. 
[32] T. Bagatur, and F. Onen, "A predictive model on air entrainment by 

plunging water jets using GEP and ANN", KSCE J. of Civil 

Engineering, vol. 18(1); pp. 304-314, 2014.  
[33] V. N. Vapnik, The Nature of Statistical Learning Theory. New York: 

Springer, 1995. 
[34] A. J. Smola, and B. Schölkopf, A Tutorial on Support Vector 

Regression. NeuroCOLT Technical Rep. No. NC-TR-98-030, Royal 
Holloway College, Univ. of London, London, 1998. 

[35] D. Leunberger, Linear and Nonlinear Programming. Addison-Wesley, 

1984. 

[36] I.H. Witten, and E. Frank, Data Mining: Practical Machines Learning 
Tools and Techniques. San Francisco: Morgan Kaufmann, 2005. 

 

 

World Academy of Science, Engineering and Technology
International Journal of Civil and Environmental Engineering

 Vol:9, No:9, 2015 

1272International Scholarly and Scientific Research & Innovation 9(9) 2015 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
iv

il 
an

d 
E

nv
ir

on
m

en
ta

l E
ng

in
ee

ri
ng

 V
ol

:9
, N

o:
9,

 2
01

5 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

02
82

3.
pd

f


