Search results for: medium temperature
2757 Simulation on Influence of Environmental Conditions on Part Distortion in Fused Deposition Modelling
Authors: Anto Antony Samy, Atefeh Golbang, Edward Archer, Alistair McIlhagger
Abstract:
Fused Deposition Modelling (FDM) is one of the additive manufacturing techniques that has become highly attractive in the industrial and academic sectors. However, parts fabricated through FDM are highly susceptible to geometrical defects such as warpage, shrinkage, and delamination that can severely affect their function. Among the thermoplastic polymer feedstock for FDM, semi-crystalline polymers are highly prone to part distortion due to polymer crystallization. In this study, the influence of FDM processing conditions such as chamber temperature and print bed temperature on the induced thermal residual stress and resulting warpage are investigated using 3D transient thermal model for a semi-crystalline polymer. The thermo-mechanical properties and the viscoelasticity of the polymer, as well as the crystallization physics which considers the crystallinity of the polymer, are coupled with the evolving temperature gradient of the print model. From the results it was observed that increasing the chamber temperature from 25 °C to 75 °C leads to a decrease of 3.3% residual stress and increase of 0.4% warpage, while decreasing bed temperature from 100 °C to 60 °C resulted in 27% increase in residual stress and a significant rise of 137% in warpage. The simulated warpage data are validated by comparing it with the measured warpage values of the samples using 3D scanning.
Keywords: Finite Element Analysis, FEA, Fused Deposition Modelling, residual stress, warpage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4822756 Solar Tracking System Using a Refrigerant as Working Medium for Solar Energy Conversion
Authors: S. Sendhil Kumar, S. N. Vijayan
Abstract:
Utilization of solar energy can be found in various domestic and industrial applications. The performance of any solar collector is largely affected by various parameters such as glazing, absorber plate, top covers, and heating pipes. Technology improvements have brought us another method for conversion of solar energy to direct electricity using solar photovoltaic system. Utilization and extraction of solar energy is the biggest problem in these conversion methods. This paper aims to overcome these problems and take the advantages of available energy from solar by maximizing the utilization through solar tracking system using a refrigerant as a working medium. The use of this tracking system can help increase the efficiency of conversion devices by maximum utilization of solar energy. The dual axis tracking system gives maximum energy output compared to single axis tracking system.Keywords: Refrigerant, solar collector, solar energy, solar panel, solar tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20202755 Evaluating Residual Mechanical and Physical Properties of Concrete at Elevated Temperatures
Authors: S. Hachemi, A. Ounis, S. Chabi
Abstract:
This paper presents the results of an experimental study on the effects of elevated temperature on compressive and flexural strength of Normal Strength Concrete (NSC), High Strength Concrete (HSC) and High Performance Concrete (HPC). In addition, the specimen mass and volume were measured before and after heating in order to determine the loss of mass and volume during the test. In terms of non-destructive measurement, ultrasonic pulse velocity test was proposed as a promising initial inspection method for fire damaged concrete structure. 100 Cube specimens for three grades of concrete were prepared and heated at a rate of 3°C/min up to different temperatures (150, 250, 400, 600, and 900°C). The results show a loss of compressive and flexural strength for all the concretes heated to temperature exceeding 400°C. The results also revealed that mass and density of the specimen significantly reduced with an increase in temperature.
Keywords: High temperature, Compressive strength, Mass loss, Ultrasonic pulse velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22232754 Water Resources Vulnerability Assessment to Climate Change in a Semi-Arid Basin of South India
Authors: K. Shimola, M. Krishnaveni
Abstract:
This paper examines vulnerability assessment of water resources in a semi-arid basin using the 4-step approach. The vulnerability assessment framework is developed to study the water resources vulnerability which includes the creation of GIS-based vulnerability maps. These maps represent the spatial variability of the vulnerability index. This paper introduces the 4-step approach to assess vulnerability that incorporates a new set of indicators. The approach is demonstrated using a framework composed of a precipitation data for (1975–2010) period, temperature data for (1965–2010) period, hydrological model outputs and the water resources GIS data base. The vulnerability assessment is a function of three components such as exposure, sensitivity and adaptive capacity. The current water resources vulnerability is assessed using GIS based spatio-temporal information. Rainfall Coefficient of Variation, monsoon onset and end date, rainy days, seasonality indices, temperature are selected for the criterion ‘exposure’. Water yield, ground water recharge, evapotranspiration (ET) are selected for the criterion ‘sensitivity’. Type of irrigation and storage structures are selected for the criterion ‘Adaptive capacity’. These indicators were mapped and integrated in GIS environment using overlay analysis. The five sub-basins, namely Arjunanadhi, Kousiganadhi, Sindapalli-Uppodai and Vallampatti Odai, fall under medium vulnerability profile, which indicates that the basin is under moderate stress of water resources. The paper also explores prioritization of sub-basinwise adaptation strategies to climate change based on the vulnerability indices.
Keywords: Adaptive capacity, exposure, overlay analysis, sensitivity, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11242753 The Performance of PtSn/Al₂O₃ with Cylindrical Particles for Acetic Acid Hydrogenation
Authors: Mingchuan Zhou, Haitao Zhang, Hongfang Ma, Weiyong Ying
Abstract:
Alumina supported PtSn catalysts with cylindrical particles were prepared and characterized by using low temperature N2 adsorption/desorption and X-ray diffraction. Low temperature N2 adsorption/desorption demonstrate that the tableting changed the texture properties of catalysts. XRD pattern indicate that the crystal structure of supports had no change after reaction. The performances over particles of PtSn/Al2O3 catalysts were investigated with regards to reaction temperature, pressure, and H2/AcOH mole ratio. After tableting, the conversion of acetic acid and selectivity of ethanol and acetyl acetate decreased. High reaction temperature and pressure can improve conversion of acetic acid. H2/AcOH mole ratio of 9.36 showed the best performance on acetic acid hydrogenation. High pressure had benefits for the selectivity of ethanol and other two parameters had no obvious effect on selectivity.Keywords: Acetic acid hydrogenation, ethanol, PtSn, cylindrical particles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21982752 A Simple Knowledge Management Strategy Model for SMEs in Developing Countries
Authors: Kitimaporn Choochote, Roger Nurse
Abstract:
The area of knowledge management has been in the highlight for enterprises over the past three decades. Many enterprises would like to have knowledge management and work hard to achieve it, however they are often confused about which direction to take to be successful and this point is especially true for Small and Medium Enterprises (SMEs) in developing countries. Many large companies have realized that knowledge is one of the richest resources which an organization possesses and knowledge management is a part of the foundation for a sustainable competitive advantage. Much work has been done in the area of knowledge management, but most of it has served large enterprises. This research provides a Model of knowledge management strategy for SMEs. It is based on analysis, insights and recommendations and it is presented so that SMEs in developing countries can easily understand and implement this model.Keywords: Competitive advantage, Developing Country, Knowledge Management Strategy, Small and Medium Enterprise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21012751 Development of All-male Fingerlings by Heat Treatment and the Genetic Mechanism of Heat Induced Sex Determination in Nile Tilapia(Oreochromis niloticus L.)
Authors: P. O. Angienda, B. O. Aketch, E. N. Waindi
Abstract:
Juvenile Nile tilapia subjected to heat treatment at temperatures ranging from 260C to 370C showed positive correlation (P<0.01) between treatment temperatures and resultant sex ratios, while, survival rate of the fry showed a negative correlation against temperature (P<0.01). The optimal temperature for both sex shift towards males and survival rates was 36±0.5°C, producing male percentage of 86.31 and a fry survival of 65.25. To determine the genetic basis of temperature sex-determination in Nile tilapia, we employed three microsatellite markers (Abur36, Abur100 and UNH846). Abur36 predicted the sex of 95% of the heat induced individuals, suggesting that the locus influence sex ratio and its interaction with temperature result in male biased sex ratio. This locus could turn out to be the major sex determining gene operating in Nile tilapia. These markers could be used in marker-assisted selection to select genotypes that give a higher percentage of males for commercial production.Keywords: Heat treatment, Microsatellite, Nile tilapia, sex-determination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36882750 Effect of Temperature of Exposure on Properties of Cement Mortar with MSWI Bottom Ash
Authors: Z. Pavlík, M. Keppert, J. Žumár, M. Pavlíková, A. Trník, R. Černý
Abstract:
Effect of high temperature exposure on properties of cement mortar containing municipal solid waste incineration (MSWI) bottom ash as partial natural aggregate replacement is analyzed in the paper. The measurements of mechanical properties, bulk density, matrix density, total open porosity, sorption and desorption isotherms are done on samples exposed to the temperatures of 20°C to 1000°C. TGA analysis is performed as well. Finally, the studied samples are analyzed by IR spectroscopy in order to evaluate TGA data.
Keywords: Cement mortar, high temperature exposure, MSWI bottom ash, natural aggregate replacement, mechanical properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18582749 A Study on Numerical Modelling of Rigid Pavement: Temperature and Thickness Effect
Authors: Amin Chegenizadeh, Mahdi Keramatikerman, Hamid Nikraz
Abstract:
Pavement engineering plays a significant role to develop cost effective and efficient highway and road networks. In general, pavement regarding structure is categorized in two core group namely flexible and rigid pavements. There are various benefits in application of rigid pavement. For instance, they have a longer life and lower maintenance costs in compare with the flexible pavement. In rigid pavement designs, temperature and thickness are two effective parameters that could widely affect the total cost of the project. In this study, a numerical modeling using Kenpave-Kenslab was performed to investigate the effect of these two important parameters in the rigid pavement.Keywords: Rigid pavement, Kenpave, Kenslab, thickness, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13692748 Entropy Generation Analysis of Free Convection Film Condensation on a Vertical Ellipsoid with Variable Wall Temperature
Authors: Sheng-An Yang, Ren-Yi Hung, Ying-Yi Ho
Abstract:
This paper aims to perform the second law analysis of thermodynamics on the laminar film condensation of pure saturated vapor flowing in the direction of gravity on an ellipsoid with variable wall temperature. The analysis provides us understanding how the geometric parameter- ellipticity and non-isothermal wall temperature variation amplitude “A." affect entropy generation during film-wise condensation heat transfer process. To understand of which irreversibility involved in this condensation process, we derived an expression for the entropy generation number in terms of ellipticity and A. The result indicates that entropy generation increases with ellipticity. Furthermore, the irreversibility due to finite temperature difference heat transfer dominates over that due to condensate film flow friction and the local entropy generation rate decreases with increasing A in the upper half of ellipsoid. Meanwhile, the local entropy generation rate enhances with A around the rear lower half of ellipsoid.Keywords: Free convection; Non-isothermal; Thermodynamic second law; Entropy, Ellipsoid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19562747 A Study of Standing-Wave Thermoacoustic Refrigerator
Authors: Patcharin Saechan, Isares Dhuchakallaya
Abstract:
Thermoacoustic refrigerator is a cooling device which uses the acoustic waves to produce the cooling effect. The aim of this paper is to explore the experimental and numerical feasibility of a standing-wave thermoacoustic refrigerator. The effects of the stack length, position of stack and operating frequency on the cooling performance are carried out. The circular pore stacks are tested under the atmospheric pressure. A low-cost loudspeaker is used as an acoustic driver. The results show that the location of stack installed in resonator tube has a greater effect on the cooling performance, than the stack length and operating frequency, respectively. The temperature difference across the ends of stack can be generated up to 13.7°C, and the temperature of cold-end is dropped down by 5.3°C from the ambient temperature.Keywords: Cooling performance, Refrigerator, Standing-wave, Thermoacoustics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23552746 Hot Deformability of Si-Steel Strips Containing Al
Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar
Abstract:
The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.
Keywords: Si-steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8752745 Numerical Investigation of the Thermal Separation in a Vortex Tube
Authors: N.Pourmahmoud, S.Akhesmeh
Abstract:
This work has been carried out in order to provide an understanding of the physical behaviors of the flow variation of pressure and temperature in a vortex tube. A computational fluid dynamics model is used to predict the flow fields and the associated temperature separation within a Ranque–Hilsch vortex tube. The CFD model is a steady axisymmetric model (with swirl) that utilizes the standard k-ε turbulence model. The second–order numerical schemes, was used to carry out all the computations. Vortex tube with a circumferential inlet stream and an axial (cold) outlet stream and a circumferential (hot) outlet stream was considered. Performance curves (temperature separation versus cold outlet mass fraction) were obtained for a specific vortex tube with a given inlet mass flow rate. Simulations have been carried out for varying amounts of cold outlet mass flow rates. The model results have a good agreement with experimental data.
Keywords: Ranque–Hilsch vortex tube, Temperature separation, k–ε model, cold mass fraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24262744 Biodiesel Production from Palm Oil using Heterogeneous Base Catalyst
Authors: Sirichai Chantara-arpornchai, Apanee Luengnaruemitchai, Samai Jai-In
Abstract:
In this study, the transesterification of palm oil with methanol for biodiesel production was studied by using CaO–ZnO as a heterogeneous base catalyst prepared by incipient-wetness impregnation (IWI) and co-precipitation (CP) methods. The reaction parameters considered were molar ratio of methanol to oil, amount of catalyst, reaction temperature, and reaction time. The optimum conditions–15:1 molar ratio of methanol to oil, a catalyst amount of 6 wt%, reaction temperature of 60 °C, and reaction time of 8 h–were observed. The effects of Ca loading, calcination temperature, and catalyst preparation on the catalytic performance were studied. The fresh and spent catalysts were characterized by several techniques, including XRD, TPR, and XRF.
Keywords: CaO, ZnO, biodiesel, heterogeneous catalyst, trans-esterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25682743 Study of a Developed Model Describing a Vacuum Membrane Distillation Unit Coupled to Solar Energy
Authors: Fatma Khaled, Khaoula Hidouri, Bechir Chaouachi
Abstract:
Desalination using solar energy coupled with membrane techniques such as vacuum membrane distillation (VMD) is considered as an interesting alternative for the production of pure water. During this work, a developed model of a polytetrafluoroethylene (PTFE) hollow fiber membrane module of a VMD unit of seawater was carried out. This simulation leads to establishing a comparison between the effects of two different equations of the vaporization latent heat on the membrane surface temperature and on the unit productivity. Besides, in order to study the effect of putting membrane modules in series on the outlet fluid temperature and on the productivity of the process, a simulation was executed.
Keywords: Vacuum membrane distillation, membrane module, membrane temperature, productivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6092742 Development of a Real-Time Energy Models for Photovoltaic Water Pumping System
Authors: Ammar Mahjoubi, Ridha Fethi Mechlouch, Belgacem Mahdhaoui, Ammar Ben Brahim
Abstract:
This purpose of this paper is to develop and validate a model to accurately predict the cell temperature of a PV module that adapts to various mounting configurations, mounting locations, and climates while only requiring readily available data from the module manufacturer. Results from this model are also compared to results from published cell temperature models. The models were used to predict real-time performance from a PV water pumping systems in the desert of Medenine, south of Tunisia using 60-min intervals of measured performance data during one complete year. Statistical analysis of the predicted results and measured data highlight possible sources of errors and the limitations and/or adequacy of existing models, to describe the temperature and efficiency of PV-cells and consequently, the accuracy of performance of PV water pumping systems prediction models.Keywords: Temperature of a photovoltaic module, Predicted models, PV water pumping systems efficiency, Simulation, Desert of southern Tunisia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18512741 Ion-Acoustic Double Layer in a Plasma with Two- Temperature Nonisothermal Electrons and Charged Dust Grains
Authors: Basudev Ghosh, Sreyasi Banerjee
Abstract:
Using the pseudopotential technique the Sagdeev potential equation has been derived in a plasma consisting of twotemperature nonisothermal electrons, negatively charged dust grains and warm positive ions. The study shows that the presence of nonisothermal two-temperature electrons and charged dust grains have significant effects on the excitation and structure of the ionacoustic double layers in the model plasma under consideration. Only compressive type double layer is obtained in the present plasma model. The double layer solution has also been obtained by including higher order nonlinearity and nonisothermality, which is shown to modify the amplitude and deform the shape of the double layer.
Keywords: Two temperature non-isothermal electrons and charged dust grains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32052740 Synthesis of ZnO Nanostructures via Gel-casting Method
Authors: A.A.Rohani, A.Salehi, M.Tabrizi, S. A. Manafi, A. Fardafshari
Abstract:
In this study, ZnO nano rods and ZnO ultrafine particles were synthesized by Gel-casting method. The synthesized ZnO powder has a hexagonal zincite structure. The ZnO aggregates with rod-like morphology are typically 1.4 μm in length and 120 nm in diameter, which consist of many small nanocrystals with diameters of 10 nm. Longer wires connected by many hexahedral ZnO nanocrystals were obtained after calcinations at the temperature over 600° C.The crystalline structures and morphologies of the powder have been characterized by X-ray diffraction(XRD) and Scaning electron microscopy (SEM).The result shows that the different preparation conditions such as concentration H2O, calcinations time and calcinations temperature have a lot of influences upon the properties of nano ZnO powders, an increase in the temperature of the calcinations results in an increase of the grain size and also the increase of the calcinations time in high temperature makes the size of the grains bigger. The existences of extra watter prevent nano grains from improving like rod morphology. We have obtained the smallest grain size of ZnO powder by controlling the process conditions. Finally In a suitable condition, a novel nanostructure, namely bi-rod-like ZnO nano rods was found which is different from known ZnO nanostructures.
Keywords: morphology, nano particles, ZnO, gel-Casting method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17732739 A Study on Mechanical Properties of Fiberboard Made of Durian Rind through Latex with Phenolic Resin as Binding Agent
Authors: W. Wiyaratn, A. Watanapa
Abstract:
This study was aimed to study the probability about the production of fiberboard made of durian rind through latex with phenolic resin as binding agent. The durian rind underwent the boiling process with NaOH [7], [8] and then the fiber from durian rind was formed into fiberboard through heat press. This means that durian rind could be used as replacement for plywood in plywood industry by using durian fiber as composite material with adhesive substance. This research would study the probability about the production of fiberboard made of durian rind through latex with phenolic resin as binding agent. At first, durian rind was split, exposed to light, boiled and steamed in order to gain durian fiber. Then, fiberboard was tested with the density of 600 Kg/m3 and 800 Kg/m3. in order to find a suitable ratio of durian fiber and latex. Afterwards, mechanical properties were tested according to the standards of ASTM and JIS A5905-1994. After the suitable ratio was known, the test results would be compared with medium density fiberboard (MDF) and other related research studies. According to the results, fiberboard made of durian rind through latex with phenolic resin at the density of 800 Kg/m3 at ratio of 1:1, the moisture was measured to be 5.05% with specific gravity (ASTM D 2395-07a) of 0.81, density (JIS A 5905-1994) of 0.88 g/m3, tensile strength, hardness (ASTM D2240), flexibility or elongation at break yielded similar values as the ones by medium density fiberboard (MDF).Keywords: Durian rind, latex, phenolic resin, medium density fiberboard
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39312738 Noninvasive Assessment of Low Power Laser Radiation Effect on Skin Wound Healing Using Infrared Thermography
Authors: M.A. Calin, S.V. Parasca, M.R. Calin, D. Savastru, D. Manea
Abstract:
The goal of this paper is to examine the effects of laser radiation on the skin wound healing using infrared thermography as non-invasive method for the monitoring of the skin temperature changes during laser treatment. Thirty Wistar rats were used in this study. A skin lesion was performed at the leg on all rats. The animals were exposed to laser radiation (λ = 670 nm, P = 15 mW, DP = 16.31 mW/cm2) for 600 s. Thermal images of wound were acquired before and after laser irradiation. The results have demonstrated that the tissue temperature decreases from 35.5±0.50°C in the first treatment day to 31.3±0.42°C after the third treatment day. This value is close to the normal value of the skin temperature and indicates the end of the skin repair process. In conclusion, the improvements in the wound healing following exposure to laser radiation have been revealed by infrared thermography.Keywords: skin, wound, laser, thermal image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16552737 Basic Business-Forces behind the Surviving and Sustainable Organizations: The Case of Medium Scale Contractors in South Africa
Authors: Iruka C. Anugwo, Winston M. Shakantu
Abstract:
The objective of this study is to uncover the basic business-forces that necessitated the survival and sustainable performance of the medium scale contractors in the South African construction market. This study is essential as it set to contribute towards long-term strategic solutions for combating the incessant failure of start-ups construction organizations within South African. The study used a qualitative research methodology; as the most appropriate approach to elicit and understand, and uncover the phenomena that are basic business-forces for the active contractors in the market. The study also adopted a phenomenological study approach; and in-depth interviews were conducted with 20 medium scale contractors in Port Elizabeth, South Africa, between months of August to October 2015. This allowed for an in-depth understanding of the critical and basic business-forces that influenced their survival and performance beyond the first five years of business operation. Findings of the study showed that for potential contractors (startups), to survival in the competitive business environment such as construction industry, they must possess the basic business-forces. These forces are educational knowledge in construction and business management related disciplines, adequate industrial experiences, competencies and capabilities to delivery excellent services and products as well as embracing the spirit of entrepreneurship. Convincingly, it can be concluded that the strategic approach to minimize the endless failure of startups construction businesses; the potential construction contractors must endeavoring to access and acquire the basic educationally knowledge, training and qualification; need to acquire industrial experiences in collaboration with required competencies, capabilities and entrepreneurship acumen. Without these basic business-forces as been discovered in this study, the majority of the contractors gaining entrance in the market will find it difficult to develop and grow a competitive and sustainable construction organization in South Africa.Keywords: Basic business-forces, medium scale contractors, South Africa, sustainable organisations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15512736 Growth of Multi-Layered Graphene Using Organic Solvent-PMMA Film as the Carbon Source under Low Temperature Conditions
Authors: Alaa Y. Ali, Natalie P. Holmes, John Holdsworth, Warwick Belcher, Paul Dastoor, Xiaojing Zhou
Abstract:
Multi-layered graphene has been produced under low temperature chemical vapour deposition (CVD) growth conditions by utilizing an organic solvent and polymer film source. Poly(methylmethacrylate) (PMMA) was dissolved in chlorobenzene solvent and used as a drop-cast film carbon source on a quartz slide. A source temperature (Tsource) of 180 °C provided sufficient carbon to grow graphene, as identified by Raman spectroscopy, on clean copper foil catalytic surfaces. Systematic variation of hydrogen gas (H2) flow rate from 25 standard cubic centimeters per minute (sccm) to 100 sccm and CVD temperature (Tgrowth) from 400 to 800 °C, yielded graphene films of varying quality as characterized by Raman spectroscopy. The optimal graphene growth parameters were found to occur with a hydrogen flow rate of 75 sccm sweeping the 180 °C source carbon past the Cu foil at 600 °C for 1 min. The deposition at 600 °C with a H2 flow rate of 75 sccm yielded a 2D band peak with ~53.4 cm-1 FWHM and a relative intensity ratio of the G to 2D bands (IG/I2D) of 0.21. This recipe fabricated a few layers of good quality graphene.
Keywords: Graphene, chemical vapour deposition, carbon source, low temperature growth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9082735 Conjugate Free Convection in a Square Cavity Filled with Nanofluid and Heated from Below by Spatial Wall Temperature
Authors: Ishak Hashim, Ammar Alsabery
Abstract:
The problem of conjugate free convection in a square cavity filled with nanofluid and heated from below by spatial wall temperature is studied numerically using the finite difference method. Water-based nanofluid with copper nanoparticles are chosen for the investigation. Governing equations are solved over a wide range of nanoparticle volume fraction (0 ≤ φ ≤ 0.2), wave number ((0 ≤ λ ≤ 4) and thermal conductivity ratio (0.44 ≤ Kr ≤ 6). The results presented for values of the governing parameters in terms of streamlines, isotherms and average Nusselt number. It is found that the flow behavior and the heat distribution are clearly enhanced with the increment of the non-uniform heating.Keywords: Conjugate free convection, nanofluid, spatial temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16482734 Dissolved Oxygen Prediction Using Support Vector Machine
Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed
Abstract:
In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, Water Temperature, and Conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.
Keywords: Dissolved oxygen, Water quality, predication DO, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22172733 Temperature Effect on the Mechanical Properties of Pd3Rh and PdRh3 Ordered Alloys
Authors: J. Davoodi , J. Moradi
Abstract:
The aim of this research was to calculate the mechanical properties of Pd3Rh and PdRh3 ordered alloys. The molecular dynamics (MD) simulation technique was used to obtain temperature dependence of the energy, the Yong modulus, the shear modulus, the bulk modulus, Poisson-s ratio and the elastic stiffness constants at the isobaric-isothermal (NPT) ensemble in the range of 100-325 K. The interatomic potential energy and force on atoms were calculated by Quantum Sutton-Chen (Q-SC) many body potential. Our MD simulation results show the effect of temperature on the cohesive energy and mechanical properties of Pd3Rh as well as PdRh3 alloys. Our computed results show good agreement with the experimental results where they have been available.Keywords: Pd-Rh alloy; Mechanical properties; Moleculardynamics simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16012732 Energy Separation Mechanism in Uni-Flow Vortex Tube Using Compressible Vortex Flow
Authors: Hiroshi Katanoda, Mohd Hazwan bin Yusof
Abstract:
A theoretical investigation from the view point of gas-dynamics and thermodynamics was carried out, in order to clarify the energy separation mechanism in a viscous compressible vortex, as a primary flow element in a uni-flow vortex tube. The mathematical solutions of tangential velocity, density and temperature in a viscous compressible vortical flow were used in this study.It is clear that a total temperature in the vortex core falls well below that distant from the vortex core in the radial direction, causing aregion with higher total temperature,compared to the distant region,peripheral to the vortex core.
Keywords: Energy separation mechanism, theoretical analysis, vortex tube, vortical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19032731 Moderation in Temperature Dependence on Counter Frictional Coefficient and Prevention of Wear of C/C Composites by Synthesizing SiC around Surface and Internal Vacancies
Authors: Noboru Wakamoto, Kiyotaka Obunai, Kazuya Okubo, Toru Fujii
Abstract:
The aim of this study is to moderate the dependence of counter frictional coefficient on temperature between counter surfaces and to reduce the wear of C/C composites at low temperature. To modify the C/C composites, Silica (SiO2) powders were added into phenolic resin for carbon precursor. The preform plate of the precursor of C/C composites was prepared by conventional filament winding method. The C/C composites plates were obtained by carbonizing preform plate at 2200 °C under an argon atmosphere. At that time, the silicon carbides (SiC) were synthesized around the surfaces and the internal vacancies of the C/C composites. The frictional coefficient on the counter surfaces and specific wear volumes of the C/C composites were measured by our developed frictional test machine like pin-on disk type. The XRD indicated that SiC was synthesized in the body of C/C composite fabricated by current method. The results of friction test showed that coefficient of friction of unmodified C/C composites have temperature dependence when the test condition was changed. In contrast, frictional coefficient of the C/C composite modified with SiO2 powders was almost constant at about 0.27 when the temperature condition was changed from Room Temperature (RT) to 300 °C. The specific wear rate decreased from 25×10-6 mm2/N to 0.1×10-6 mm2/N. The observations of the surfaces after friction tests showed that the frictional surface of the modified C/C composites was covered with a film produced by the friction. This study found that synthesizing SiC around surface and internal vacancies of C/C composites was effective to moderate the dependence on the frictional coefficient and reduce to the abrasion of C/C composites.
Keywords: C/C composites, frictional coefficient, SiC, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8292730 Identification Characterization and Production of Phytase from Endophytic Fungi
Authors: Yetti Marlida , Rina Delfita , Neni Gusmanizar, Gita Ciptaan
Abstract:
Phytases are acid phosphatase enzymes, which efficiently cleave phosphate moieties from phytic acid, thereby generating myo-inositol and inorganic phosphate. Thirty four isolates of endophytic fungi to produce of phytases were isolated from leaf, stem and root fragments of soybean. Screening of 34 isolates of endophytic fungi identified the phytases produced by Rhizoctonia sp. and Fusarium verticillioides . The phytase production were the best induced by phytic acid and rice bran compared the others inducer in submerged fermentation medium used. The phytase produced by both Rhizoctonia sp. and F. verticillioides have pH optimum at 4.0 and 5.0 respectively. The characterization of phytase from Fusarium verticillioides showed that temperature optimum was 500C and stability until 600C, the pH optimum 5.0 and pH stability was 2.5 – 6.0, and substrate specificity were rice bran>soybean meal>corn> coconut cake, respectively.Keywords: endophytic fungus, phytase, soybean, Rhizoctoniasp., Fusarium verticillioides,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25982729 Time/Temperature-Dependent Finite Element Model of Laminated Glass Beams
Authors: Alena Zemanová, Jan Zeman, Michal Šejnoha
Abstract:
The polymer foil used for manufacturing of laminated glass members behaves in a viscoelastic manner with temperature dependance. This contribution aims at incorporating the time/temperature-dependent behavior of interlayer to our earlier elastic finite element model for laminated glass beams. The model is based on a refined beam theory: each layer behaves according to the finite-strain shear deformable formulation by Reissner and the adjacent layers are connected via the Lagrange multipliers ensuring the inter-layer compatibility of a laminated unit. The time/temperature-dependent behavior of the interlayer is accounted for by the generalized Maxwell model and by the time-temperature superposition principle due to the Williams, Landel, and Ferry. The resulting system is solved by the Newton method with consistent linearization and the viscoelastic response is determined incrementally by the exponential algorithm. By comparing the model predictions against available experimental data, we demonstrate that the proposed formulation is reliable and accurately reproduces the behavior of the laminated glass units.Keywords: Laminated glass, finite element method, finite-strain Reissner model, Lagrange multipliers, generalized Maxwell model, Williams-Landel-Ferry equation, Newton method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16852728 Assessment of Thermal Comfort at Manual Car Body Assembly Workstation
Authors: A. R. Ismail, N. Jusoh, M. Z. Nuawi, B. M. Deros, N. K. Makhtar, M. N. A. Rahman
Abstract:
The objective of this study is to determine the thermal comfort among worker at Malaysian automotive industry. One critical manual assembly workstation had been chosen as a subject for the study. The human subjects for the study constitute operators at Body Assembly Station of the factory. The environment examined was the Relative Humidity (%), Airflow (m/s), Air Temperature (°C) and Radiant Temperature (°C) of the surrounding workstation area. The environmental factors were measured using Babuc apparatus, which is capable to measure simultaneously those mentioned environmental factors. The time series data of fluctuating level of factors were plotted to identify the significant changes of factors. Then thermal comfort of the workers were assessed by using ISO Standard 7730 Thermal sensation scale by using Predicted Mean Vote (PMV). Further Predicted percentage dissatisfied (PPD) is used to estimate the thermal comfort satisfaction of the occupant. Finally the PPD versus PMV were plotted to present the thermal comfort scenario of workers involved in related workstation. The result of PMV at the related industry is between 1.8 and 2.3, where PPD at that building is between 60% to 84%. The survey result indicated that the temperature more influenced comfort to the occupants
Keywords: Thermal, Comfort, Temperature, PPD, PMV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898