Search results for: distribution networks
3104 Effect of Fault Depth on Near-Fault Peak Ground Velocity
Authors: Yanyan Yu, Haiping Ding, Pengjun Chen, Yiou Sun
Abstract:
Fault depth is an important parameter to be determined in ground motion simulation, and peak ground velocity (PGV) demonstrates good application prospect. Using numerical simulation method, the variations of distribution and peak value of near-fault PGV with different fault depth were studied in detail, and the reason of some phenomena were discussed. The simulation results show that the distribution characteristics of PGV of fault-parallel (FP) component and fault-normal (FN) component are distinctly different; the value of PGV FN component is much larger than that of FP component. With the increase of fault depth, the distribution region of the FN component strong PGV moves forward along the rupture direction, while the strong PGV zone of FP component becomes gradually far away from the fault trace along the direction perpendicular to the strike. However, no matter FN component or FP component, the strong PGV distribution area and its value are both quickly reduced with increased fault depth. The results above suggest that the fault depth have significant effect on both FN component and FP component of near-fault PGV.Keywords: Fault depth, near-fault, PGV, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7823103 Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring
Authors: Ebrahim Farahmand, Ali Mahani
Abstract:
Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.Keywords: Clustering of WSNs, healthcare monitoring, weight-based clustering, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15553102 A Review in Recent Development of Network Threats and Security Measures
Authors: Roza Dastres, Mohsen Soori
Abstract:
Networks are vulnerable devices due to their basic feature of facilitating remote access and data communication. The information in the networks needs to be kept secured and safe in order to provide an effective communication and sharing device in the web of data. Due to challenges and threats of the data in networks, the network security is one of the most important considerations in information technology infrastructures. As a result, the security measures are considered in the network in order to decrease the probability of accessing the secured data by the hackers. The purpose of network security is to protect the network and its components from unauthorized access and abuse in order to provide a safe and secured communication device for the users. In the present research work a review in recent development of network threats and security measures is presented and future research works are also suggested. Different attacks to the networks and security measured against them are discussed in order to increase security in the web of data. So, new ideas in the network security systems can be presented by analyzing the published papers in order to move forward the research field.
Keywords: Network threats, network security, security measures, firewalls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8373101 Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach
Authors: A. Pajaziti, H. Cana
Abstract:
In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results.
Keywords: Robotic Arm, Neural Network, Genetic Algorithm, Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35953100 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.
Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5413099 Distributed Generator Placement for Loss Reduction and Improvement in Reliability
Authors: Priyanka Paliwal, N.P. Patidar
Abstract:
Distributed Power generation has gained a lot of attention in recent times due to constraints associated with conventional power generation and new advancements in DG technologies .The need to operate the power system economically and with optimum levels of reliability has further led to an increase in interest in Distributed Generation. However it is important to place Distributed Generator on an optimum location so that the purpose of loss minimization and voltage regulation is dully served on the feeder. This paper investigates the impact of DG units installation on electric losses, reliability and voltage profile of distribution networks. In this paper, our aim would be to find optimal distributed generation allocation for loss reduction subjected to constraint of voltage regulation in distribution network. The system is further analyzed for increased levels of Reliability. Distributed Generator offers the additional advantage of increase in reliability levels as suggested by the improvements in various reliability indices such as SAIDI, CAIDI and AENS. Comparative studies are performed and related results are addressed. An analytical technique is used in order to find the optimal location of Distributed Generator. The suggested technique is programmed under MATLAB software. The results clearly indicate that DG can reduce the electrical line loss while simultaneously improving the reliability of the system.Keywords: AENS, CAIDI, Distributed Generation, lossreduction, Reliability, SAIDI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31023098 Utilizing Innovative Techniques to Improve Email Security
Authors: Amany M. Alshawi, Khaled Alduhaiman
Abstract:
This paper proposes a technique to protect against email bombing. The technique employs a statistical approach, Naïve Bayes (NB), and Neural Networks to show that it is possible to differentiate between good and bad traffic to protect against email bombing attacks. Neural networks and Naïve Bayes can be trained by utilizing many email messages that include both input and output data for legitimate and non-legitimate emails. The input to the model includes the contents of the body of the messages, the subject, and the headers. This information will be used to determine if the email is normal or an attack email. Preliminary tests suggest that Naïve Bayes can be trained to produce an accurate response to confirm which email represents an attack.Keywords: Email bombing, Legitimate email, Naïve Bayes, Neural networks, Non-legitimate email.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14203097 Handwriting Velocity Modeling by Artificial Neural Networks
Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb
Abstract:
The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.
Keywords: ElectroMyoGraphic (EMG) signals, Experimental approach, Handwriting process, Radial Basis Functions (RBF) neural networks, Velocity Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23153096 Low Power Circuit Architecture of AES Crypto Module for Wireless Sensor Network
Authors: MooSeop Kim, Juhan Kim, Yongje Choi
Abstract:
Recently, much research has been conducted for security for wireless sensor networks and ubiquitous computing. Security issues such as authentication and data integrity are major requirements to construct sensor network systems. Advanced Encryption Standard (AES) is considered as one of candidate algorithms for data encryption in wireless sensor networks. In this paper, we will present the hardware architecture to implement low power AES crypto module. Our low power AES crypto module has optimized architecture of data encryption unit and key schedule unit which could be applicable to wireless sensor networks. We also details low power design methods used to design our low power AES crypto module.Keywords: Algorithm, Low Power Crypto Circuit, AES, Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25163095 An Energy-Efficient Distributed Unequal Clustering Protocol for Wireless Sensor Networks
Authors: Sungju Lee, Jangsoo Lee , Hongjoong Sin, Seunghwan Yoo, Sanghyuck Lee, Jaesik Lee, Yongjun Lee, Sungchun Kim
Abstract:
The wireless sensor networks have been extensively deployed and researched. One of the major issues in wireless sensor networks is a developing energy-efficient clustering protocol. Clustering algorithm provides an effective way to prolong the lifetime of a wireless sensor networks. In the paper, we compare several clustering protocols which significantly affect a balancing of energy consumption. And we propose an Energy-Efficient Distributed Unequal Clustering (EEDUC) algorithm which provides a new way of creating distributed clusters. In EEDUC, each sensor node sets the waiting time. This waiting time is considered as a function of residual energy, number of neighborhood nodes. EEDUC uses waiting time to distribute cluster heads. We also propose an unequal clustering mechanism to solve the hot-spot problem. Simulation results show that EEDUC distributes the cluster heads, balances the energy consumption well among the cluster heads and increases the network lifetime.Keywords: Wireless Sensor Network, Distributed UnequalClustering, Multi-hop, Lifetime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24893094 Greedy Geographical Void Routing for Wireless Sensor Networks
Authors: Chiang Tzu-Chiang, Chang Jia-Lin, Tsai Yue-Fu, Li Sha-Pai
Abstract:
With the advantage of wireless network technology, there are a variety of mobile applications which make the issue of wireless sensor networks as a popular research area in recent years. As the wireless sensor network nodes move arbitrarily with the topology fast change feature, mobile nodes are often confronted with the void issue which will initiate packet losing, retransmitting, rerouting, additional transmission cost and power consumption. When transmitting packets, we would not predict void problem occurring in advance. Thus, how to improve geographic routing with void avoidance in wireless networks becomes an important issue. In this paper, we proposed a greedy geographical void routing algorithm to solve the void problem for wireless sensor networks. We use the information of source node and void area to draw two tangents to form a fan range of the existence void which can announce voidavoiding message. Then we use source and destination nodes to draw a line with an angle of the fan range to select the next forwarding neighbor node for routing. In a dynamic wireless sensor network environment, the proposed greedy void avoiding algorithm can be more time-saving and more efficient to forward packets, and improve current geographical void problem of wireless sensor networks.Keywords: Wireless sensor network, internet routing, wireless network, greedy void avoiding algorithm, bypassing void.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35683093 Existence and Globally Exponential Stability of Equilibrium for BAM Neural Networks with Mixed Delays and Impulses
Authors: Xiaomei Wang, Shouming Zhong
Abstract:
In this paper, a class of generalized bi-directional associative memory (BAM) neural networks with mixed delays is investigated. On the basis of Lyapunov stability theory and contraction mapping theorem, some new sufficient conditions are established for the existence and uniqueness and globally exponential stability of equilibrium, which generalize and improve the previously known results. One example is given to show the feasibility and effectiveness of our results.
Keywords: Bi-directional associative memory (BAM) neural networks, mixed delays, Lyapunov stability theory, contraction mapping theorem, existence, equilibrium, globally exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14833092 Integrated Energy-Aware Mechanism for MANETs using On-demand Routing
Authors: M. Tamilarasi, T.G. Palanivelu
Abstract:
Mobile Ad Hoc Networks (MANETs) are multi-hop wireless networks in which all nodes cooperatively maintain network connectivity. In such a multi-hop wireless network, every node may be required to perform routing in order to achieve end-to-end communication among nodes. These networks are energy constrained as most ad hoc mobile nodes today operate with limited battery power. Hence, it is important to minimize the energy consumption of the entire network in order to maximize the lifetime of ad hoc networks. In this paper, a mechanism involving the integration of load balancing approach and transmission power control approach is introduced to maximize the life-span of MANETs. The mechanism is applied on Ad hoc On-demand Vector (AODV) protocol to make it as energy aware AODV (EA_AODV). The simulation is carried out using GloMoSim2.03 simulator. The results show that the proposed mechanism reduces the average required transmission energy per packet compared to the standard AODV.Keywords: energy aware routing, load balance, Mobile Ad HocNetworks, MANETs , on demand routing, transmission power control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19623091 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks
Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian
Abstract:
Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.
Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9423090 An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models
Authors: C. F. Kumru, C. Kocatepe, O. Arikan
Abstract:
In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained.Keywords: Electric field, energy transmission line, finite element method, pylon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27163089 Churn Prediction: Does Technology Matter?
Authors: John Hadden, Ashutosh Tiwari, Rajkumar Roy, Dymitr Ruta
Abstract:
The aim of this paper is to identify the most suitable model for churn prediction based on three different techniques. The paper identifies the variables that affect churn in reverence of customer complaints data and provides a comparative analysis of neural networks, regression trees and regression in their capabilities of predicting customer churn.Keywords: Churn, Decision Trees, Neural Networks, Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33033088 Conservativeness of Probabilistic Constrained Optimal Control Method for Unknown Probability Distribution
Authors: Tomoaki Hashimoto
Abstract:
In recent decades, probabilistic constrained optimal control problems have attracted much attention in many research fields. Although probabilistic constraints are generally intractable in an optimization problem, several tractable methods haven been proposed to handle probabilistic constraints. In most methods, probabilistic constraints are reduced to deterministic constraints that are tractable in an optimization problem. However, there is a gap between the transformed deterministic constraints in case of known and unknown probability distribution. This paper examines the conservativeness of probabilistic constrained optimization method for unknown probability distribution. The objective of this paper is to provide a quantitative assessment of the conservatism for tractable constraints in probabilistic constrained optimization with unknown probability distribution.Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19323087 Network Reconfiguration of Distribution System Using Artificial Bee Colony Algorithm
Authors: S. Ganesh
Abstract:
Power distribution systems typically have tie and sectionalizing switches whose states determine the topological configuration of the network. The aim of network reconfiguration of the distribution network is to minimize the losses for a load arrangement at a particular time. Thus the objective function is to minimize the losses of the network by satisfying the distribution network constraints. The various constraints are radiality, voltage limits and the power balance condition. In this paper the status of the switches is obtained by using Artificial Bee Colony (ABC) algorithm. ABC is based on a particular intelligent behavior of honeybee swarms. ABC is developed based on inspecting the behaviors of real bees to find nectar and sharing the information of food sources to the bees in the hive. The proposed methodology has three stages. In stage one ABC is used to find the tie switches, in stage two the identified tie switches are checked for radiality constraint and if the radilaity constraint is satisfied then the procedure is proceeded to stage three otherwise the process is repeated. In stage three load flow analysis is performed. The process is repeated till the losses are minimized. The ABC is implemented to find the power flow path and the Forward Sweeper algorithm is used to calculate the power flow parameters. The proposed methodology is applied for a 33–bus single feeder distribution network using MATLAB.
Keywords: Artificial Bee Colony (ABC) algorithm, Distribution system, Loss reduction, Network reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38103086 60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks
Authors: N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, Y. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, P. S. Excell
Abstract:
A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1x8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks.
Keywords: MM-wave communications, multi-sector array, patch antenna, small cell networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9803085 Application New Approach with Two Networks Slow and Fast on the Asynchronous Machine
Authors: Samia Salah, M’hamed Hadj Sadok, Abderrezak Guessoum
Abstract:
In this paper, we propose a new modular approach called neuroglial consisting of two neural networks slow and fast which emulates a biological reality recently discovered. The implementation is based on complex multi-time scale systems; validation is performed on the model of the asynchronous machine. We applied the geometric approach based on the Gerschgorin circles for the decoupling of fast and slow variables, and the method of singular perturbations for the development of reductions models.
This new architecture allows for smaller networks with less complexity and better performance in terms of mean square error and convergence than the single network model.
Keywords: Gerschgorin’s Circles, Neuroglial Network, Multi time scales systems, Singular perturbation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16053084 A Survey of Access Control Schemes in Wireless Sensor Networks
Authors: Youssou Faye, Ibrahima Niang, Thomas Noel
Abstract:
Access control is a critical security service in Wire- less Sensor Networks (WSNs). To prevent malicious nodes from joining the sensor network, access control is required. On one hand, WSN must be able to authorize and grant users the right to access to the network. On the other hand, WSN must organize data collected by sensors in such a way that an unauthorized entity (the adversary) cannot make arbitrary queries. This restricts the network access only to eligible users and sensor nodes, while queries from outsiders will not be answered or forwarded by nodes. In this paper we presentee different access control schemes so as to ?nd out their objectives, provision, communication complexity, limits, etc. Using the node density parameter, we also provide a comparison of these proposed access control algorithms based on the network topology which can be flat or hierarchical.Keywords: Access Control, Authentication, Key Management, Wireless Sensor Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26553083 A New Hybrid Optimization Method for Optimum Distribution Capacitor Planning
Authors: A. R. Seifi
Abstract:
This work presents a new algorithm based on a combination of fuzzy (FUZ), Dynamic Programming (DP), and Genetic Algorithm (GA) approach for capacitor allocation in distribution feeders. The problem formulation considers two distinct objectives related to total cost of power loss and total cost of capacitors including the purchase and installation costs. The novel formulation is a multi-objective and non-differentiable optimization problem. The proposed method of this article uses fuzzy reasoning for sitting of capacitors in radial distribution feeders, DP for sizing and finally GA for finding the optimum shape of membership functions which are used in fuzzy reasoning stage. The proposed method has been implemented in a software package and its effectiveness has been verified through a 9-bus radial distribution feeder for the sake of conclusions supports. A comparison has been done among the proposed method of this paper and similar methods in other research works that shows the effectiveness of the proposed method of this paper for solving optimum capacitor planning problem.
Keywords: Capacitor planning, Fuzzy logic method, Genetic Algorithm, Dynamic programming, Radial Distribution feeder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16113082 Advanced Travel Information System in Heterogeneous Networks
Authors: Hsu-Yung Cheng, Victor Gau, Chih-Wei Huang, Jenq-Neng Hwang, Chih-Chang Yu
Abstract:
In order to achieve better road utilization and traffic efficiency, there is an urgent need for a travel information delivery mechanism to assist the drivers in making better decisions in the emerging intelligent transportation system applications. In this paper, we propose a relayed multicast scheme under heterogeneous networks for this purpose. In the proposed system, travel information consisting of summarized traffic conditions, important events, real-time traffic videos, and local information service contents is formed into layers and multicasted through an integration of WiMAX infrastructure and Vehicular Ad hoc Networks (VANET). By the support of adaptive modulation and coding in WiMAX, the radio resources can be optimally allocated when performing multicast so as to dynamically adjust the number of data layers received by the users. In addition to multicast supported by WiMAX, a knowledge propagation and information relay scheme by VANET is designed. The experimental results validate the feasibility and effectiveness of the proposed scheme.Keywords: Intelligent Transportation Systems, RelayedMulticast, WiMAX, Vehicular Ad hoc Networks (VANET).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17183081 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise
Authors: Yasser F. Hassan
Abstract:
The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.
Keywords: Rough Sets, Rough Neural Networks, Cellular Automata, Image Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19493080 Applications of Cascade Correlation Neural Networks for Cipher System Identification
Authors: B. Chandra, P. Paul Varghese
Abstract:
Crypto System Identification is one of the challenging tasks in Crypt analysis. The paper discusses the possibility of employing Neural Networks for identification of Cipher Systems from cipher texts. Cascade Correlation Neural Network and Back Propagation Network have been employed for identification of Cipher Systems. Very large collection of cipher texts were generated using a Block Cipher (Enhanced RC6) and a Stream Cipher (SEAL). Promising results were obtained in terms of accuracy using both the Neural Network models but it was observed that the Cascade Correlation Neural Network Model performed better compared to Back Propagation Network.
Keywords: Back Propagation Neural Networks, CascadeCorrelation Neural Network, Crypto systems, Block Cipher, StreamCipher.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24453079 The Optimal Placement of Capacitor in Order to Reduce Losses and the Profile of Distribution Network Voltage with GA, SA
Authors: Limouzade E., Joorabian M.
Abstract:
Most of the losses in a power system relate to the distribution sector which always has been considered. From the important factors which contribute to increase losses in the distribution system is the existence of radioactive flows. The most common way to compensate the radioactive power in the system is the power to use parallel capacitors. In addition to reducing the losses, the advantages of capacitor placement are the reduction of the losses in the release peak of network capacity and improving the voltage profile. The point which should be considered in capacitor placement is the optimal placement and specification of the amount of the capacitor in order to maximize the advantages of capacitor placement. In this paper, a new technique has been offered for the placement and the specification of the amount of the constant capacitors in the radius distribution network on the basis of Genetic Algorithm (GA). The existing optimal methods for capacitor placement are mostly including those which reduce the losses and voltage profile simultaneously. But the retaliation cost and load changes have not been considered as influential UN the target function .In this article, a holistic approach has been considered for the optimal response to this problem which includes all the parameters in the distribution network: The price of the phase voltage and load changes. So, a vast inquiry is required for all the possible responses. So, in this article, we use Genetic Algorithm (GA) as the most powerful method for optimal inquiry.Keywords: Genetic Algorithm (GA), capacitor placement, voltage profile, network losses, Simulating Annealing (SA), distribution network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15373078 Advanced Neural Network Learning Applied to Pulping Modeling
Authors: Z. Zainuddin, W. D. Wan Rosli, R. Lanouette, S. Sathasivam
Abstract:
This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of pulping problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified odified problem M-1 Ax= M-1b where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.
Keywords: Convergence, pulping modeling, neural networks, preconditioned conjugate gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14093077 Exponential Stability of Periodic Solutions in Inertial Neural Networks with Unbounded Delay
Authors: Yunquan Ke, Chunfang Miao
Abstract:
In this paper, the exponential stability of periodic solutions in inertial neural networks with unbounded delay are investigated. First, using variable substitution the system is transformed to first order differential equation. Second, by the fixed-point theorem and constructing suitable Lyapunov function, some sufficient conditions guaranteeing the existence and exponential stability of periodic solutions of the system are obtained. Finally, two examples are given to illustrate the effectiveness of the results.
Keywords: Inertial neural networks, unbounded delay, fixed-point theorem, Lyapunov function, periodic solutions, exponential stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15323076 The Transient Reactive Power Regulation Capability of SVC for Large Scale WECS Connected to Distribution Networks
Authors: Y. Ates, A. R. Boynuegri, M. Uzunoglu, A. Karakas
Abstract:
The recent interest in alternative and renewable energy systems results in increased installed capacity ratio of such systems in total energy production of the world. Specifically, Wind Energy Conversion Systems (WECS) draw significant attention among possible alternative energy options, recently. On the contrary of the positive points of penetrating WECS in all over the world in terms of environment protection, energy independence of the countries, etc., there are significant problems to be solved for the grid connection of large scale WECS. The reactive power regulation, voltage variation suppression, etc. can be presented as major issues to be considered in this regard. Thus, this paper evaluates the application of a Static VAr Compensator (SVC) unit for the reactive power regulation and operation continuity of WECS during a fault condition. The system is modeled employing the IEEE 13 node test system. Thus, it is possible to evaluate the system performance with an overall grid simulation model close to real grid systems. The overall simulation model is developed in MATLAB/Simulink/SimPowerSystems® environments and the obtained results effectively match the target of the provided study.Keywords: IEEE 13 bus distribution system, reactive power regulation, static VAr compensator, wind energy conversion system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19813075 Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network
Authors: Paul Lajbcygier, Seng Lee
Abstract:
Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from Australian Bank Bill futures are forecast and traded using various exogenous input variables combined with neural networks. The choice of the optimal exogenous input variables chosen for each neural network, undertaken in previous work [1], is validated by comparing the forecasts and corresponding profitability of each, using a trading strategy.
Keywords: Artificial neural networks, co-integration, forecasting, trading rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247