
 
Abstract—In order to meet the stringent latency and reliability 

requirements of the upcoming 5G networks, Open Radio Access 
Networks (O-RAN) have been proposed. The virtualization of O-RAN 
has allowed it to be treated as a Network Function Virtualization 
(NFV) architecture, while its components are considered Virtualized 
Network Functions (VNFs). Hence, intelligent Machine Learning 
(ML) based solutions can be utilized to apply different resource 
management and allocation techniques on O-RAN. However, 
intelligently allocating resources for O-RAN VNFs can prove 
challenging due to the dynamicity of traffic in mobile networks. 
Network providers need to dynamically scale the allocated resources 
in response to the incoming traffic. Elastically allocating resources can 
provide a higher level of flexibility in the network in addition to 
reducing the OPerational EXpenditure (OPEX) and increasing the 
resources utilization. Most of the existing elastic solutions are reactive 
in nature, despite the fact that proactive approaches are more agile 
since they scale instances ahead of time by predicting the incoming 
traffic. In this work, we propose and evaluate traffic forecasting 
models based on the ML algorithm. The algorithms aim at predicting 
future O-RAN traffic by using previous traffic data. Detailed analysis 
of the traffic data was carried out to validate the quality and 
applicability of the traffic dataset. Hence, two ML models were 
proposed and evaluated based on their prediction capabilities. 

 
Keywords—O-RAN, traffic forecasting, NFV, ARIMA, LSTM, 

elasticity. 

I. INTRODUCTION 

HE ever-increasing demand in the mobile networks has put 
a significant burden on the current mobile network 

infrastructure. The 5th Generation of mobile communications 
(5G) is expected to support a variety of services and applications 
by having a more stringent latency requirement and consuming 
a significantly higher bandwidth compared to the previous 
generations. However, this level of performance comes at the 
cost of having a more extreme requirements in terms of latency, 
reliability, computation power, bandwidth, etc. for the 
underlying network. O-RAN has been proposed to address many 
of the limitations of the current RAN through incorporating 
Cloud and Intelligence in the existing architecture. Due to O-
RAN virtualization combined with its latency-aware 
architecture, O-RAN enables supplier diversity, reduces the 
deployment and maintenance cost, and exploits state-of-the-art 
intelligent solutions for network optimization and healing [1]. 
Telecom operators provision a vast number of resources which 
have a significant operational and maintenance costs, in addition 
to its inflexibility in terms of scalability [2]. Hence, they are 
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deemed impractical and inefficient regarding the 5G application 
architectures. NFV has removed the limitations on network 
evolution through decoupling the network functions from the 
network appliances and deploying them on a commercial off-
the-shelf hardware [3]. Thus, reducing the OPerational and 
CApital EXpenditure (OPEX/CAPEX) [4]; providers have 
registered 49% CAPEX savings compared to traditional 
deployment [5]. Additionally, it enables exploiting state-of-the-
art ML solutions that reduces OPEX. OPEX is modeled based 
on the costs associated with operating the VNFs; it consists of 
the cost of running a VNF, deploying a VNF, backup VNFs, and 
forwarding the traffic. To reduce these costs resource 
management and allocation techniques are employed. 
Concerning resource allocation, the research problems that arise 
are the server placement, function placement, and dynamic 
resource management. The server and function placement 
problems are explored thoroughly in the literature [3], [7], [10], 
[16]. In contrast, dynamic resource management problem in 
NFV is less saturated. Dynamic resource management can be 
defined as dynamically scaling the resources allocated for VNFs 
in accordance with the real-time network demand [6]. In a 
nutshell, the more resources allocated for a VNF in a Service 
Function Chain (SFC), the more traffic that VNF can handle. 
However, over-provisioning resources can result in a low 
utilization level due to traffic dynamicity. Hence, over-
provisioning can result in increasing the cost of those VNFs. 
Systems that dynamically allocate resources according to the 
traffic are called elastic. Elasticity is defined as the degree to 
which a system can adapt to traffic changes by provisioning and 
deprovisioning resources in an autonomic manner [7]. 

In the context of O-RAN, applying the technology of NFV 
has many benefits. The O-RAN Alliance assumes O-RAN 
components (Distributed Unit (DU), Control Unit (CU), and the 
Near-Real Time RAN Intelligent Controller (Near-RT RIC)) to 
be considered as VNFs; hence, allowing the exploitation of ML 
solutions in O-RAN [8]. Through applying intelligent ML based 
elastic policy in O-RAN, cost of running those VNFs can be 
reduced, making it more sustainable and agile while maintaining 
Service-Level Agreement (SLA).  

To this end, several elastic models have been developed in the 
literature aiming to elastically scale resources (e.g., in [2], [6], 
[11]-[14]). However, only a few have considered a proactive 
approach, as opposed to a reactive one. Reactive models scale 
the VNF according to arrived demand, which can result in a 
significant delay stemming from copying the VM image and 
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instantiating new VNF instances. This delay can violate SLA 
[6]. To address this, an ML based proactive approach is 
proposed. Simply put, if one can successfully predict the traffic, 
new VNF deployment can be done in advance, thus rendering 
the deployment delay irrelevant to maintaining the SLA [2]. 

The remainder of this paper is organized as follows: Section 
II presents an overview of the related work in the literature. 
Section III thoroughly explores the problem at hand and 
discusses the mathematical system model involved. Section IV 
introduces the proposed traffic prediction model. Section V 
presents the performance evaluation of the implemented models. 
Finally, Section VI summarizes the work done and discusses 
future work.  

II. RELATED WORK 

Recently, dynamic resource allocation has been studied in the 
context of NFV in general and the RAN in particular. Many 
algorithms in the literature are concerned with optimizing the 
resource allocation. Bari et al. formulated this problem into an 
Integer Linear Programming (ILP) and came up with a heuristic 
solution for large scale networks [1]. Yuan et al. presented a 
pooling deployment approach that achieved a fine-grained 
management of the resources [9]. Cohen et al. investigated VNF 
geo-placement over different datacenters while minimizing the 
cost [10]. However, they deal with a static model, not 
considering the dynamicity of traffic. Elasticity models consider 
this variability in behavior. Regarding VNF scaling, Arteaga et 
al. presented a VNF adaptive scaling using Reinforcement 
Learning (RL), however, the model was SFC specific and does 
not work with different SFCs [11]. Wang et al. proposed a 
dynamic instance provisioning model for enterprise services 
[12]. The model takes in account the traffic and the server 
capacity; however, it is reactive; it can result in SLA violation. 
In [13] and [14], the models developed were proactive in nature; 
they predict the traffic and scale accordingly. Bilal et al. 
formulated the problem into a timeseries one to predict resource 
usage, thus achieving an elastic NFV [15]. Clayman et al. 
focused on developing a dynamic placement model that can 
handle increasing demand by installing virtual routers, however, 
it did not have a deprovisioning mechanism [16]. Cloud 
Providers (CPs) implement elastic solution as additional 
services. Amazon Auto Scaling Group and Microsoft Azure 
offer the tenants horizontal scaling solutions [17], [18]. 
CloudScale and PRESS have employed vertical scaling 
solutions for allocating and releasing resources, however, in 
most cases it does not support changing the resources on-the-fly 
[19], [20]. Thus, vertical scaling is not recommended by CPs 
[21]. A latency-aware scaling solution requires scaling decision 
to be predicted [22]. Some works have employed ML models for 
prediction, Mijumbi et al. employed Graph Neural Network 
(GNN) to model topological dependencies of VNF Chains [23], 
[24]. It performed well compared to conventional scaling 
models, however, the accuracy drops when testing on new data 
implying a low generalization accuracy. 

In the context of the 5G O-RAN, resource utilization can be 
maximized through applying the elasticity techniques of scaling, 
be it reactive or proactive. Several developed solutions in the 

literature focus on elasticity in 5G O-RAN. For instance, 
Sarrigiannis et al. proposed an intelligent solution for NFV 
orchestration consisting of a latency-aware placement in 
addition to an online scheduling algorithm that elastically scales 
VNFs in a 5G architecture [25]. However, scaling is done 
reactively resulting in a delay associated with deploying new 
instances. Gutierrez-Estevez et al. have introduced a reactive 
ML based Elastic Resource Management Model [26]. CPs such 
as Amazon have started introducing elastic solutions in the 
context of 5G networks [17]. However, these solutions are costly 
and reactive [27]. 

To the best of our knowledge, a proactive elastic model for 
resource allocation in the context of 5G O-RAN investigated in 
this work has not been studied in the literature. Most existing 
work is reactive. Moreover, the existing proactive models are 
generic and do not consider 5G specific requirements. In fact, 
elasticity in O-RAN environment is still an unexplored area of 
research. Hence, in this work we aim to address this gap by 
designing and implementing a proactive Elastic VNF 
orchestration policy for 5G O-RAN.  

III. PROBLEM STATEMENT 

Form a CP perspective, a traffic request in O-RAN can be 
modeled as traffic originating from a source (O-RU) that is 
propagated through the O-RAN SFC consisting of the O-DU, O-
CU, Near-RT RIC (Fig. 1). Elastic VNF orchestration policy 
with the objective of minimizing the OPEX through scaling 
VNF instances in a proactive manner consists of two 
subproblems; when to scale (traffic prediction) and how to scale 
(scaling decision and provisioning). The focus of this work is the 
former traffic prediction problem. As discussed, several 
advanced ML model are suited for traffic prediction. However, 
their performance is dependent on the utilized data. Since the 
amount of deployed O-RAN VNFs are determined by the time-
varying traffic, it is crucial to obtain a prediction with minimal 
error. In this section, an overview of the O-RAN environment is 
given, highlighting the crucial operational aspects. Moreover, 
the problem of traffic forecasting is formulated with the focus 
on the important aspects ensuring accurate predictions. 

A. O-RAN Overview 

RAN are a major component of wireless communication 
systems. The role of RANs is to connect the User Equipment 
(UE) to the core network. Traditionally, it is done with no 
regards to the application services. O-RAN considers the 
application adding agility to the network. However, the more 
layers added, the higher the latency and the more computational 
power required, thus, increasing the complexity. To overcome 
these challenges modern learning techniques and MEC 
capabilities are employed in O-RAN infrastructure [28]. The 
distribution of functionality in the O-RAN increases the 
reliability by avoiding a single node failure. The separation of 
the control plane and the user plane enables implementation on 
a server platform and since they are intended to work separately, 
it allows for scalability and increases flexibility in the O-RAN. 
Simply put, the O-RAN is a virtualized, application specific, and 
software-oriented RAN enabling it to support high speed 
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applications and IoT network [29]. The O-RAN architecture is 
based on decoupling the non-real time functionalities and the 
real time one, introducing RIC. RICs host ML functionalities; 
the service and model training hosted in the non-RT RIC and the 
trained models hosted in the near-RT RIC. The near-RT RIC 
contains the databases that tracks the performance of the 
network through the E2 and A1 interfaces. The E2 interface 
relays metrics from CU and DU to near-RT RIC, which in turn 
provides orchestration and management using ML. The A1 
interface relays the ML policies and training models to the non-
RT RIC. The non-RT RIC supports resource management and 
provides guidance to the near-RT RIC [30]. Additionally, O-
RAN virtualizes its components; DU, CU, Near-RT RIC are 
VNFs (Fig. 1) [4]. Moreover, O-RAN uses ML techniques to 
develop smarter RAN layers in its architecture [3]. All those 
factors combined paved the way for a new direction in research 
applying intelligent ML based VNF orchestration techniques on 
RANs, addressing existing issues. 

 

 

Fig. 1 O-RAN SFC 

B. Traffic Forecasting 

Traffic forecasting is a crucial part of the elastic orchestration 
problem. Predicting traffic accurately enables the elastic model 
to closely match the resources to the traffic demands ahead of 
time, thus reducing the operating cost and increasing the 
utilization as discussed previously in Section I. Traffic 
forecasting can be modeled as a timeseries forecasting problem. 
Timeseries forecasting can be formulated as a supervised 
learning problem where the features input to the model are the 
past observations (Fig. 2). Therefore, the prime objective is to 
use past observations to predict the traffic. However, what 
makes timeseries forecasting problems unique is the dependency 
between the features, i.e., the model is used to predict a quantity 
based on a lagged version of the quantity itself. Moreover, 
prediction confidence diminishes as the model extrapolates 
further into the future. Therefore, it is inherently more 
challenging to predict values in a time series as opposed to a 
regular regression problem. The forecasting problem can be 
formulated as: 

 

𝛼∗ሺ𝑡 ൅ 𝑚ሻ ൌ 𝑓൫𝛼ሺ𝑡ሻ, 𝛼ሺ𝑡 െ 1ሻ, 𝛼ሺ𝑡 െ 2ሻ, … , 𝛼ሺ𝑡 െ 𝑛ሻ൯ (1) 
 
where 𝛼∗ is the predicted traffic m timesteps in the future, 𝛼 is 
the actual observed traffic, and n is the size of the observation 
window. 

Since the prediction depends entirely on the past observations, 
it is of the utmost importance to ensure the quality of the data 
before going ahead with model implementation. The quality of 
the data is dictated by two main factors: the time length of the 
observations and the predictability of the series itself. Firstly, the 
length of the available series matters greatly in training the 
model as the available number of samples must be greater than 

the number of model parameters [31]. Hence, the more complex 
the model is, the more samples it needs for training. Secondly, 
the predictability of the series quantifies the regularity and the 
predictability of the fluctuations in the series; the more regular 
and repeated patterns the series has, the easier it is to forecast. 
The predictability depends on the temporal granularity of the of 
the observations; temporal aggregation significantly degrades 
the predictability of the series. The predictability of the series 
can be ensured through applying some timeseries analysis 
techniques. By analyzing the components of the series through 
decomposition, the predictability can be inferred. Any timeseries 
can be decomposed into three main components: i) a trend 
component, representing the traffic growth over time, ii) a 
seasonal component, representing the cyclical behavior of the 
series, and iii) a remainder component, representing 
abnormalities due to sudden events (such as cell outage in the 
case of RAN). For a series to be predictable it must have a high 
level of stationarity, meaning the statistical properties of the 
series (mean, variance, and autocorrelation) are not a function of 
time. Moreover, the parameters for the model can be deduced 
for the statistical properties of the timeseries. For instance, the 
size of the observation window is inferred from the 
autocorrelation function. Also, depending on the model used 
some transformations maybe needed to ensure stationarity or to 
ease the prediction process. 
 

 

Fig. 2 Sliding window for time series prediction 

IV. PROPOSED SOLUTION 

The traffic forecasting problem is modeled as a supervised 
learning problem where the task is to predict the upcoming 
traffic according to the features extracted from a sliding window. 
In other words, the model learns the pattern between the 
provided features and the labeled predictions. Hence, the first 
step is to acquire the traffic data, apply some preprocessing to 
extract the features from the sliding window, then feed the 
features to the model. By acquiring a prediction from the model, 
the elastic orchestrator can use it to compute the number of O-
RAN VNFs required to handle the traffic. By comparing the 
required VNFs with the current provisioned one, a scaling 
decision can be reached. Finally, the scaling decision is relayed 
to the RIC for the deployment. In this section, the dataset and its 

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:17, No:1, 2023 

21International Scholarly and Scientific Research & Innovation 17(1) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
1,

 2
02

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
89

1.
pd

f



features are first discussed along with some analysis to ensure 
the stationarity and predictability of the series. Afterward, ML 
models are discussed along with model specific transformations 
and preprocessing. 

A. Traffic Data 

As previously mentioned, the quality of the data utilized for 
training and testing is crucial to the performance of the model. 
There are two measures that show how suitable a time series for 
prediction: the autocorrelation function (ACF) and the 
Approximate Entropy of the timeseries. The ACF shows how 
correlated the series is with lagged versions of itself; the higher 
the correlation the easier it is to predict. Approximate Entropy is 
used to quantify the regularity and predictability of fluctuations 
in a timeseries; the higher the approximate entropy, the more 
difficult it is to forecast it. Three datasets (Internet2 [1], Geant 
Network [7], Italia Telecom [32]) have been examined to 
determine their predictability and their applicability based on the 
mentioned measures. All three datasets contain traffic matrices 
for representing the mobile traffic data between pairs of nodes 
for different timestamps. The Internet2 has a temporal 
granularity of 5-minutes, while the Italia Telecom has 10-
minuites, and the Geant has 15-minuites. The scatter plot shown 
in Fig. 3 shows a comparison between the ACFs of the three 
datasets using lags values 1 to 4. Expectedly, as the lag value 
increases the timeseries becomes less correlated. However, it is 
noticeable that the Italia dataset and the Geant network datasets 
are still correlated for a higher value for the lag. Table I shows 
the Approximate Entropy for each one. After a careful analysis 
the Italia Telecom dataset proved to be the most suitable of the 
three. 

The Italia dataset contains two sub datasets; Milano and 
Trento; each contains a real-life call detail records collected for 
billing purposes in both provinces. Trento dataset includes 
11466 cells while Milano has 10000 cells distributed to cover 
the entire area. The data are collected in over 10 minutes 
intervals from 31 October 2013 up until 1 January 2014. Each 
timestep contains the following features:  
 SMS-in,  
 SMS-out,  
 Call-in,  
 Call-out,  
 Internet Traffic Activity.  

Fig. 4 shows a sample of the traffic through cell number 
10000 in Trento. Table I shows a description of the traffic trace 
in Trento and Milano sub dataset. 

 
TABLE I 

APPROXIMATE ENTROPY FOR EACH DATASET 

 Internet2 Geant Italia 

Approximate Entropy 1.346 0.375 0.196 

 

The traffic of a single cell is difficult to predict due to many 
external events that influence the fluctuations in that particular 
cell. These fluctuations cause the series to have a lower 
autocorrelation, thus decreasing the value of past knowledge in 
the prediction. To overcome this challenge, we aggregate the 
traffic spatially over the cells, reducing the influence of 

individual events happening in cells and increasing the 
autocorrelation through maximizing the daily patterns. The 
scatter plot shown in Fig. 5 shows a comparison between the 
autocorrelations of the individual cells vs. that of the aggregated 
series for lag 1 through to lag 4. It is evident that the aggregated 
series is more correlated with itself for different lags. Fig. 6 
shows the trace for the aggregated series. As expected, the 
aggregation has reduced the fluctuation and magnified the 
cyclical patterns.  

The aggregated series has an Approximate Entropy of 0.196, 
while the Approximate Entropy for cell 10000 is 1.386. 
Augmented Dickey Fuller (ADF) test was used to check for 
stationarity of the series. The ADF test showed the series to be 
stationary. Overall, the aggregated timeseries of the Italia dataset 
shows promising results for the predictability of the timeseries. 

 
TABLE II 

STATISTICAL DESCRIPTION FOR THE AGGREGATED DATA IN TRENTO AND 

MILANO 

 Trento Milano 

Count 8928 8928 

Mean 95872.12 621964 

Standard Deviation 37812.2 223385 

Minimum 39934.18 20811 

Lower than 25% 65270.7 413368 

Lower than 50% 98718.65 64178 

Lower than 75% 111219.2 810414 

Maximum 395858.67 1234958 

B. ML Models 

In this part, the proposed ML models are discussed. Using the 
Italia dataset, an ML model is to be trained to acquire the traffic 
prediction. After considering the available models, two ML 
models were chosen: Auto Regressive Integrated Moving 
Average (ARIMA), classical statistical model, and Long-Short 
Term Memory (LSTM) as a state-of-the-art algorithm. These 
models have been chosen for their superior performance in 
timeseries forecasting problems [33]. A brief description of the 
models and their setup is discussed below: 

ARIMA 

It is a class of statistical models for analyzing and forecasting 
timeseries data. It can represent a given timeseries based on its 
own past values, i.e., its own lags and the lagged forecast errors. 
ARIMA process can be described as ARIMA (p, d, q); the 
parameters p, d, and q describe the non-seasonal part of the 
timeseries, where p is the order of the auto-regression, d is the 
level of difference, and q is the order of the moving average. 
Mathematically, ARIMA model can be represented as:  

 
𝛼௧ ൌ  𝐴 ൅ 𝐵ଵ𝛼௧ିଵ ൅ 𝐵ଶ𝛼௧ିଶ ൅ … ൅ 𝐵௣𝛼௧ି௣𝜖௧ ൅  𝜙ଵ𝜖௧ିଵ ൅

𝜙ଶ𝜖௧ିଶ ൅ … ൅ 𝜙௤𝜖௧ି௤ (2) 
 
In designing the ARIMA model the objective is to determine 

the values of p, d, and q. Firstly, the value of d dictates the 
number of times the series is differenced, which in turns ensures 
the stationarity of the series by eliminating the trend. To deduce 
the value of d, the series is checked for stationarity using the 
ADF test after each round of differencing. The number of times 
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the series has had to be differenced to become stationary 
represents the value of d. Secondly, the value of p can be 
determined through the Partial Autocorrelation Function 
(PACF). By plotting the PACF, the number of lags over the 
significance line dictates the value of p. Lastly, similar to p, the 
value of q is taken from the plot of the ACF. Additionally, prior 
to inputting the series to the model some preprocessing is 
required to ensure the stationarity of the series and its 
compatibility with the model. As discussed previously, the trend 
is eliminated through differencing, however the seasonality is 
not. Therefore, it must be eliminated beforehand. The 
seasonality is eliminated through a nonlinear transformation that 
guarantees the statistical properties of the series is not time 
dependent. Afterward the series is normalized and input to the 
model. Fig. 7 shows the new series after the transformation. The 
parameters for the model were chosen based on the ACF and 
PACF shown in Fig. 8. The values of p, d, and q were chosen to 
be 6, 1, and 1 respectively. 

LSTM 

It is a special kind of Recurrent Neural Networks (RNN), 
capable of learning long-term dependencies. LSTMs have an 
advantage over the conventional RNNs in that they are designed 
to avoid the long-term dependency problem. All this makes 
LSTM networks well-suited to make predictions based on 
timeseries data. Another advantage LSTMs have over RNNs is 
its ability to deal with the vanishing gradient problem during the 
training. Prior to inputting the series to the model, preprocessing 
in terms of sliding window and feature extraction is applied to 
reshape the dataset from a sequential dataset to a supervised 
learning dataset with the present and past N values as the features 
and the value at t+M as the label. Since the value of the 
autocorrelation in the dataset gets lower as the lag increases, thus 
reducing the accuracy of the prediction, only one timestamp 
prediction was chosen as the goal to ensure the accuracy. 
Therefore, the value of M is set to 1. As for N, the ACF shows 
that the last somewhat significant correlation is at 11 lags, thus 
signifying that adding more lags will not contribute to the 
accuracy of the prediction, to the contrary it will just increase the 
model complexity and training time. Hence, the value of N is set 
to 11. Moreover, two more features were added to capture the 
periodicity in the series and the effects of seasonality on the 

prediction: Day of week to make a distinction between weekday 
traffic vs. weekend traffic, Hour of day to differentiate between 
the daytime opposed to nighttime. The Granger causality test 
was used to ensure the usability of those features in predicting 
the timeseries. Finally, the dataset was rescaled to fit the criteria 
of the neural network. Regarding the model parameters, the 
evaluated model has two layers containing 100 LSTM units in 
each layer with a learning rate of 0.0001 using the Adam 
optimizer and a ReLu activation function. Glorot Uniform 
initializer was used for weight initialization as opposed to 
random initializers. The data were split into a 25% testing set 
and 75% training set and was fed to the model using in batches 
of size 16. The loss function used was the mean absolute error. 

 

 

Fig. 3 Lag plot for the autocorrelation for (a) Internet2 dataset, (b) 
Geant dataset, and (c) Italia dataset 

 

 

 

Fig. 4 Internet traffic trace for cell 10000 in Trento trace 
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Fig. 5 Lag plot for the autocorrelation for (a) cell 10000 and (b) the 
aggregated data 

V. PERFORMANCE EVALUATION 

In this section, the performance of the algorithms is evaluated 
and compared. The evaluation is done based on the predictive 
capabilities of the algorithm using the traffic data from the 
Trento trace. Both algorithms are implemented using Python, 
TensorFlow, and Keras. The evaluation was performed on a 
computer with one Intel® Core™ i7-107000 CPU @2.90GHz, 
16 GB RAM, and NIVIDIA GeForce RTX 2060 SUPER. The 
performance evaluation was done through mean absolute error 
of the internet traffic prediction vs. the actual value. Fig. 9 shows 
the results of the training and testing for the LSTM and Fig. 10 
shows the results for the ARIMA model. For the LSTM, the 
training error was 2489.91 while the testing error was 2491.5. 
As for the ARIMA model, the testing error was found to be 
3409.4 with a relatively narrow confidence area for the 
prediction. Both models gave a relatively low error in 
comparison to the mean (95872.1) and the standard deviation 
(37812.2) of the Trento trace.  

 

 

Fig. 6 Internet traffic trace for the aggregated data in Trento trace 
 

 

Fig. 7 Transformed series 
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Fig. 8 The autocorrelation and PACFs for the aggregated data 
 

 

Fig. 9 Predictions vs. actual for the training and testing sets (LSTM) 
 

 

Fig. 10 Predictions vs. actual for the testing set ARIMA 
 

Given Figs. 9 and 10 and the mentioned results, although both 
models gave somewhat similar performance, the LSTM slightly 
outperformed the ARIMA model in terms of the testing error. 
However, the ARIMA model responded better to the sudden 
spikes around the end of the trace which were caused by the 
surge in users during the holidays at the end of the year. The 
ARIMA captured the trend of the series better, but it can be seen 
(Fig. 10) that the prediction confidence region grows slightly 
wider whenever there is a sudden spike. This is expected as the 
LSTM captured the general patterns during the training, while 
the ARIMA builds the model at each time step therefore it can 
gradually learn that kind of anomalies. Although ARIMA 
performed better in terms of following the trend of the traffic, its 

execution time is significantly higher than the LSTM. This is 
again due to the fact that ARIMA build the model at each time 
step unlike the LSTM where you train only once. This translates 
to a significant discrepancy in terms of the execution time 
between the models. The LSTM required 375 s for the training 
and 3.9 s for the testing. In contrast, the ARIMA required 1360 
s for the whole set. Moreover, to test the generalization of the 
trained LSTM model, the model was tested on the Milan trace 
after being trained on the Trento. Fig. 11 shows the testing 
results. The error was found to be 22786.9, relatively low 
compared to the mean (621964). Hence, the low testing error on 
the new trace (Milan trace) implies that the model is generalizing 
well. 
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Fig. 11 Predictions vs. actual for the Milan trace LSTM 
 

VI. CONCLUSION 

Employing intelligent solutions for dynamic resource 
management is a key advantage of the O-RAN virtualization. 
Efficient and proactive allocation of resources is essential to 
ensure preserving the O-RAN requirements. As a step towards 
ensuring an elastic O-RAN, traffic forecasting is a crucial 
element. The prediction accuracy is pivotal in implementing 
elastic techniques aimed toward OPEX reduction. In this work, 
we investigated traffic forecasting in the context of O-RAN. To 
that end, two models (LSTM and ARIMA) were developed and 
implemented using Python. The models profiled and predicted 
the traffic based on past traffic. Moreover, we explored 
timeseries forecasting problem in addition to discussing 
different evaluation metric for the traffic dataset. The models 
were trained and tested using the traffic dataset provided in [32]. 
The performance of the models is then compared to evaluate 
their performance. Results have shown that the LSTM has 
slightly outperformed the ARIMA model in terms of overall 
error, while the ARIMA better modeled the spikes. According 
to the training nature of the models and their execution time, it 
can be deduced that the LSTM is better fit for this application as 
it has significantly lower execution time and the training is done 
offline, i.e., the trained model is to be hosted on the near-RT RIC 
where the historical traffic measurements are stored. The 
obtained results are promising and can form a strong foundation 
to further improve and advance the models. Future work will 
focus on improving the accuracy and extending the model to 
account for drastic changes in the traffic trend (new cell site, 
equipment failure, social events, etc.). Furthermore, to acquire a 
higher resolution prediction, joint prediction can be employed to 
predict neighboring cells traffic. It provides a good balance 
between coping with the noise on the cell level and a better 
prediction resolution.  
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