Search results for: approximation algorithms
1377 Routing Medical Images with Tabu Search and Simulated Annealing: A Study on Quality of Service
Authors: Mejía M. Paula, Ramírez L. Leonardo, Puerta A. Gabriel
Abstract:
In telemedicine, the image repository service is important to increase the accuracy of diagnostic support of medical personnel. This study makes comparison between two routing algorithms regarding the quality of service (QoS), to be able to analyze the optimal performance at the time of loading and/or downloading of medical images. This study focused on comparing the performance of Tabu Search with other heuristic and metaheuristic algorithms that improve QoS in telemedicine services in Colombia. For this, Tabu Search and Simulated Annealing heuristic algorithms are chosen for their high usability in this type of applications; the QoS is measured taking into account the following metrics: Delay, Throughput, Jitter and Latency. In addition, routing tests were carried out on ten images in digital image and communication in medicine (DICOM) format of 40 MB. These tests were carried out for ten minutes with different traffic conditions, reaching a total of 25 tests, from a server of Universidad Militar Nueva Granada (UMNG) in Bogotá-Colombia to a remote user in Universidad de Santiago de Chile (USACH) - Chile. The results show that Tabu search presents a better QoS performance compared to Simulated Annealing, managing to optimize the routing of medical images, a basic requirement to offer diagnostic images services in telemedicine.
Keywords: Medical image, QoS, simulated annealing, Tabu search, telemedicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9561376 Design of a Robust Controller for AGC with Combined Intelligence Techniques
Authors: R. N. Patel, S. K. Sinha, R. Prasad
Abstract:
In this work Artificial Intelligence (AI) techniques like Fuzzy logic, Genetic Algorithms and Particle Swarm Optimization have been used to improve the performance of the Automatic Generation Control (AGC) system. Instead of applying Genetic Algorithms and Particle swarm optimization independently for optimizing the parameters of the conventional AGC with PI controller, an intelligent tuned Fuzzy logic controller (acting as the secondary controller in the AGC system) has been designed. The controller gives an improved dynamic performance for both hydrothermal and thermal-thermal power systems under a variety of operating conditions.
Keywords: Artificial intelligence, Automatic generation control, Fuzzy control, Genetic Algorithm, Particle swarm optimization, Power systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17871375 Review and Comparison of Associative Classification Data Mining Approaches
Authors: Suzan Wedyan
Abstract:
Associative classification (AC) is a data mining approach that combines association rule and classification to build classification models (classifiers). AC has attracted a significant attention from several researchers mainly because it derives accurate classifiers that contain simple yet effective rules. In the last decade, a number of associative classification algorithms have been proposed such as Classification based Association (CBA), Classification based on Multiple Association Rules (CMAR), Class based Associative Classification (CACA), and Classification based on Predicted Association Rule (CPAR). This paper surveys major AC algorithms and compares the steps and methods performed in each algorithm including: rule learning, rule sorting, rule pruning, classifier building, and class prediction.
Keywords: Associative Classification, Classification, Data Mining, Learning, Rule Ranking, Rule Pruning, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66331374 On the Invariant Uniform Roe Algebra as Crossed Product
Authors: Kankeyanathan Kannan
Abstract:
The uniform Roe C*-algebra (also called uniform translation)C^*- algebra provides a link between coarse geometry and C^*- algebra theory. The uniform Roe algebra has a great importance in geometry, topology and analysis. We consider some of the elementary concepts associated with coarse spaces.
Keywords: Invariant Approximation Property, Uniform Roe algebras.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17361373 A Programmer’s Survey of the Quantum Computing Paradigm
Authors: Philippe Jorrand
Abstract:
Research in quantum computation is looking for the consequences of having information encoding, processing and communication exploit the laws of quantum physics, i.e. the laws which govern the ultimate knowledge that we have, today, of the foreign world of elementary particles, as described by quantum mechanics. This paper starts with a short survey of the principles which underlie quantum computing, and of some of the major breakthroughs brought by the first ten to fifteen years of research in this domain; quantum algorithms and quantum teleportation are very biefly presented. The next sections are devoted to one among the many directions of current research in the quantum computation paradigm, namely quantum programming languages and their semantics. A few other hot topics and open problems in quantum information processing and communication are mentionned in few words in the concluding remarks, the most difficult of them being the physical implementation of a quantum computer. The interested reader will find a list of useful references at the end of the paper.
Keywords: Quantum information processing, quantum algorithms, quantum programming languages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20041372 Best Coapproximation in Fuzzy Anti-n-Normed Spaces
Authors: J. Kavikumar, N. S. Manian, M. B. K. Moorthy
Abstract:
The main purpose of this paper is to consider the new kind of approximation which is called as t-best coapproximation in fuzzy n-normed spaces. The set of all t-best coapproximation define the t-coproximinal, t-co-Chebyshev and F-best coapproximation and then prove several theorems pertaining to this sets.
Keywords: Fuzzy-n-normed space, best coapproximation, co-proximinal, co-Chebyshev, F-best coapproximation, orthogonality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16301371 Two Points Crossover Genetic Algorithm for Loop Layout Design Problem
Authors: Xu LiYun, Briand Florent, Fan GuoLiang
Abstract:
The loop-layout design problem (LLDP) aims at optimizing the sequence of positioning of the machines around the cyclic production line. Traffic congestion is the usual criteria to minimize in this type of problem, i.e. the number of additional cycles spent by each part in the network until the completion of its required routing sequence of machines. This paper aims at applying several improvements mechanisms such as a positioned-based crossover operator for the Genetic Algorithm (GA) called a Two Points Crossover (TPC) and an offspring selection process. The performance of the improved GA is measured using well-known examples from literature and compared to other evolutionary algorithms. Good results show that GA can still be competitive for this type of problem against more recent evolutionary algorithms.Keywords: Crossover, genetic algorithm, layout design problem, loop-layout, manufacturing optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8461370 PSO-based Possibilistic Portfolio Model with Transaction Costs
Authors: Wei Chen, Cui-you Yao, Yue Qiu
Abstract:
This paper deals with a portfolio selection problem based on the possibility theory under the assumption that the returns of assets are LR-type fuzzy numbers. A possibilistic portfolio model with transaction costs is proposed, in which the possibilistic mean value of the return is termed measure of investment return, and the possibilistic variance of the return is termed measure of investment risk. Due to considering transaction costs, the existing traditional optimization algorithms usually fail to find the optimal solution efficiently and heuristic algorithms can be the best method. Therefore, a particle swarm optimization is designed to solve the corresponding optimization problem. At last, a numerical example is given to illustrate our proposed effective means and approaches.Keywords: Possibility theory, portfolio selection, transaction costs, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15341369 Nuclear Medical Image Treatment System Based On FPGA in Real Time
Authors: B. Mahmoud, M.H. Bedoui, R. Raychev, H. Essabbah
Abstract:
We present in this paper an acquisition and treatment system designed for semi-analog Gamma-camera. It consists of a nuclear medical Image Acquisition, Treatment and Display chain(IATD) ensuring the acquisition, the treatment of the signals(resulting from the Gamma-camera detection head) and the scintigraphic image construction in real time. This chain is composed by an analog treatment board and a digital treatment board. We describe the designed systems and the digital treatment algorithms in which we have improved the performance and the flexibility. The digital treatment algorithms are implemented in a specific reprogrammable circuit FPGA (Field Programmable Gate Array).interface for semi-analog cameras of Sopha Medical Vision(SMVi) by taking as example SOPHY DS7. The developed system consists of an Image Acquisition, Treatment and Display (IATD) ensuring the acquisition and the treatment of the signals resulting from the DH. The developed chain is formed by a treatment analog board and a digital treatment board designed around a DSP [2]. In this paper we have presented the architecture of a new version of our chain IATD in which the integration of the treatment algorithms is executed on an FPGA (Field Programmable Gate Array)
Keywords: Nuclear medical image, scintigraphic image, digitaltreatment, linearity, spectrometry, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16761368 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model
Authors: Nicolae Bold, Daniel Nijloveanu
Abstract:
The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.Keywords: Genetic algorithm, chromosomes, genes, cropping, agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16021367 Computable Function Representations Using Effective Chebyshev Polynomial
Authors: Mohammed A. Abutheraa, David Lester
Abstract:
We show that Chebyshev Polynomials are a practical representation of computable functions on the computable reals. The paper presents error estimates for common operations and demonstrates that Chebyshev Polynomial methods would be more efficient than Taylor Series methods for evaluation of transcendental functions.
Keywords: Approximation Theory, Chebyshev Polynomial, Computable Functions, Computable Real Arithmetic, Integration, Numerical Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30871366 A Matching Algorithm of Minutiae for Real Time Fingerprint Identification System
Authors: Shahram Mohammadi, Ali Frajzadeh
Abstract:
A lot of matching algorithms with different characteristics have been introduced in recent years. For real time systems these algorithms are usually based on minutiae features. In this paper we introduce a novel approach for feature extraction in which the extracted features are independent of shift and rotation of the fingerprint and at the meantime the matching operation is performed much more easily and with higher speed and accuracy. In this new approach first for any fingerprint a reference point and a reference orientation is determined and then based on this information features are converted into polar coordinates. Due to high speed and accuracy of this approach and small volume of extracted features and easily execution of matching operation this approach is the most appropriate for real time applications.
Keywords: Matching, Minutiae, Reference point, Reference orientation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24141365 MIBiClus: Mutual Information based Biclustering Algorithm
Authors: Neelima Gupta, Seema Aggarwal
Abstract:
Most of the biclustering/projected clustering algorithms are based either on the Euclidean distance or correlation coefficient which capture only linear relationships. However, in many applications, like gene expression data and word-document data, non linear relationships may exist between the objects. Mutual Information between two variables provides a more general criterion to investigate dependencies amongst variables. In this paper, we improve upon our previous algorithm that uses mutual information for biclustering in terms of computation time and also the type of clusters identified. The algorithm is able to find biclusters with mixed relationships and is faster than the previous one. To the best of our knowledge, none of the other existing algorithms for biclustering have used mutual information as a similarity measure. We present the experimental results on synthetic data as well as on the yeast expression data. Biclusters on the yeast data were found to be biologically and statistically significant using GO Tool Box and FuncAssociate.
Keywords: Biclustering, mutual information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16311364 An Integrated Framework for the Realtime Investigation of State Space Exploration
Authors: Jörg Lassig, Stefanie Thiem
Abstract:
The objective of this paper is the introduction to a unified optimization framework for research and education. The OPTILIB framework implements different general purpose algorithms for combinatorial optimization and minimum search on standard continuous test functions. The preferences of this library are the straightforward integration of new optimization algorithms and problems as well as the visualization of the optimization process of different methods exploring the search space exclusively or for the real time visualization of different methods in parallel. Further the usage of several implemented methods is presented on the basis of two use cases, where the focus is especially on the algorithm visualization. First it is demonstrated how different methods can be compared conveniently using OPTILIB on the example of different iterative improvement schemes for the TRAVELING SALESMAN PROBLEM. A second study emphasizes how the framework can be used to find global minima in the continuous domain.Keywords: Global Optimization Heuristics, Particle Swarm Optimization, Ensemble Based Threshold Accepting, Ruin and Recreate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13831363 ZMP Based Reference Generation for Biped Walking Robots
Authors: Kemalettin Erbatur, Özer Koca, Evrim Taşkıran, Metin Yılmaz, Utku Seven
Abstract:
Recent fifteen years witnessed fast improvements in the field of humanoid robotics. The human-like robot structure is more suitable to human environment with its supreme obstacle avoidance properties when compared with wheeled service robots. However, the walking control for bipedal robots is a challenging task due to their complex dynamics. Stable reference generation plays a very important role in control. Linear Inverted Pendulum Model (LIPM) and the Zero Moment Point (ZMP) criterion are applied in a number of studies for stable walking reference generation of biped walking robots. This paper follows this main approach too. We propose a natural and continuous ZMP reference trajectory for a stable and human-like walk. The ZMP reference trajectories move forward under the sole of the support foot when the robot body is supported by a single leg. Robot center of mass trajectory is obtained from predefined ZMP reference trajectories by a Fourier series approximation method. The Gibbs phenomenon problem common with Fourier approximations of discontinuous functions is avoided by employing continuous ZMP references. Also, these ZMP reference trajectories possess pre-assigned single and double support phases, which are very useful in experimental tuning work. The ZMP based reference generation strategy is tested via threedimensional full-dynamics simulations of a 12-degrees-of-freedom biped robot model. Simulation results indicate that the proposed reference trajectory generation technique is successful.Keywords: Biped robot, Linear Inverted Pendulum Model, Zero Moment Point, Fourier series approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16311362 Using Genetic Algorithms in Closed Loop Identification of the Systems with Variable Structure Controller
Authors: O.M. Mohamed vall, M. Radhi
Abstract:
This work presents a recursive identification algorithm. This algorithm relates to the identification of closed loop system with Variable Structure Controller. The approach suggested includes two stages. In the first stage a genetic algorithm is used to obtain the parameters of switching function which gives a control signal rich in commutations (i.e. a control signal whose spectral characteristics are closest possible to those of a white noise signal). The second stage consists in the identification of the system parameters by the instrumental variable method and using the optimal switching function parameters obtained with the genetic algorithm. In order to test the validity of this algorithm a simulation example is presented.
Keywords: Closed loop identification, variable structure controller, pseud-random binary sequence, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14401361 A Robust Visual Tracking Algorithm with Low-Rank Region Covariance
Authors: Songtao Wu, Yuesheng Zhu, Ziqiang Sun
Abstract:
Region covariance (RC) descriptor is an effective and efficient feature for visual tracking. Current RC-based tracking algorithms use the whole RC matrix to track the target in video directly. However, there exist some issues for these whole RCbased algorithms. If some features are contaminated, the whole RC will become unreliable, which results in lost object-tracking. In addition, if some features are very discriminative to the background, other features are still processed and thus reduce the efficiency. In this paper a new robust tracking method is proposed, in which the whole RC matrix is decomposed into several low rank matrices. Those matrices are dynamically chosen and processed so as to achieve a good tradeoff between discriminability and complexity. Experimental results have shown that our method is more robust to complex environment changes, especially either when occlusion happens or when the background is similar to the target compared to other RC-based methods.Keywords: Visual tracking, region covariance descriptor, lowrankregion covariance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15841360 Multiuser Detection in CDMA Fast Fading Multipath Channel using Heuristic Genetic Algorithms
Authors: Muhammad Naeem, Syed Ismail Shah, Habibullah Jamal
Abstract:
In this paper, a simple heuristic genetic algorithm is used for Multistage Multiuser detection in fast fading environments. Multipath channels, multiple access interference (MAI) and near far effect cause the performance of the conventional detector to degrade. Heuristic Genetic algorithms, a rapidly growing area of artificial intelligence, uses evolutionary programming for initial search, which not only helps to converge the solution towards near optimal performance efficiently but also at a very low complexity as compared with optimal detector. This holds true for Additive White Gaussian Noise (AWGN) and multipath fading channels. Experimental results are presented to show the superior performance of the proposed techque over the existing methods.Keywords: Genetic Algorithm (GA), Multiple AccessInterference (MAI), Multistage Detectors (MSD), SuccessiveInterference Cancellation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20471359 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis
Authors: Isao Taguchi, Yasuo Sugai
Abstract:
This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.
Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14301358 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles
Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi
Abstract:
Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8291357 On the Noise Distance in Robust Fuzzy C-Means
Authors: M. G. C. A. Cimino, G. Frosini, B. Lazzerini, F. Marcelloni
Abstract:
In the last decades, a number of robust fuzzy clustering algorithms have been proposed to partition data sets affected by noise and outliers. Robust fuzzy C-means (robust-FCM) is certainly one of the most known among these algorithms. In robust-FCM, noise is modeled as a separate cluster and is characterized by a prototype that has a constant distance δ from all data points. Distance δ determines the boundary of the noise cluster and therefore is a critical parameter of the algorithm. Though some approaches have been proposed to automatically determine the most suitable δ for the specific application, up to today an efficient and fully satisfactory solution does not exist. The aim of this paper is to propose a novel method to compute the optimal δ based on the analysis of the distribution of the percentage of objects assigned to the noise cluster in repeated executions of the robust-FCM with decreasing values of δ . The extremely encouraging results obtained on some data sets found in the literature are shown and discussed.Keywords: noise prototype, robust fuzzy clustering, robustfuzzy C-means
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18221356 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs
Authors: Swapnil Gupta, C. Pandu Rangan
Abstract:
A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.Keywords: Uniquely restricted matching, interval graph, design and analysis of algorithms, matching, induced matching, witness counting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15471355 Optimizing Mobile Agents Migration Based on Decision Tree Learning
Authors: Yasser k. Ali, Hesham N. Elmahdy, Sanaa El Olla Hanfy Ahmed
Abstract:
Mobile agents are a powerful approach to develop distributed systems since they migrate to hosts on which they have the resources to execute individual tasks. In a dynamic environment like a peer-to-peer network, Agents have to be generated frequently and dispatched to the network. Thus they will certainly consume a certain amount of bandwidth of each link in the network if there are too many agents migration through one or several links at the same time, they will introduce too much transferring overhead to the links eventually, these links will be busy and indirectly block the network traffic, therefore, there is a need of developing routing algorithms that consider about traffic load. In this paper we seek to create cooperation between a probabilistic manner according to the quality measure of the network traffic situation and the agent's migration decision making to the next hop based on decision tree learning algorithms.
Keywords: Agent Migration, Decision Tree learning, ID3 algorithm, Naive Bayes Classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19911354 Partial 3D Reconstruction using Evolutionary Algorithms
Authors: Mónica Pérez-Meza, Rodrigo Montúfar-Chaveznava
Abstract:
When reconstructing a scenario, it is necessary to know the structure of the elements present on the scene to have an interpretation. In this work we link 3D scenes reconstruction to evolutionary algorithms through the vision stereo theory. We consider vision stereo as a method that provides the reconstruction of a scene using only a couple of images of the scene and performing some computation. Through several images of a scene, captured from different positions, vision stereo can give us an idea about the threedimensional characteristics of the world. Vision stereo usually requires of two cameras, making an analogy to the mammalian vision system. In this work we employ only a camera, which is translated along a path, capturing images every certain distance. As we can not perform all computations required for an exhaustive reconstruction, we employ an evolutionary algorithm to partially reconstruct the scene in real time. The algorithm employed is the fly algorithm, which employ “flies" to reconstruct the principal characteristics of the world following certain evolutionary rules.Keywords: 3D Reconstruction, Computer Vision, EvolutionaryAlgorithms, Vision Stereo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18861353 Reformulations of Big Bang-Big Crunch Algorithm for Discrete Structural Design Optimization
Authors: O. Hasançebi, S. Kazemzadeh Azad
Abstract:
In the present study the efficiency of Big Bang-Big Crunch (BB-BC) algorithm is investigated in discrete structural design optimization. It is shown that a standard version of the BB-BC algorithm is sometimes unable to produce reasonable solutions to problems from discrete structural design optimization. Two reformulations of the algorithm, which are referred to as modified BB-BC (MBB-BC) and exponential BB-BC (EBB-BC), are introduced to enhance the capability of the standard algorithm in locating good solutions for steel truss and frame type structures, respectively. The performances of the proposed algorithms are experimented and compared to its standard version as well as some other algorithms over several practical design examples. In these examples, steel structures are sized for minimum weight subject to stress, stability and displacement limitations according to the provisions of AISC-ASD.Keywords: Structural optimization, discrete optimization, metaheuristics, big bang-big crunch (BB-BC) algorithm, design optimization of steel trusses and frames.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23891352 Dynamic Decompression for Text Files
Authors: Ananth Kamath, Ankit Kant, Aravind Srivatsa, Harisha J.A
Abstract:
Compression algorithms reduce the redundancy in data representation to decrease the storage required for that data. Lossless compression researchers have developed highly sophisticated approaches, such as Huffman encoding, arithmetic encoding, the Lempel-Ziv (LZ) family, Dynamic Markov Compression (DMC), Prediction by Partial Matching (PPM), and Burrows-Wheeler Transform (BWT) based algorithms. Decompression is also required to retrieve the original data by lossless means. A compression scheme for text files coupled with the principle of dynamic decompression, which decompresses only the section of the compressed text file required by the user instead of decompressing the entire text file. Dynamic decompressed files offer better disk space utilization due to higher compression ratios compared to most of the currently available text file formats.Keywords: Compression, Dynamic Decompression, Text file format, Portable Document Format, Compression Ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17631351 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets
Authors: Mohammad Ghavami, Reza S. Dilmaghani
Abstract:
This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.Keywords: Prediction of financial markets, Adaptive methods, MSE, LSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10201350 Multidimensional Data Mining by Means of Randomly Travelling Hyper-Ellipsoids
Authors: Pavel Y. Tabakov, Kevin Duffy
Abstract:
The present study presents a new approach to automatic data clustering and classification problems in large and complex databases and, at the same time, derives specific types of explicit rules describing each cluster. The method works well in both sparse and dense multidimensional data spaces. The members of the data space can be of the same nature or represent different classes. A number of N-dimensional ellipsoids are used for enclosing the data clouds. Due to the geometry of an ellipsoid and its free rotation in space the detection of clusters becomes very efficient. The method is based on genetic algorithms that are used for the optimization of location, orientation and geometric characteristics of the hyper-ellipsoids. The proposed approach can serve as a basis for the development of general knowledge systems for discovering hidden knowledge and unexpected patterns and rules in various large databases.Keywords: Classification, clustering, data minig, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17721349 Design and Implementation of a 10-bit SAR ADC with A Programmable Reference
Authors: Hasmayadi Abdul Majid, Yuzman Yusoff, Noor Shelida Salleh
Abstract:
This paper presents the development of a single-ended 38.5 kS/s 10-bit programmable reference SAR ADC which is realized in MIMOS’s 0.35 µm CMOS process. The design uses a resistive DAC, a dynamic comparator with pre-amplifier and a SAR digital logic to create 10 effective bits ADC. A programmable reference circuitry allows the ADC to operate with different input range from 0.6 V to 2.1 V. The ADC consumed less than 7.5 mW power with a 3 V supply.
Keywords: Successive Approximation Register Analog-to- Digital Converter, SAR ADC, Resistive DAC, Programmable Reference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21171348 Contact Drying Simulation of Particulate Materials: A Comprehensive Approach
Authors: Marco Intelvi, Apolinar Picado, Joaquín Martínez
Abstract:
In this work, simulation algorithms for contact drying of agitated particulate materials under vacuum and at atmospheric pressure were developed. The implementation of algorithms gives a predictive estimation of drying rate curves and bulk bed temperature during contact drying. The calculations are based on the penetration model to describe the drying process, where all process parameters such as heat and mass transfer coefficients, effective bed properties, gas and liquid phase properties are estimated with proper correlations. Simulation results were compared with experimental data from the literature. In both cases, simulation results were in good agreement with experimental data. Few deviations were identified and the limitations of the predictive capabilities of the models are discussed. The programs give a good insight of the drying behaviour of the analysed powders.Keywords: Agitated bed, Atmospheric pressure, Penetrationmodel, Vacuum
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2242