# Two Points Crossover Genetic Algorithm for Loop Layout Design Problem

Xu LiYun, Briand Florent, Fan GuoLiang

Abstract-The loop-layout design problem (LLDP) aims at optimizing the sequence of positioning of the machines around the cyclic production line. Traffic congestion is the usual criteria to minimize in this type of problem, i.e. the number of additional cycles spent by each part in the network until the completion of its required routing sequence of machines. This paper aims at applying several improvements mechanisms such as a positioned-based crossover operator for the Genetic Algorithm (GA) called a Two Points Crossover (TPC) and an offspring selection process. The performance of the improved GA is measured using well-known examples from literature and compared to other evolutionary algorithms. Good results show that GA can still be competitive for this type of problem against more recent evolutionary algorithms.

Keywords-Crossover, genetic algorithm, layout design problem, loop-layout, manufacturing optimization.

## I. INTRODUCTION

 $\mathbf{F}_{\text{production systems designed}}^{\text{LEXIBLE manufacturing systems (FMSs) are automated}}$ production systems designed to produce a variety of parts, where machines and material handling devices are computer controlled. The configuration of the facilities along a production line has a significant influence over the system overall performance. According to Tompkins et al. [1], approximately 8% of the U.S. gross national product is spent every year to build new facilities that need to be planned. Additionally, research by Huang et al. [2] showed that more than 35% of the system efficiency is likely to be lost by applying incorrect layout and location designs. A well-designed line layout is primordial in order to increase output and to decrease the time and manpower required for each task. This can be summed up into the reduction of the material handling cost (MHC). The productivity of the system, as well as the MHC and production times, is greatly influenced by the layout of the machines. Those MHCs can count up to a half of the total operating expenditures in manufacturing and they can be reduced by at least 10 to 30% with an efficient layout [3]. Reducing the MHC means also reduced material movement and throughput times, less product damage, simplified material control and scheduling, and less overall congestion.

The loop layout is a common disposition type of manufacturing system. It comprises a closed ring like network of machines with material handling device such as conveyers, handling robots, path of unidirectional automated guided vehicles (AGV), or overhead monorail systems. Each part has a specified sequence of machines to visit along a unidirectional material handling device in order to complete its processing. Every time a process is finished on a machine, the part is moved to the next machine on the unidirectional material-handling network. If this next workstation is occupied, the part is stored in a buffer waiting until the machine is available. Each station has secondary handling equipment so that part can be brought to and transferred-from the station work ahead to the material handling loop. All the parts enter and exit the system by a unique load/unload station (Fig. 1).



Fig. 1 Unidirectional loop layout

The loop layout shows several advantages over a conventional single line layout: material handling flexibility and agility in accommodating new parts and processes. According to Afentakis [4], this layout has relatively low initial costs since it contains few material handling links to connect all the workstations together. It thus shows a high flexibility degree and can satisfy all the requirements of material handling because all machines are reachable from all other machines. Process changes and new products can easily be integrated when using this type of layout for manufacturing systems. The optimization of the layout is a necessary step for FMSs. It will provide the solid base for an efficient running of the system and drastically reduce the material handling expenses.

The LLDP has been subject to numerous studies during the last decades with all types of methodology and heuristic algorithms. The recent studies have primarily focused on applying new meta-heuristics or extending the problem with multiple objectives. The GA is a widespread and renowned meta-heuristics that already proved its effectiveness for the LLDP. This paper aims at applying recent optimization techniques and newer operators to improve the GA's performance and to compare it with newer algorithms on a common computation data input. The rest of this paper is organized as follows. Section II is a literature review of previous approaches for the LLDP. Section III describes the problem in more details and Section IV introduces the

Xu LiYun, Florent Briand, and Fan GuoLiang are with the School of Mechanical Engineering, Tongji University, 4800 CaoAn Road, ShangHai 201804, China (e-mail: lyxu@tongji.edu.cn, florent.briand56@gmail.com, 2014fanguoliang@tongji.edu.cn).

mathematical model that supports this work. Section V describes the improvement implemented to the algorithm, and Section VI introduces the computational experiments to be discussed in Section VII. Finally, Section VIII summarizes the contribution and introduces some suggestions for future works. First, a review of the previous approaches for the LLDP will be given before introducing the improved algorithm, and finally, we compare its results with the previous studies.

## II. LITERATURE SURVEY

A LLDP deals with the assignment of  $m_n$  facilities to  $m_n$  candidate locations. Afentakis [4] was the first to address the unidirectional loop layout problem in 1989. He suggested the use of traffic congestion as a measure to evaluate such loop layout. The congestion is defined as the number of times that a part traverses the loop before its processing is completed. There are two kinds of congestion measures commonly used in loop layout design: min\_sum and min\_max.

- A min\_sum problem attempts to minimize the total congestion of all parts;
- A min\_max problem attempts to minimize the maximum congestion among a family of parts.

Afentakis proposed a graph-theoretic model for the min sum loop layout problem. Leung [5] proposed a graph-theoretic model for the min max loop layout problem. Bozer and Rim [6] used a branch and bound algorithm to solve the LLDP as well as Kouvelis and Kim [7]. As the problem has been proven to be NP-hard [7], the best way to tackle it is through heuristics techniques. Two heuristics called Move and Move/Interchange were presented by Tansel and Bilen [8]. Researchers started using meta-heuristics techniques inspired by nature, since those algorithms are well suited to deal with the combinatorial nature of the LLDP. The min max congestion measure using a GA inspired by the analogy of population genetics and Darwin's natural selection was proposed by Cheng and Gen [9] and Banerjee and Zhou [10]. Cheng and Gen [11] also used a hybrid GA and neighborhood search. Tian et al. [12] used the simulated annealing algorithm (SAA) which mimics the process of annealing metals. Bennell et al. [13] proposed tabu search (TS) algorithm and an iterated decent randomized insertion algorithm to solve the min\_max LLDP. Nearchou [14] approached LLDP with a differential evolution algorithm (DEA), whereas Kumar et al. [15] proposed a particle swarm optimization algorithm (PSO) to solve the same LLDP with min sum, as well as the artificial immune system (AIS) [16]. Ma et al. [17] proposed dual system method with differential evolution algorithm (DEA) and GA to solve the loop-based station sequencing problem. Zhang et al. [18] applied the GA to solve a concrete case of loop layout in the industry by optimizing a blade workshop, taking into account the material flow between machines. Niroomand and Vizvari [19] suggested a new mathematical model formulated for the closed loop layout with exact distances. Then, they implemented a modified Migrating Birds optimization algorithm to solve the exact distances LLDP [20]. Ramezani et al. [21] presented a robust design for a closed loop supply chain network under an uncertain environment. Saravanan and Kumar [22] also proposed the implementation of the sheep flock heredity algorithm (SFHA) to the LLP as well as Anandaraman [23]. Manita and Korbaa [24] applied the Ant Colony optimization algorithm to the LLP while taking into account proximity constraints and machine dimensions. Hou et al. [25] optimized a manufacturing system composed of multi loop layout around a transfer loop with co-evolutionary methodology.

#### **III. PROBLEM DESCRIPTION**

The LLDP solutions can be represented as a permutation of machines (m1, m2...mn) assigned to mn locations with an additional loading/unloading station at location 0. As previously explained, the optimization of the layout in this study will be centered on the improvement of the traffic congestion as introduced by Afentakis [4] with min-sum and min-max. Both indexes rely on the notion of additional circuits, or reloads, that occur when a part must travel from a machine on a given location to another machine on another location that is upstream of the unidirectional flow of the material handling equipment. The more reloads a given layout (represented as a permutation of machines  $\pi$ ) needs, the more congested the traffic of the system will be.

The reloads counting can be done by running a simple test. First, consider the given notations:

- $Pk = \{1, ..., p\}$ : Set of products to be manufactured
- $M = \{1, ..., m\}$ : Set of machines to be arranged around the loop
- $M_k = (\mu_{1k}, ..., \mu_{n_k k})$ : Routing sequence through machines  $\mu$  for a product k
- $n_k$ : Number of operations required
- $\pi$ : Ordering of the machines around the loop
- $\lambda_i(\pi)$ : Location of machine *i* in ordering  $\pi$ , with  $i \in M$
- α<sub>jk</sub>(π): Reload variable for product k with respect to ordering π when moving from machine μ<sub>jk</sub> to machine μ<sub>jk+1</sub>
- $c(\pi)$ :Cost of ordering  $\pi$  (min-max and min-sum indexes)

A reload for a given product *k* occurs if, after completing operation on a machine  $\mu_{j,k}$  located on location  $\lambda_{\mu_{j,k}}$ , it needs to be transferred to another machine  $\mu_{j+1,k}$  located on  $\lambda_{\mu_{j+1,k}}$  with  $\lambda_{\mu_{j,k}} > \lambda_{\mu_{j+1,k}}$ .

#### IV. MATHEMATICAL MODEL

The problem's formulation, for a given layout  $\pi$ :

$$\alpha_{jk}(\pi) = \begin{cases} 1 & if \quad \lambda_{\mu_{j,k}}(\pi) > \lambda_{\mu_{j+1,k}}(\pi) \\ 0 & \text{otherwise} \end{cases}$$
(1)

with

$$\mu_{j,k}(\pi) \neq \mu_{j+1,k} , \forall j \in M_k$$
(2)

Equation (2) ensures that the consecutive machines' locations stay different. This test is the base upon which the congestion indexes are then described, i.e. the number of reloads completed by product k with respect to ordering  $\pi$ :

$$c_{min-sum}(\pi) = \sum_{k=1}^{P} \sum_{j=1}^{n_k-1} \alpha_{jk}(\pi)$$
(3)

or simplified as:

$$c_{min-sum}(\pi) = \sum_{k=1}^{P} reloads \tag{4}$$

For min-max:

$$c_{min-max}(\pi) = \max\left(\sum_{j=1}^{n_k-1} \alpha_{jk}(\pi)\right)$$
(5)

or simplified as:

$$c_{min-max}(\pi) = \max(reloads) \tag{6}$$

## V.DESIGN OF IMPROVED GA

Developed by Holland [26] in 1975, they have since been applied in a large range of domains such as engineering, social sciences, or physical sciences. It uses the same principle as the biological evolution in nature to improve generation after generation a given sets of solutions. It starts with a population in which each individual, called a chromosome, is a string of numbers corresponding to a layout combination of the facilities. Two chromosomes (called parents) are selected based on their score obtained via the fitness function (the lower the better). The parents mate and generate an offspring through an operation called crossover. Generation after generation, the stronger individuals, i.e. among the best solutions to the problem, are the survivors in a competitive environment. The population thus tends towards an optimal solution for the problem.

## A. TPC Crossover Process

Unlike the available genetic operators previously proposed for the LLDP (such as partially mapped crossover, exchange crossover etc.), this study uses a crossover operator so as to search only the feasible space of offspring; thus, we save computational time by avoiding infeasible space. The TPC also considers the relative orders of genes within the two parents and thus creates better offspring able to intersect their parents' characteristics.

The idea of the TPC is to first randomly select two crossover points (gene number 3 and 7 in the following example Fig. 3). All the genes from parent 1 (P1) between those two points (genes 1, 5, 4) are then rearranged considering the order of those same genes in P2, which is 4, 1, 5. Same process for the genes of P2 is rearranged according to P1.

## B. Child Competition

The presented algorithm features a selection within the crossover offspring sub-population to select the best children that will be reintroduced within the initial population, replacing the worst parents. A selected child is forbidden to be reintroduced if it already exists in the parents' population. This mechanism ensures genetic variety and prevents premature convergence of the algorithm.



## Fig. 3 TPC

## C. Mutation Process

A mutation operation is applied after crossover to ensure a greater diversity within the population and thus to consider a greater search space, as well as preventing the population from premature convergence. A chromosome is then randomly selected and two genes are swapped to create a mutant which is re-introduced in the population. The number of mutations occurring in one generation over the total size of the population is the mutation probability. The mutation occurs whether it affects the quality of the population favorably or unfavorably. Its role is to induce changes and bring in new genetic features that increase the variety of the parents' pool.

The mutation process chosen here was the swap process because it provides a random change in the selected chromosome, where the crossover process uses logic and exchange between chromosomes. This chaotic factor breaks the overall generational continuity of the population and provides a greater genetic diversity.



Fig. 4 Swap mutation process

#### VI. COMPUTATIONAL EXPERIMENTS

This section discusses the performance and computational efficiency of the proposed crossover operator in comparison to other meta-heuristics. Cheng and Gen's GA [9] will be used as comparison against its PMX crossover. The results will be also compared with those of the SAA of Tian et al. [12], the DEA of Nearchou [14], and Kumar et al. studies algorithms (PSO, AIS, SFHA) [15], [16], [22]. All the results for those algorithms are taken from Kumar [22].

The SAA study of Tian et al. [12] contained six different perturbation schemes (PS1–PS6) in order to generate random permutation solutions: random interchange of two adjacent terms (PS1), random interchange of two nonadjacent terms (PS2), single-term insertion (PS3), random movement of a subsequence of terms (PS4), reversion of a randomly selected subsequence of terms (PS5), reversion and/or movement of a randomly selected subsequence of terms (PS6).

The comparison will be run on the examples taken from Nearchou [14] as it is the common examples used in the literature on the LLDP. It contains a wide variety of situations, with randomly generated problems ranging from 10 machines and three parts to 30 machines and 10 parts, described in Table I. Nearchou kept the GA from Cheng and Gen [11] with the original parameters, which are population size = 20, crossover probability Pc = 30% and mutation probability Pm = 30%. To be fair and produce an objective comparison, the different algorithms were left run for a maximum of 20,000 evaluations. An evaluation is defined as a single computation of the objective function of a candidate solution. This study will thus use the same parameters as Cheng and Gen run on the same examples described in Nearchou with the same evaluation limitation.

The Kumar's PSO and SFHA algorithms on the other hand were left running for 40,000 evaluations, so his comparison was obviously not fair compared to the one of Nearchou. A new comparison is then conducted with this new limitation factor for the hereby proposed TPC GA algorithm. The results also feature several measurements such as Solution Effort (SE) describing the efficiency of an algorithm to reach an optimal solution. This factor is calculated as below:

$$SE(\%) = \frac{ne_{opt}}{ne_{total}} \times 100 \tag{7}$$

where  $ne_{opt}$  is the number of evaluation performed by the algorithm to achieve its optimal solution, and  $ne_{total}$  is the total number of evaluations. A low SE value could imply a fast convergence characterized as premature, whereas a high SE value could suggest that the algorithm has the ability to find even better solutions if running for a greater number of iterations.

The CPU time in seconds until the convergence of the algorithm is also measured. Please note that the Nearchou's results (DEA, GA and SAA) were obtained on a Pentium IV (1.7 GHz) personal computer and programmed in Pascal language. So, the CPU time results are obviously longer than our algorithm run on a Core i5 (2.5 GHz) processor under a Microsoft Windows 10 operating system and programmed in MATLAB. Kumar's results (PSO, AIS and SFHA) are also obtained on a Pentium IV and programmed in Java language.

#### VII. RESULTS AND DISCUSSION

The different computation results are summed up into Table I. They are expressed into percentage of variation from the TPC GA compared to the previous best result from other algorithms on the same problem (a negative percentage means better). The results for the biggest problem (30 machines, 10 parts) are the most meaningful as the small dimension problems have lower values in congestion, which translates into huge variations in the percentages. It can thus be observed a fair improvement of the congestion on the biggest problem, which means the algorithms is worth studying and implementing.

Usually one of the main drawbacks of the classic GA is its fast convergence rate, often premature in regard to the other algorithms rates. It usually prevents the algorithm to find an optimal solution as it is often trapped into a local optimum. But, it also allows it to produce good solutions quite fast compared to the other evolutionary algorithms.

A big difference in SE% can be seen between GA and TPC GA: the original GA of Cheng and Gen tends to converge quite rapidly, while the TPC GA version used hereby has a slower convergence indicator. This is due to the selection process in the offspring population after crossover that refuses any offspring child that already exists in the initial parents' population. This method considerably reduces premature convergence of the algorithm compared to the original version of Cheng and Gen. The genetic diversity is improved throughout the generations and leads to a greater pool of possible solutions. The high SE% observed for the improved GA signifies that the algorithm could be left running even longer to find better solutions. The cross over operator chosen also provides a faster calculation due to its anti-illegal offspring nature that saves the computation time necessary for test and replacement of infeasible children. It is also interesting to note the differences in CPU times measured, representing as previously stated the time for convergence of the algorithms. The large CPU times recorded for the improved algorithm are also a result of this high SE%. But, actually the overall

processing time of the studied GA is lesser than the other algorithms as calculated in Table VI on the most complex problem (30 machines, 10 parts) for meaningful results (deducted for other algorithms from SE% and convergence times). The improved GA is faster than the others algorithms. But, this difference can be attributed to the more powerful CPU used to run this algorithm compared to the previous studies of Nearchou and Kumar.

| TABLE I<br>IMPROVEMENT PERCENTAGE FOR TPC GA |                     |         |         |  |  |  |
|----------------------------------------------|---------------------|---------|---------|--|--|--|
| Problem (No. of machines, No. of parts)      | No. of computations | Min-Max | Min-Sum |  |  |  |
| 10.2                                         | 20,000              | 0       | 0       |  |  |  |
| 10-5                                         | 40,000              | 0       | 0       |  |  |  |
| 20.5                                         | 20,000              | +20     | -20     |  |  |  |
| 20-5                                         | 40,000              | +6      | 0       |  |  |  |
| 15.0                                         | 20,000              | 0       | -14     |  |  |  |
| 15-9                                         | 40,000              | +33     | +33     |  |  |  |
| 20.10                                        | 20,000              | -33     | -11     |  |  |  |
| 30-10                                        | 40,000              | -2      | -12.5   |  |  |  |

## VIII.CONCLUSION

The improved GA presented hereby shows very good results in light of classical examples in literature on the subject. The different mechanisms used for optimization such as selection of offspring after crossover, elitism strategy, anti-illegal offspring crossover procedure and anti-reproduction of already existing chromosomes proved quite efficient and deserves to be implemented on further algorithms. It could also be interesting to apply to the other problems such as the bi-directional loop layout problem or with the other factors such as clearance limitations or multiple load/unload stations, or even shortcuts in the layout. Waiting times or limited capacity buffers could also be taken into account to better reflect the concrete operations in factories.

### APPENDIX

This appendix presents the data input for computation (taken from [14]) and the results of calculation for each problem. Bold lines represent the best results.

| TABLE II         |   |
|------------------|---|
| MACHINE SEQUENCE | į |

|             |                                  |          | MACHINE SEQUENCE                                                                                                                                                         |
|-------------|----------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Problem No. | No. Of Machines,<br>No. of Parts | Part No. | Required Machine Sequence                                                                                                                                                |
| 1           | 10, 3                            | Part 1   | 2-1-6-5-8-9-3-4                                                                                                                                                          |
|             |                                  | Part 2   | 10-8-7-5-9-6-1                                                                                                                                                           |
|             |                                  | Part 3   | 9–2–7–4                                                                                                                                                                  |
| 2           | 20, 5                            | Part 1   | 4-2-3-12-1-9-16-18-5-8-20-15-14-6-11                                                                                                                                     |
|             |                                  | Part 2   | 10-9-1-3-18-17-5-6-2-11-4                                                                                                                                                |
|             |                                  | Part 3   | 17-11-6-8-7-15-16-9-1-20                                                                                                                                                 |
|             |                                  | Part 4   | 14-17-11-3-16-5-13-18-20-19-12-10-6-8-15                                                                                                                                 |
|             |                                  | Part 5   | 6-18-8-4-2-7-5-9-14-19-1-20-10-16-11-15-13-12                                                                                                                            |
| 3           | 15, 9                            | Part 1   | 4-2-5-1-6-8-14-9-11-3-15-12                                                                                                                                              |
|             |                                  | Part 2   | 3-2-15-14-11-1-7-10-4-5-13-6-9                                                                                                                                           |
|             |                                  | Part 3   | 5-6-11-15-2-12-3-4                                                                                                                                                       |
|             |                                  | Part 4   | 10-9-4-14-2-3-15-8                                                                                                                                                       |
|             |                                  | Part 5   | 11-2-4-14-5-3-15                                                                                                                                                         |
|             |                                  | Part 6   | 8-10-12-11-15-13-1-14-4-5-3                                                                                                                                              |
|             |                                  | Part 7   | 5-11-10-3-7-13-8                                                                                                                                                         |
|             |                                  | Part 8   | 7-3-2-8-4-10-6-15-13-9-1                                                                                                                                                 |
|             |                                  | Part 9   | 11-13-3-1-12-14-4-8-9-2                                                                                                                                                  |
| 4           | 30, 10                           | Part 1   | 6-3-4-18-5-1-14-24-26-7-11-30-23-21-13-27-9-16-17-2-25-8-15                                                                                                              |
|             |                                  | Part 2   | 17-9-11-8-10-22-24-13-2-29-23-21-25-16-4-20-26-18-15-12-27-6-3-7-28                                                                                                      |
|             |                                  | Part 3   | 13 - 2 - 6 - 29 - 21 - 3 - 14 - 24 - 12 - 15 - 17 - 8 - 1 - 22 - 28 - 10 - 7 - 30 - 20 - 19                                                                              |
|             |                                  | Part 4   | 7-2-6-11-21-8-16-30-1                                                                                                                                                    |
|             |                                  | Part 5   | 3-17-1-2-20-22-8-6-26-19-14-11-15-12-7-16-21-10-28-23-18-4-27-24-25-13-30-9-5                                                                                            |
|             |                                  | Part 6   | 30–9–2                                                                                                                                                                   |
|             |                                  | Part 7   | 15 - 9 - 30 - 19 - 12 - 3 - 6 - 5 - 8 - 14 - 7 - 28 - 23 - 1 - 29 - 24 - 27 - 2 - 13 - 4 - 26 - 16 - 11 - 10 - 25 - 21 - 22 - 20 - 18 - 12 - 12 - 12 - 12 - 12 - 12 - 12 |
|             |                                  | Part 8   | 7-19-5-4-9-16-3-14-28-13-11-2-21-10-17-22-26-23-29-30                                                                                                                    |
|             |                                  | Part 9   | 21-4-1-6-11-22                                                                                                                                                           |
|             |                                  | Part 10  | 12-6-17-15-13-30-26-18-14-9-7-11-23-2-4-25-24                                                                                                                            |

| COMPARISON FOR THE 10-MACHINE, 3-PART PROBLEM                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of                                                                | Algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cost                                                                                                                                                                                      | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CPU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Congestion for each part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ontimal order of machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| evaluations                                                              | Algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ' min_su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m_min_max                                                                                                                                                                                 | к (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | congestion for each part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | optimal order of machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MIN_SUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                          | DEA_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                         | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-9-2-3-8-6-1-7-5-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | DEA 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6-5-10-8-9-3-2-7-1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-5-8-9-3-2-7-4-1-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | SA PS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6-5-10-8-1-9-7-3-4-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | SA PS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3-2-6-1-7-5-10-8-4-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20,000                                                                   | SA PS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1_2_0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-8-9-7-1-3-6-4-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                          | SA_155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                          | SA_154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 - 10 - 6 - 9 - 2 - 3 - 7 - 0 - 4 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                          | SA_PS5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 - 10 - 6 - 9 - 2 - 0 - 1 - 5 - 7 - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                          | SA_PS0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8-9-5-10-1-4-2-0-7-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | IPC GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-5-8-9-3-2-6-7-4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | PSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-10-8-9-2-3-7-6-4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 40,000                                                                   | AIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-5-8-9-2-7-3-4-6-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ,                                                                        | SFHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | <b>6.</b> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-6-5-8-9-2-7-3-4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | TPC GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 77.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6-10-5-8-9-3-2-7-4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MIN_MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                          | DEA_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 12.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-3-4-6-7-5-10-8-9-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | DEA <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9-2-6-3-7-10-5-1-4-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-2-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-10-8-3-4-1-9-6-7-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | SA PS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7-5-10-8-9-1-3-4-6-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | SA PS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9-10-6-2-7-5-3-4-1-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20,000                                                                   | SA PS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-10-8-9-2-6-3-7-1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20,000                                                                   | SA PS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2_2_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-7-2-5-6-8-9-3-1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | SA PS5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3_3_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5-8-10-9-4-2-7-6-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | SA DS6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10623714580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                          | DEA 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 - 2 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 - 6 - 2 - 5 - 7 - 1 - 4 - 5 - 8 - 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                          | TDC CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9-2-0-3-7-10-3-1-4-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | IFC GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 90.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0-5-10-8-9-2-7-5-1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10,000                                                                   | AIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40,000                                                                   | SFHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-10-8-9-2-1-3-7-4-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          | IPC GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                         | 91.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6-5-10-8-9-2-3-7-4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TADI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                           | Colman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TABL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Newborrd                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cent                                                                                                                                                                                      | COMPAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TABL<br>ISON FOR THE 20-M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LE IV<br>IACHINE, 5-PART PROBLEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number of                                                                | Algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cost                                                                                                                                                                                      | COMPAR<br>SE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TABL<br>ISON FOR THE 20-M<br>PU<br>Congestion for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .E IV<br>IACHINE, 5-PART PROBLEM<br>r each part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Optimal order of machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number of evaluations                                                    | Algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cost<br>min_sum r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cost<br>nin_max                                                                                                                                                                           | COMPAR<br>SE C<br>(%) ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TABL<br>ISON FOR THE 20-M<br>PU<br>Congestion for<br>MIN_SLIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JE IV<br>IACHINE, 5-PART PROBLEM<br>r each part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Optimal order of machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number of evaluations                                                    | Algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cost<br>min_sum_n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cost<br>nin_max                                                                                                                                                                           | COMPAR<br>SE C<br>(%) ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TABL<br>ISON FOR THE 20-M<br>PU<br>Congestion for<br>MIN_SUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E IV<br>IACHINE, 5-PART PROBLEM<br>r each part<br>I approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Optimal order of machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number of evaluations                                                    | Algorithm<br>DEA_1<br>DEA_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cost<br>min_sum n<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cost<br>nin_max<br>7                                                                                                                                                                      | COMPAR           SE         C           (%)         til           32.4         2           66.6         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TABL<br>ISON FOR THE 20-M<br>PU<br>Congestion for<br>MIN_SUM<br>2.0 6-3-2-<br>3.3 4.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E IV<br>IACHINE, 5-PART PROBLEM<br>r each part<br>I approach<br>5-7 18-1-2-20-3-1<br>3 6 14 10 18 17 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Optimal order of machines<br>4–10–17–5–6–8–7–11–12–15–13–16–4–19–9<br>6 8 4 2 7 9 1 20 11 3 15 19 13 16 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Number of evaluations                                                    | Algorithm<br>DEA_1<br>DEA_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cost<br>min_sum r<br>23<br>17<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cost<br>nin_max<br>7<br>6                                                                                                                                                                 | COMPAR           SE         C           (%)         til           32.4         2           66.6         3           3.4         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TABL           ISON FOR THE 20-M           PU           Congestion for           MIN_SUM           2.0         6-3-2-           3.3         4-2-2-           L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E IV<br>IACHINE, 5-PART PROBLEM<br>r each part<br>approach<br>5–7 18–1–2–20–3–1<br>3–6 14–10–18–17–5<br>4–5 10.9–14–6–19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Optimal order of machines<br>4–10–17–5–6–8–7–11–12–15–13–16–4–19–9<br>–6–8–4–2–7–9–1–20–11–3–15–19–13–16–12<br>2–16–12–18–1–17–5–8–11–20–3–7–15–4–13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Number of evaluations                                                    | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cost<br>min_sum_r<br>23<br>17<br>18<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cost<br>nin_max<br>7<br>6<br>5<br>7                                                                                                                                                       | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           3.4         1           53.0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TABL           ISON FOR THE 20-M           PU           Congestion for           MIN_SUM           2.0         6–3–2–           3.3         4–2–2–           1.1         4–2–3–           0.6         5–4–2–                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E IV<br>IACHINE, 5-PART PROBLEM<br>r each part<br>I approach<br>5–7 18–1–2–20–3–1<br>3–6 14–10–18–17–5<br>4–5 10–9–14–6–19–<br>4–7 12–2–14–6-8–7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Optimal order of machines<br>4–10–17–5–6–8–7–11–12–15–13–16–4–19–9<br>–6–8–4–2–7–9–1–20–11–3–15–19–13–16–12<br><b>2–16–12–18–1–17–5–8–11–20–3–7–15–4–13</b><br>–1–17–20–10–15–11–3–16–19–18–5–9–13–4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Number of evaluations                                                    | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6                                                                                                                                                  | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           3.4         1           53.0         0           38.8         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TABL           ISON FOR THE 20-M           PU           Congestion for           MIN_SUM           2.0         6-3-2-           3.3         4-2-2-           1.1         4-2-3-           0.6         5-4-2-           5.9         6-4-4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LE IV<br>IACHINE, 5-PART PROBLEM<br>r each part<br>I approach<br>5–7 18–1–2–20–3–1<br>3–6 14–10–18–17–5<br>4–5 10–9–14–6–19–<br>4–7 12–2–14–6–8–7<br>4–4 14–13–3–16–17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Optimal order of machines<br>4–10–17–5–6–8–7–11–12–15–13–16–4–19–9<br>–6–8–4–2–7–9–1–20–11–3–15–19–13–16–12<br><b>2–16–12–18–1–17–5–8–11–20–3–7–15–4–13</b><br>–1–17–20–10–15–11–3–16–19–18–5–9–13–4<br>–19–9–1–7–11–5–18–6–8–15–20–4–12–10–2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Number of<br>evaluations<br>20,000                                       | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cost<br>nin_max<br>7<br>6<br><b>5</b><br>7<br>6<br>5                                                                                                                                      | COMPAR           SE         C           (%)         til           32.4         2           66.6         3           53.0         C           38.8         5           80.8         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TABL           ISON FOR THE 20-M           PU           Congestion for           MIN_SUM           2.0         6-3-2-           3.3         4-2-2-           1.1         4-2-3-           0.6         5-4-2-           5.9         6-4-4-           5.9         6-4-4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LE IV<br>IACHINE, 5-PART PROBLEM<br>r each part<br>I approach<br>5–7 18–1–2–20–3–1<br>3–6 14–10–18–17–5<br>4–5 10–9–14–6–19–<br>4–7 12–2–14–6–8–7<br>4–4 14–13–3–16–17<br>5–5 20–14–2–6–19–                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Optimal order of machines<br>4–10–17–5–6–8–7–11–12–15–13–16–4–19–9<br>–6–8–4–2–7–9–1–20–11–3–15–19–13–16–12<br><b>2–16–12–18–1–17–5–8–11–20–3–7–15–4–13</b><br>–1–17–20–10–15–11–3–16–19–18–5–9–13–4<br>–19–9–1–7–11–5–18–6–8–15–20–4–12–10–2<br>17–15–7–10–18–8–12–11–1–9–5–4–3–16–13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Number of<br>evaluations<br>20,000                                       | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cost<br>nin_max<br>7<br>6<br><b>5</b><br>7<br>6<br>5<br>6<br>5<br>6                                                                                                                       | COMPAR           SE         C           (%)         til           32.4         2           66.6         3           3.4         1           53.0         0           38.8         5           80.8         6           27.3         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TABL           ISON FOR THE 20-M           PU           Congestion for           MIN_SUM           2.0         6-3-2-           3.3         4-2-2-           1.1         4-2-3-           0.6         5-4-2-           5.9         6-4-4-           5.9         6-4-4-           2.3         6-4-3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LE IV<br>IACHINE, 5-PART PROBLEM<br>r each part<br>I approach<br>5–7 18–1–2–20–3–1<br>3–6 14–10–18–17–5<br><b>4–5 10–9–14–6–19–</b><br>4–7 12–2–14–6–8–7<br>4–4 14–13–3–16–17<br>5–5 20–14–2–6–19–<br>4–4 10–6–2–17–16–                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Optimal order of machines<br>4–10–17–5–6–8–7–11–12–15–13–16–4–19–9<br>–6–8–4–2–7–9–1–20–11–3–15–19–13–16–12<br><b>2–16–12–18–1–17–5–8–11–20–3–7–15–4–13</b><br>–1–17–20–10–15–11–3–16–19–18–5–9–13–4<br>–19–9–1–7–11–5–18–6–8–15–20–4–12–10–2<br>17–15–7–10–18–8–12–11–1–9–5–4–3–16–13<br>1–18–8–20–11–7–15–5–13–19–12–4–9–3–14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Number of<br>evaluations<br>20,000                                       | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>21<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cost<br>nin_max<br>7<br>6<br><b>5</b><br>7<br>6<br>5<br>6<br>6                                                                                                                            | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           3.4         1           53.0         0           38.8         5           80.8         6           27.3         2           20.1         1                                                                                                                                                                                                                                                                                                                                                                                                                                         | TABL           ISON FOR THE 20-M           PU           Congestion for           MIN_SUM           2.0         6-3-2-           3.3         4-2-2-           1.1         4-2-3-           0.6         5-4-2-           5.9         6-4-4-           6.9         4-4-3-           2.3         6-4-3-           1.5         4-4-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LE IV<br>IACHINE, 5-PART PROBLEM<br>r each part<br>I approach<br>5–7 18–1–2–20–3–1<br>3–6 14–10–18–17–5<br><b>4–5 10–9–14–6–19–</b><br>4–7 12–2–14–6–8–7<br>4–4 14–13–3–16–17<br>5–5 20–14–2–6–19–<br>4–4 10–6–2–17–16–<br>6–4 13–4–9–7–14–1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Optimal order of machines<br>4-10-17-5-6-8-7-11-12-15-13-16-4-19-9<br>-6-8-4-2-7-9-1-20-11-3-15-19-13-16-12<br>2-16-12-18-1-17-5-8-11-20-3-7-15-4-13<br>-1-17-20-10-15-11-3-16-19-18-5-9-13-4<br>-19-9-1-7-11-5-18-6-8-15-20-4-12-10-2<br>17-15-7-10-18-8-12-11-1-9-5-4-3-16-13<br>1-18-8-20-11-7-15-5-13-19-12-4-9-3-14<br>9-1-2-3-6-12-20-10-16-18-17-11-15-5-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Number of<br>evaluations<br>20,000                                       | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>21<br>22<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cost<br>nin_max<br>7<br>6<br><b>5</b><br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>5                                                                                                             | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           3.4         1           53.0         0           38.8         5           80.8         6           20.1         2           20.7         2                                                                                                                                                                                                                                                                                                                                                                                                                                         | TABL           ISON FOR THE 20-M           PU           Congestion for           MIN_SUM           2.0         6-3-2-           3.3         4-2-3-           0.6         5-4-2-           5.9         6-4           5.9         6-4           2.3         6-4-3-           1.5         4-4           3.0         4-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \text{r each part} \\ \hline \text{I approach} \\ \hline 5-7 & 18-1-2-20-3-1 \\ 3-6 & 14-10-18-17-5 \\ \hline 4-5 & 10-9-14-6-19- \\ 4-7 & 12-2-14-6-8-7 \\ 4-4 & 14-13-3-16-17 \\ 5-5 & 20-14-2-6-19- \\ 4-4 & 10-6-2-17-16- \\ 6-4 & 13-4-9-7-14-1 \\ 5-5 & 10-4-16-14-7- \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Optimal order of machines<br>4-10-17-5-6-8-7-11-12-15-13-16-4-19-9<br>-6-8-4-2-7-9-1-20-11-3-15-19-13-16-12<br><b>2-16-12-18-1-17-5-8-11-20-3-7-15-4-13</b><br>-1-17-20-10-15-11-3-16-19-18-5-9-13-4<br>-19-9-1-7-11-5-18-6-8-15-20-4-12-10-2<br>17-15-7-10-18-8-12-11-1-9-5-4-3-16-13<br>1-18-8-20-11-7-15-5-13-19-12-4-9-3-14<br>9-1-2-3-6-12-20-10-16-18-17-11-15-5-8<br>2-19-17-5-1-3-6-11-9-18-8-13-12-20-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Number of<br>evaluations<br>20,000                                       | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>21<br>22<br>22<br>22<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cost<br>nin_max<br>7<br>6<br><b>5</b><br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>5<br>6                                                                                                   | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           3.4         1           53.0         0           38.8         3           80.8         0           20.1         2           20.7         3           20.7         3           91.0         0                                                                                                                                                                                                                                                                                                                                                                                       | TABL           ISON FOR THE 20-M           PU           Congestion for           MIN_SUM           2.0         6-3-2-           3.3         4-2-3-           0.6         5-4-2-           5.9         6-4           5.9         6-4           6.3         6-4-3-           1.5         4-4           3.0         4-4           5.1         6-3-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \text{r each part} \\ \hline \text{Iapproach} \\ \hline 5-7 & 18-1-2-20-3-1 \\ 3-6 & 14-10-18-17-5 \\ \hline 4-5 & 10-9-14-6-19- \\ 4-7 & 12-2-14-6-8-7 \\ 4-4 & 14-13-3-16-17 \\ 5-5 & 20-14-2-6-19- \\ 4-4 & 10-6-2-17-16- \\ \hline 6-4 & 13-4-9-7-14-1 \\ 5-5 & 10-4-16-14-7- \\ 3-4 & 4-10-2-7-16-1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Optimal order of machines<br>4-10-17-5-6-8-7-11-12-15-13-16-4-19-9<br>-6-8-4-2-7-9-1-20-11-3-15-19-13-16-12<br><b>2-16-12-18-1-17-5-8-11-20-3-7-15-4-13</b><br>-1-17-20-10-15-11-3-16-19-18-5-9-13-4<br>-19-9-1-7-11-5-18-6-8-15-20-4-12-10-2<br>17-15-7-10-18-8-12-11-1-9-5-4-3-16-13<br>1-18-8-20-11-7-15-5-13-19-12-4-9-3-14<br>9-1-2-3-6-12-20-10-16-18-17-11-15-5-8<br>2-19-17-5-1-3-6-11-9-18-8-13-12-20-15<br>7-5-9-1-11-3-13-14-6-18-8-20-15-19-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Number of<br>evaluations<br>20,000                                       | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PS0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>21<br>22<br>22<br>18<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>5<br>6<br>5<br>6<br>4                                                                                                               | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3.4           53.0         0           38.8         2           20.1         1           20.7         2           91.0         6                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TABL           ISON FOR THE 20-M           PU           Congestion for           MIN_SUM           2.0         6-3-2-           3.3         4-2-2-           1.1         4-2-3-           0.6         5-4-2-           5.9         6-4-4-           5.9         6-4-4-           3.0         4-4-4-           3.0         4-4-4-           5.1         6-3-2-           -         4-3-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \text{r each part} \\ \hline \text{spproach} \\ \hline 5-7 & 18-1-2-20-3-1 \\ 3-6 & 14-10-18-17-5 \\ \hline 4-5 & 10-9-14-6-19- \\ \hline 4-7 & 12-2-14-6-8-7 \\ \hline 4-4 & 14-13-3-16-17 \\ \hline 5-5 & 20-14-2-6-19- \\ \hline 4-4 & 10-6-2-17-16- \\ \hline 6-4 & 13-4-9-7-14-1 \\ \hline 5-5 & 10-4-16-14-7- \\ \hline 3-4 & 4-10-2-7-16-1 \\ \hline 3-4 & 10-16-18-5-9- \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Optimal order of machines<br>4–10–17–5–6–8–7–11–12–15–13–16–4–19–9<br>–6–8–4–2–7–9–1–20–11–3–15–19–13–16–12<br><b>2–16–12–18–1–17–5–8–11–20–3–7–15–4–13</b><br>–1–17–20–10–15–11–3–16–19–18–5–9–13–4<br>–19–9–1–7–11–5–18–6–8–15–20–4–12–10–2<br>17–15–7–10–18–8–12–11–1–9–5–4–3–16–13<br>1–18–8–20–11–7–15–5–13–19–12–4–9–3–14<br>9–1–2–3–6–12–20–10–16–18–17–11–15–5–8<br>2–19–17–5–1–3–6–11–9–18–8–13–12–20–15<br>7–5–9–1–11–3–13–14–6–18–8–20–15–19–12<br><b>14–6–1–8–4–2–17–20–11–19–7–15–13–3–12</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Number of<br>evaluations<br>20,000                                       | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PSO<br>AIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>21<br>22<br>22<br>21<br>21<br>22<br>18<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>4<br>4                                                                                                          | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           53.0         0           38.8         2           80.8         0           20.1         1           20.1         1           20.1         2           91.0         2           55.4         2                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c c} \text{TABL} \\ \hline \text{ISON FOR THE 20-M} \\ \hline \text{PU} \\ \hline \text{Congestion for} \\ \hline \text{MIN_SUM} \\ 2.0 & 6-3-2- \\ 3.3 & 4-2-3- \\ 3.3 & 4-2-3- \\ 3.3 & 4-2-5.9 & 6-4-4- \\ 5.9 & 6-4-4- \\ 5.9 & 6-4-3- \\ 1.5 & 4-4-4- \\ 3.0 & 4-4-4- \\ 3.0 & 4-4-4- \\ 5.1 & 6-3-2- \\ - & 4-3-2- \\ 2.8 & 4-2-2- \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \textbf{r} each part \\ \hline \textbf{s} \\ s$                                                                                                                                                                                                    | Optimal order of machines<br>4-10-17-5-6-8-7-11-12-15-13-16-4-19-9<br>-6-8-4-2-7-9-1-20-11-3-15-19-13-16-12<br><b>2-16-12-18-1-17-5-8-11-20-3-7-15-4-13</b><br>-1-17-20-10-15-11-3-16-19-18-5-9-13-4<br>-19-9-1-7-11-5-18-6-8-15-20-4-12-10-2<br>17-15-7-10-18-8-12-11-1-9-5-4-3-16-13<br>1-18-8-20-11-7-15-5-13-19-12-4-9-3-14<br>9-1-2-3-6-12-20-10-16-18-17-11-15-5-8<br>2-19-17-5-1-3-6-11-9-18-8-13-12-20-15<br>7-5-9-1-11-3-13-14-6-18-8-20-15-19-12<br><b>14-6-1-8-4-2-17-20-15-14-19-13-3-12</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number of<br>evaluations<br>20,000<br>40,000                             | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PSO<br>AIS<br>SFHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>22<br>22<br>21<br>21<br>22<br>22<br>18<br>16<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>4<br>4<br>4<br>4                                                                                                     | COMPAR           SE         C           (%)         ti           32.4         2           36.6         3           53.0         0           38.8         2           80.8         0           20.1         1           20.7         3           91.0         0           43.3         55.4           41.2         2                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c c} \text{TABL} \\ \hline \text{ISON FOR THE 20-M} \\ \hline \text{PU} \\ \hline \text{Congestion for} \\ \hline \text{MIN_SUM} \\ 2.0 & 6-3-2- \\ 3.3 & 4-2-3- \\ 3.3 & 4-2-3- \\ 5.9 & 6-4-4- \\ 5.9 & 6-4-4- \\ 5.9 & 6-4-4- \\ 5.9 & 4-4-3- \\ 2.3 & 6-4-3- \\ 1.5 & 4-4-4- \\ 5.1 & 6-3-2- \\ - & 4-3-2- \\ - & 4-3-2- \\ 2.8 & 4-2-2- \\ 2.5 & 4-2-2- \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \textbf{r} each part \\ \hline \textbf{approach} \\ \hline \textbf{5}-7 & 18-1-2-20-3-1 \\ \hline \textbf{3}-6 & 14-10-18-17-5 \\ \hline \textbf{4}-5 & \textbf{10}-\textbf{9}-\textbf{14}-\textbf{6}-\textbf{19}- \\ \hline \textbf{4}-7 & 12-2-14-6-8-7 \\ \hline \textbf{4}-4 & 14-13-3-16-17 \\ \hline \textbf{5}-5 & 20-14-2-6-19- \\ \hline \textbf{4}-4 & 10-6-2-17-16- \\ \hline \textbf{6}-4 & 13-4-9-7-14-1 \\ \hline \textbf{5}-5 & 10-4-16-14-7- \\ \hline \textbf{3}-4 & 4-10-2-7-16-1 \\ \hline \textbf{3}-4 & \textbf{10}-\textbf{16}-\textbf{18}-\textbf{5}-9- \\ \hline \textbf{4}-4 & \textbf{10}-\textbf{16}-\textbf{18}-\textbf{17}-5 \\ \hline \textbf{4}-\textbf{4} & \textbf{10}-\textbf{16}-\textbf{18}-\textbf{17}-\textbf{5} \\ \hline \textbf{4}-\textbf{10}-\textbf{16}-\textbf{18}-\textbf{17}-\textbf{5} \\ \hline \textbf{5}-\textbf{10}-\textbf{18}-\textbf{10}-\textbf{10}-\textbf{18}-\textbf{18}-\textbf{10}-\textbf{18}-\textbf{18}-\textbf{18}-\textbf{18}-\textbf$                                                                                                                                                                                                                                                                                                                                                              | Optimal order of machines<br>4-10-17-5-6-8-7-11-12-15-13-16-4-19-9<br>-6-8-4-2-7-9-1-20-11-3-15-19-13-16-12<br><b>2-16-12-18-1-17-5-8-11-20-3-7-15-4-13</b><br>-1-17-20-10-15-11-3-16-19-18-5-9-13-4<br>-19-9-1-7-11-5-18-6-8-15-20-4-12-10-2<br>17-15-7-10-18-8-12-11-1-9-5-4-3-16-13<br>1-18-8-20-11-7-15-5-13-19-12-4-9-3-14<br>9-1-2-3-6-12-20-10-16-18-17-11-15-5-8<br>2-19-17-5-1-3-6-11-9-18-8-13-12-20-15<br>7-5-9-1-11-3-13-14-6-18-8-20-15-19-12<br><b>14-6-1-8-4-2-17-20-11-19-7-15-13-3-12</b><br>- <b>6-9-8-1-4-2-7-11-20-15-14-19-13-3-12</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Number of<br>evaluations<br>20,000<br>40,000                             | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PSO<br>AIS<br>SFHA<br>TPC GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cost           min_sum         r           23         17           18         22           22         21           21         22           21         16           16         16           17         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>4<br>4<br>4<br>4<br>5                                                                                                | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           53.0         0           38.8         5           80.8         0           20.1         1           20.7         3           91.0         0           55.4         2           41.2         2           62.1         8                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c c} \text{TABL} \\ \hline \text{ISON FOR THE 20-M} \\ \hline \text{PU} \\ \hline \text{Congestion for} \\ \hline \text{MIN_SUM} \\ 2.0 & 6-3-2- \\ 3.3 & 4-2-3- \\ 3.3 & 4-2-5- \\ 5.9 & 6-4-4- \\ 5.9 & 6-4-4- \\ 5.9 & 6-4-4- \\ 5.9 & 4-4-3- \\ 2.3 & 6-4-3- \\ 1.5 & 4-4-4- \\ 5.1 & 6-3-2- \\ - & 4-3-2- \\ - & 4-3-2- \\ 2.8 & 4-2-2- \\ 2.8 & 4-2-2- \\ 3.9 & 5-4-2- \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \textbf{r} each part \\ \hline \textbf{s} \\ 5-7 & 18-1-2-20-3-1 \\ 3-6 & 14-10-18-17-5 \\ \hline \textbf{4-5} & \textbf{10-9-14-6-19-} \\ \hline \textbf{4-7} & 12-2-14-6-8-7 \\ \hline \textbf{4-4} & 14-13-3-16-17 \\ \hline \textbf{5-5} & 20-14-2-6-19- \\ \hline \textbf{4-4} & 10-6-2-17-16- \\ \hline \textbf{6-4} & 13-4-9-7-14-1 \\ \hline \textbf{5-5} & 10-4-16-14-7- \\ \hline \textbf{3-4} & \textbf{4-10-2-7-16-1} \\ \hline \textbf{3-4} & \textbf{10-16-18-5-9-} \\ \hline \textbf{4-4} & \textbf{10-16-18-17-5} \\ \hline \textbf{4-4} & \textbf{10-16-18-17-5} \\ \hline \textbf{4-4} & \textbf{10-16-18-17-5} \\ \hline \textbf{2-4} & 5-9-14-6-13-1 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Optimal order of machines<br>4-10-17-5-6-8-7-11-12-15-13-16-4-19-9<br>-6-8-4-2-7-9-1-20-11-3-15-19-13-16-12<br><b>2-16-12-18-1-17-5-8-11-20-3-7-15-4-13</b><br>-1-17-20-10-15-11-3-16-19-18-5-9-13-4<br>-19-9-1-7-11-5-18-6-8-15-20-4-12-10-2<br>17-15-7-10-18-8-12-11-1-9-5-4-3-16-13<br>1-18-8-20-11-7-15-5-13-19-12-4-9-3-14<br>9-1-2-3-6-12-20-10-16-18-17-11-15-5-8<br>2-19-17-5-1-3-6-11-9-18-8-13-12-20-15<br>7-5-9-1-11-3-13-14-6-18-8-20-15-19-12<br><b>14-6-1-8-4-2-17-20-11-19-7-15-13-3-12</b><br><b>-6-9-8-1-4-2-7-11-20-15-14-19-13-3-12</b><br><b>-6-9-8-1-4-2-7-11-20-15-14-19-13-3-12</b><br>8-8-1-4-2-17-11-20-19-3-7-15-12-10-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Number of<br>evaluations<br>20,000<br>40,000                             | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PSO<br>AIS<br>SFHA<br>TPC GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cost         nn         n | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>4<br>4<br>4<br>5                                                                                                     | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           53.0         0           38.8         2           20.1         1           20.7         3           91.0         0           43.3         55.4           62.1         8                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{TABL} \\ \hline \text{ISON FOR THE 20-M} \\ \hline \text{PU} \\ \hline \text{Congestion for} \\ \hline \text{MIN_SUM} \\ 2.0 & 6-3-2- \\ 3.3 & 4-2-3- \\ 3.3 & 4-2-5- \\ 5.9 & 6-4-4- \\ 5.9 & 6-4-4- \\ 5.9 & 6-4-4- \\ 5.9 & 6-4-4- \\ 5.9 & 4-4-3- \\ 2.3 & 6-4-3- \\ 1.5 & 4-4-4- \\ 5.1 & 6-3-2- \\ - & 4-3-2- \\ 2.8 & 4-2-2- \\ 8.9 & 5-4-2- \\ \hline \text{Number of } 6 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LE IV<br>IACHINE, 5-PART PROBLEM<br>r each part<br>approach<br>5-7 $18-1-2-20-3-13-6$ $14-10-18-17-54-5$ $10-9-14-6-19-4-7$ $12-2-14-6-8-74-4$ $14-13-3-16-175-5$ $20-14-2-6-19-4-4$ $10-6-2-17-16-6-4$ $13-4-9-7-14-15-5$ $10-4-16-14-7-3-4$ $4-10-2-7-16-13-4$ $10-16-18-5-9-4-4$ $10-16-18-17-54-4$ $10-16-18-17-52-4$ $5-9-14-6-13-1evaluations$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Optimal order of machines<br>4-10-17-5-6-8-7-11-12-15-13-16-4-19-9<br>-6-8-4-2-7-9-1-20-11-3-15-19-13-16-12<br><b>2-16-12-18-1-17-5-8-11-20-3-7-15-4-13</b><br>-1-17-20-10-15-11-3-16-19-18-5-9-13-4<br>-19-9-1-7-11-5-18-6-8-15-20-4-12-10-2<br>17-15-7-10-18-8-12-11-1-9-5-4-3-16-13<br>1-18-8-20-11-7-15-5-13-19-12-4-9-3-14<br>9-1-2-3-6-12-20-10-16-18-17-11-15-5-8<br>2-19-17-5-1-3-6-11-9-18-8-13-12-20-15<br>7-5-9-1-11-3-13-14-6-18-8-20-15-19-12<br><b>14-6-1-8-4-2-17-20-11-19-7-15-13-3-12</b><br><b>-6-9-8-1-4-2-7-11-20-15-14-19-13-3-12</b><br><b>-6-9-8-1-4-2-7-11-20-15-14-19-13-3-12</b><br>8-8-1-4-2-17-11-20-19-3-7-15-12-10-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Number of<br>evaluations<br>20,000<br>40,000                             | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PSO<br>AIS<br>SFHA<br>TPC GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cost           min_sum_r           23           17           18           22           21           21           22           21           21           22           18           16           16           17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>4<br>4<br>4<br>5                                                                                                     | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           53.0         0           38.8         2           20.1         1           20.7         2           91.0         4           55.4         2           62.1         8                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c c} \text{TABL} \\ \hline \text{ISON FOR THE 20-M} \\ \hline \text{PU} \\ \hline \text{Congestion for} \\ \hline \text{MIN_SUM} \\ 2.0 & 6-3-2- \\ 3.3 & 4-2-3- \\ 3.3 & 4-2-5- \\ 3.3 & 4-2-5- \\ 5.9 & 6-4-4- \\ 5.9 & 6-4-4- \\ 5.9 & 4-4-3- \\ 2.3 & 6-4-3- \\ 1.5 & 4-4-4- \\ 5.1 & 6-3-2- \\ - & 4-3-2- \\ 2.8 & 4-2-2- \\ 3.9 & 5-4-2- \\ \hline \text{Number of c} \\ \hline \text{MIN_MAX} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \textbf{r} each part \\ \hline \textbf{s} \\ 5-7 & 18-1-2-20-3-1 \\ 3-6 & 14-10-18-17-5 \\ \hline \textbf{4-5} & \textbf{10-9-14-6-19-} \\ \hline \textbf{4-7} & 12-2-14-6-8-7 \\ \hline \textbf{4-4} & 14-13-3-16-17 \\ \hline \textbf{5-5} & 20-14-2-6-19- \\ \hline \textbf{4-4} & 10-6-2-17-16- \\ \hline \textbf{6-4} & 13-4-9-7-14-1 \\ \hline \textbf{5-5} & 10-4-16-14-7- \\ \hline \textbf{3-4} & 4-10-2-7-16-1 \\ \hline \textbf{3-4} & 10-16-18-5-9- \\ \hline \textbf{4-4} & 10-16-18-17-5 \\ \hline \textbf{4-4} & 10-16-18-17-5 \\ \hline \textbf{2-4} & 5-9-14-6-13-1 \\ \hline \textbf{evaluations} \\ \hline \textbf{X} approach \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Optimal order of machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Number of<br>evaluations<br>20,000<br>40,000                             | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PSO<br>AIS<br>SFHA<br>TPC GA<br>DEA_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cost           min_sum         r           23         17           18         22           22         21           21         22           21         6           16         16           17         28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>4<br>4<br>4<br>5<br>7                                                                                                | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           53.0         0           38.8         2           20.1         1           20.7         3           91.0         0           43.3         55.4           62.1         8           1.3         0                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c c} \text{TABL} \\ \hline \text{ISON FOR THE 20-M} \\ \hline \text{PU} \\ \hline \text{Congestion for} \\ \hline \text{MIN_SUM} \\ 2.0 & 6-3-2- \\ 3.3 & 4-2-3- \\ 3.3 & 4-2-3- \\ 3.3 & 4-2-5- \\ 5.9 & 6-4-4- \\ 5.9 & 6-4-4- \\ 5.9 & 4-4-3- \\ 2.3 & 6-4-3- \\ 1.5 & 4-4-4- \\ 5.1 & 6-3-2- \\ 1.5 & 4-4-4- \\ 5.1 & 6-3-2- \\ 1.5 & 4-4-4- \\ 5.1 & 6-3-2- \\ 2.8 & 4-2-2- \\ 2.8 & 4-2-2- \\ 2.8 & 4-2-2- \\ 3.9 & 5-4-2 \\ \hline \text{Number of contents} \\ \hline \text{MIN_MAX} \\ 0.9 & 6-5-4- \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{LE IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \text{r each part} \\ \hline \text{spproach} \\ \hline \text{5-7} \\ 18-1-2-20-3-1 \\ \hline \text{3-6} \\ 14-10-18-17-5 \\ \hline \text{4-5} \\ 10-9-14-6-19- \\ \hline \text{4-7} \\ 12-2-14-6-8-7 \\ \hline \text{4-4} \\ 14-13-3-16-17 \\ \hline \text{5-5} \\ 20-14-2-6-19- \\ \hline \text{4-4} \\ 10-6-2-17-16- \\ \hline \text{6-4} \\ 13-4-9-7-14-1 \\ \hline \text{5-5} \\ 10-4-16-14-7- \\ \hline \text{3-4} \\ 4-10-2-7-16-1 \\ \hline \text{3-4} \\ 10-16-18-17-5 \\ \hline \text{2-4} \\ 5-9-14-6-13-1 \\ \hline \text{evaluations} \\ \hline \text{Capproach} \\ \hline \text{7-6} \\ \hline \text{6-12-17-9-20-1} \\ \hline \ \text{5-10} \\ \hline \ \ \ \text{5-10} \\ \hline \ \ \ \text{5-10} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Optimal order of machines<br>4-10-17-5-6-8-7-11-12-15-13-16-4-19-9<br>-6-8-4-2-7-9-1-20-11-3-15-19-13-16-12<br><b>2-16-12-18-1-17-5-8-11-20-3-7-15-4-13</b><br>-1-17-20-10-15-11-3-16-19-18-5-9-13-4<br>-19-9-1-7-11-5-18-6-8-15-20-4-12-10-2<br>17-15-7-10-18-8-12-11-1-9-5-4-3-16-13<br>1-18-8-20-11-7-15-5-13-19-12-4-9-3-14<br>9-1-2-3-6-12-20-10-16-18-17-11-15-5-8<br>2-19-17-5-1-3-6-11-9-18-8-13-12-20-15<br>7-5-9-1-11-3-13-14-6-18-8-20-15-19-12<br><b>14-6-1-8-4-2-17-20-11-19-7-15-13-3-12</b><br><b>-6-9-8-1-4-2-7-11-20-15-14-19-13-3-12</b><br><b>-6-9-8-1-4-2-7-11-20-15-14-19-13-3-12</b><br><b>8</b> -8-1-4-2-17-11-20-19-3-7-15-12-10-16<br>3-15-14-19-1-16-8-10-11-13-4-2-18-7-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Number of<br>evaluations<br>20,000<br>40,000                             | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PSO<br>AIS<br>SFHA<br>TPC GA<br>DEA_1<br>DEA_1<br>DEA_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cost           min_sum         r           23         17           18         22           22         21           21         22           22         16           16         16           17         28           23         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>4<br>4<br>4<br>5<br>7<br>5                                                                                      | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           53.0         0           38.8         2           20.1         1           20.7         2           91.0         0           43.3         5           55.4         2           62.1         8                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c c} \text{TABL} \\ \hline \text{ISON FOR THE 20-M} \\ \hline \text{PU} \\ \hline \text{Congestion for} \\ \hline \text{MIN_SUM} \\ 2.0 & 6-3-2- \\ 3.3 & 4-2-2- \\ 3.3 & 4-2-3- \\ 3.3 & 4-2-3- \\ 5.9 & 6-4-4- \\ 5.9 & 6-4-4- \\ 5.9 & 6-4-4- \\ 5.9 & 4-4-3- \\ 2.3 & 6-4-3- \\ 1.5 & 4-4-4- \\ 5.1 & 6-3-2- \\ 1.5 & 4-4-4- \\ 5.1 & 6-3-2- \\ 2.3 & 6-4-3- \\ 1.5 & 4-4-4- \\ 5.1 & 6-3-2- \\ 2.8 & 4-2-2- \\ 2.8 & 4-2-2- \\ 2.8 & 4-2-2- \\ 2.8 & 4-2-2- \\ 2.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2- \\ 1.8 & 4-2-2-2- \\ 1.8 & 4-2-2-2- \\ 1.8 & 4-2-2-2- \\ 1.8 & 4-2-2-2- \\ 1.8 & 4-2-2-2-2- \\ 1.8 & 4-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2$ | $\begin{array}{c} \text{LE IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \text{r each part} \\ \hline \text{spproach} \\ \hline \text{5-7} \\ \hline \text{1} \\ \text{8-1-2-20-3-1} \\ \hline \text{3-6} \\ \hline \text{1} \\ \text{4-10-18-17-5} \\ \hline \text{4-5} \\ \hline \text{10-9-14-6-19-} \\ \hline \text{4-7} \\ \hline \text{12-2-14-6-8-7} \\ \hline \text{4-4} \\ \hline \text{14-13-3-16-17} \\ \hline \text{5-5} \\ \hline \text{20-14-2-6-19-} \\ \hline \text{4-4} \\ \hline \text{10-6-2-17-16-6-4} \\ \hline \text{3-4} \\ \hline \text{4-10-2-7-16-1} \\ \hline \text{3-4} \\ \hline \text{4-10-2-7-16-1} \\ \hline \text{3-4} \\ \hline \text{10-16-18-17-5} \\ \hline \text{4-4} \\ \hline \text{10-16-18-17-5} \\ \hline \text{2-4} \\ \hline \text{5-9-14-6-13-1} \\ \hline \text{evaluations} \\ \hline \text{Capproach} \\ \hline \text{7-6} \\ \hline \text{6-12-17-9-20-16-1} \\ \hline \text{4-5} \\ \hline \text{1-4-10-3-2-16-1} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Optimal order of machines 4-10-17-5-6-8-7-11-12-15-13-16-4-19-9 -6-8-4-2-7-9-1-20-11-3-15-19-13-16-12 <b>2-16-12-18-1-17-5-8-11-20-3-7-15-4-13</b> -1-17-20-10-15-11-3-16-19-18-5-9-13-4 -19-9-1-7-11-5-18-6-8-15-20-4-12-10-2 17-15-7-10-18-8-12-11-1-9-5-4-3-16-13 1-18-8-20-11-7-15-5-13-19-12-4-9-3-14 9-1-2-3-6-12-20-10-16-18-17-11-15-5-8 2-19-17-5-1-3-6-11-9-18-8-13-12-20-15 7-5-9-1-11-3-13-14-6-18-8-20-15-19-12 <b>14-6-1-8-4-2-17-20-11-19-7-15-13-3-12 6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 8</b> -8-1-4-2-17-11-20-15-14-19-13-3-12 <b>8</b> -8-1-4-2-17-11-20-15-14-19-13-3-12 <b>8</b> -8-1-4-2-17-11-20-15-14-19-13-3-12 <b>8</b> -1-4-2-17-11-20-15-14-19-13-3-12 <b>8</b> -1-4-2-17-11-20-15-14-19-13-3-12 <b>9</b> -17-14-6-18-10-11-13-4-2-18-7-5 -9-17-14-6-18-10-20-5-8-15-19-7-13-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Number of evaluations           20,000           40,000                  | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PSO<br>AIS<br>SFHA<br>TPC GA<br>DEA_1<br>DEA_1<br>DEA_1<br>DEA_2<br>GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>22<br>22<br>18<br>16<br>16<br>16<br>16<br>16<br>17<br>28<br>23<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>5<br>6<br>4<br>4<br>4<br>5<br>7<br>5<br>5<br>5                                                                  | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           33.4         1           53.0         0           38.8         5           80.8         6           27.3         2           20.1         1           20.7         3           91.0         6           43.3         5           55.4         2           62.1         8           1.3         0           21.4         2           4.1         2                                                                                                                                                                                                                                  | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \text{JE IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \text{r each part} \\ \hline \text{I approach} \\ \hline \text{5-7} \\ \hline \text{18-1-2-20-3-1} \\ \hline \text{3-6} \\ \hline \text{14-10-18-17-5} \\ \hline \text{4-5} \\ \hline \text{10-9-14-6-19-} \\ \hline \text{4-7} \\ \hline \text{12-2-14-6-8-7} \\ \hline \text{4-4} \\ \hline \text{14-13-3-16-17} \\ \hline \text{5-5} \\ \hline \text{20-14-2-6-19-} \\ \hline \text{4-4} \\ \hline \text{10-6-2-17-16-1} \\ \hline \text{5-5} \\ \hline \text{20-14-2-6-19-} \\ \hline \text{4-4} \\ \hline \text{10-6-2-17-16-1} \\ \hline \text{3-4} \\ \hline \text{10-16-18-5-9-} \\ \hline \text{4-4} \\ \hline \text{10-16-18-5-9-} \\ \hline \text{4-4} \\ \hline \text{10-16-18-17-5} \\ \hline \text{2-4} \\ \hline \text{5-9-14-6-13-1} \\ \hline \text{evaluations} \\ \hline \hline \text{x approach} \\ \hline \hline \text{7-6} \\ \hline \text{6-12-17-9-20-} \\ \hline \text{4-5} \\ \hline \text{1-9-2-3-18-1} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Optimal order of machines 4-10-17-5-6-8-7-11-12-15-13-16-4-19-9 -6-8-4-2-7-9-1-20-11-3-15-19-13-16-12 2-16-12-18-1-17-5-8-11-20-3-7-15-4-13 -1-17-20-10-15-11-3-16-19-18-5-9-13-4 -19-9-1-7-11-5-18-6-8-15-20-4-12-10-2 17-15-7-10-18-8-12-11-1-9-5-4-3-16-13 1-18-8-20-11-7-15-5-13-19-12-4-9-3-14 9-1-2-3-6-12-20-10-16-18-17-11-15-5-8 2-19-17-5-1-3-6-11-9-18-8-13-12-20-15 7-5-9-1-11-3-13-14-6-18-8-20-15-19-12 14-6-1-8-4-2-17-20-11-19-7-15-13-3-12 -6-9-8-4-1-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-8-15-19-7-13-12 -6-9-8-1-4-2-17-11-20-5-8-15-19-7-13-12 -6-9-17-14-6-18-11-20-5-8-15-19-7-13-12 -6-9-15-14-19-13-4-2-18-7-5 -9-17-14-6-18-11-20-5-8-15-19-7-13-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-19-12 -3-15-20-10-4-17-6-16-14-5-7-8-1-                                                                 |
| Number of evaluations           20,000           40,000                  | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PSO<br>AIS<br>SFHA<br>TPC GA<br>TPC GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>22<br>22<br>21<br>21<br>22<br>22<br>18<br>16<br>16<br>16<br>16<br>17<br>7<br>28<br>23<br>24<br>24<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>6<br>5<br>6<br>6<br>4<br>4<br>4<br>5<br>7<br>5<br>5<br>5<br>5<br>5                                                             | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           3.4         1           53.0         0           38.8         5           20.1         1           20.7         3           91.0         0           43.3         5           55.4         2           62.1         8           1.3         0           21.4         2           4.1         2           45.2         2                                                                                                                                                                                                                                                            | TABL         ISON FOR THE 20-M         PU         Congestion for         MIN_SUM         2.0 $6-3-2-$ 3.3 $4-2-3-$ 0.6 $5-4-2-$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 6.1 $6-3-2-$ - $4-3-2-$ 2.8 $4-2-2-$ 8.9 $5-4-2$ 8.9 $5-4-2$ Number of colspan="2">MIN MAX         0.9 $6-5-4-2$ 2.2 $5-5-4-4-2$ 2.9 $5-5-4-4-2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \text{r each part} \\ \hline \text{r each part} \\ \hline \text{approach} \\ \hline 5-7 & 18-1-2-20-3-1 \\ 3-6 & 14-10-18-17-5 \\ \hline 4-5 & 10-9-14-6-19- \\ 4-7 & 12-2-14-6-8-7 \\ 4-4 & 14-13-3-16-17 \\ 5-5 & 20-14-2-6-19- \\ 4-4 & 10-6-2-7-16-1 \\ 5-5 & 10-4-16-14-7- \\ 3-4 & 10-6-18-17-5 \\ \hline 3-4 & 10-16-18-17-5 \\ \hline 4-4 & 10-16-18-17-5 \\ \hline 4-4 & 10-16-18-17-5 \\ \hline 2-4 & 5-9-14-6-13-1 \\ \hline \text{evaluations} \\ \hline \text{Capproach} \\ \hline 7-6 & 6-12-17-9-20- \\ \hline 4-5 & 1-4-10-3-2-16-1 \\ \hline 5-5 & 11-9-2-3-18-1 \\ \hline 5-5 & 6-17-13-2-7-1 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Optimal order of machines 4-10-17-5-6-8-7-11-12-15-13-16-4-19-9 -6-8-4-2-7-9-1-20-11-3-15-19-13-16-12 2-16-12-18-1-17-5-8-11-20-3-7-15-4-13 -1-17-20-10-15-11-3-16-19-18-5-9-13-4 -19-9-1-7-11-5-18-6-8-15-20-4-12-10-2 17-15-7-10-18-8-12-11-1-9-5-4-3-16-13 1-18-8-20-11-7-15-13-19-12-4-9-3-14 9-1-2-3-6-12-20-10-16-18-17-11-15-5-8 2-19-17-5-1-3-6-11-9-18-8-13-12-20-15 7-5-9-1-11-3-13-14-6-18-8-20-15-19-12 14-6-1-8-4-2-17-20-11-19-7-15-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12 -6-9-8-1-4-2-7-11-20-15-8-15-19-7-13-12 -7-9-17-14-6-18-11-20-5-8-15-19-7-13-12 -7-9-17-14-6-18-11-20-5-8-15-19-7-13-12 -7-9-17-14-6-18-11-20-5-8-15-19-7-13-12 -7-9-17-14-6-18-11-20-5-8-15-19-7-13-12 -7-9-17-14-6-18-11-20-5-8-15-19-7-13-12 -7-9-17-14-6-18-11-20-5-8-15-19-7-13-12 -7-9-17-14-6-18-14-5-7-8-1-19-12 -7-9-15-10-18-16-14-4 -7-8-11-20-5-8-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-9-15-10-18-16-14-4 -7-11-4 -7-15-15-15-10-18-16-14                                                                 |
| Number of evaluations           20,000           40,000                  | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PS0<br>AIS<br>SFHA<br>TPC GA<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>21<br>22<br>22<br>22<br>18<br>16<br>16<br>16<br>16<br>16<br>17<br>28<br>23<br>24<br>24<br>24<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>4<br>4<br>4<br>5<br>7<br>5<br>5<br>5<br>5<br>5                                                                  | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           33.4         1           53.0         0           38.8         3           80.8         0           20.1         1           20.7         3           20.7         3           55.4         2           41.2         2           62.1         8           1.3         0           21.4         2           42.2         8                                                                                                                                                                                                                                                          | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \text{r each part} \\ \hline \text{r each part} \\ \hline \text{s} \\ 5-7 & 18-1-2-20-3-1 \\ 3-6 & 14-10-18-17-5 \\ \hline \text{4-5} & 10-9-14-6-19- \\ \hline \text{4-7} & 12-2-14-6-8-7 \\ \hline \text{4-4} & 14-13-3-16-17 \\ \hline \text{5-5} & 20-14-2-6-19- \\ \hline \text{4-4} & 10-6-2-17-16- \\ \hline \text{6-4} & 13-4-9-7-14-1 \\ \hline \text{5-5} & 10-4-16-18-7-5 \\ \hline \text{3-4} & 4-10-2-7-16-1 \\ \hline \text{3-4} & 10-16-18-5-9- \\ \hline \text{4-4} & 10-16-18-17-5 \\ \hline \text{2-4} & 5-9-14-6-13-1 \\ \hline \text{evaluations} \\ \hline \text{Capproach} \\ \hline \text{7-6} & 6-12-17-9-20- \\ \hline \text{4-5} & 1-4-10-3-2-16 \\ \hline \text{5-5} & 11-9-2-3-18-1 \\ \hline \text{5-5} & 6-17-13-2-7-1 \\ \hline \text{5-5} & 3-8-9-12-13-1 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \label{eq:optimal} \\ \mbox{Optimal order of machines} \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Number of evaluations           20,000           40,000           20,000 | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PS0<br>AIS<br>SFHA<br>TPC GA<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>21<br>22<br>22<br>21<br>8<br>16<br>16<br>16<br>16<br>16<br>17<br>7<br>28<br>23<br>24<br>24<br>24<br>25<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>4<br>4<br>4<br>5<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                        | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           3.4         1           53.0         0           38.8         2           20.1         1           20.7         2           91.0         0           41.2         2           62.1         8           1.3         0           4.1         2           62.2         8           3.8         2                                                                                                                                                                                                                                                                                      | $\begin{array}{r c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \text{r each part} \\ \hline \text{r each part} \\ \hline \text{s} \\ 5-7 & 18-1-2-20-3-1 \\ 3-6 & 14-10-18-17-5 \\ \hline \text{4-5} & 10-9-14-6-19- \\ \hline \text{4-7} & 12-2-14-6-8-7 \\ \hline \text{4-4} & 14-13-3-16-17 \\ \hline \text{5-5} & 20-14-2-6-19- \\ \hline \text{4-4} & 10-6-2-17-16- \\ \hline \text{6-4} & 13-4-9-7-14-1 \\ \hline \text{5-5} & 10-4-16-14-7- \\ \hline \text{3-4} & 4-10-2-7-16-1 \\ \hline \text{3-4} & 10-16-18-5-9- \\ \hline \text{4-4} & 10-16-18-17-5 \\ \hline \text{2-4} & 5-9-14-6-13-1 \\ \hline \text{evaluations} \\ \hline \text{Capproach} \\ \hline \hline \text{7-6} & 6-12-17-9-20- \\ \hline \text{4-5} & 1-4-10-3-2-16 \\ \hline \text{5-5} & 11-9-2-3-18-1 \\ \hline \text{5-5} & 5-8-9-12-13-1 \\ \hline \text{5-5} & 9-3-10-17-14- \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \label{eq:posterior} \\ \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number of evaluations           20,000           40,000           20,000 | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PS0<br>AIS<br>SFHA<br>TPC GA<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>21<br>22<br>22<br>21<br>8<br>16<br>16<br>16<br>16<br>16<br>17<br>28<br>23<br>24<br>24<br>24<br>25<br>24<br>24<br>24<br>25<br>24<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>4<br>4<br>4<br>5<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                              | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3.4           53.0         0           38.8         2           20.1         1           20.7         2           91.0         0           43.3         55.4           21.4         2           4.1         2           62.1         8           3.8         2           6.2         8                                                                                                                                                                                                                                                                                                         | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \text{r each part} \\ \hline \text{r each part} \\ \hline \text{s} \\ \hline \text{r each part} \\ \hline \text{s} \\ \hline \ \text{s} \hline \ \text{s} \\ \hline \ $ | $\begin{array}{c} \label{eq:posterior} Optimal order of machines \\ \hline 4-10-17-5-6-8-7-11-12-15-13-16-4-19-9\\ -6-8-4-2-7-9-1-20-11-3-15-19-13-16-12\\ \hline 2-16-12-18-1-17-5-8-11-20-3-7-15-4-13\\ -1-17-20-10-15-11-3-16-19-18-5-9-13-4\\ -19-9-1-7-11-5-18-6-8-15-20-4-12-10-2\\ 17-15-7-10-18-8-12-11-1-9-5-4-3-16-13\\ 1-18-8-20-11-7-15-5-13-19-12-4-9-3-14\\ 9-1-2-3-6-12-20-10-16-18-17-11-15-5-8\\ 2-19-17-5-1-3-6-11-9-18-8-13-12-20-15\\ 7-5-9-1-13-3-13-14-6-18-8-20-15-19-12\\ 14-6-1-8-4-2-17-20-115-14-19-13-3-12\\ -6-9-8-4-1-2-7-11-20-15-14-19-13-3-12\\ -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12\\ 8-8-1-4-2-17-11-20-19-3-7-15-12-10-16\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Number of evaluations           20,000           40,000           20,000 | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PSO<br>AIS<br>SFHA<br>TPC GA<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS1<br>SA_PS3<br>SA_PS4<br>SA_PS5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>21<br>22<br>22<br>18<br>16<br>16<br>16<br>16<br>16<br>16<br>17<br>28<br>23<br>24<br>24<br>24<br>25<br>24<br>24<br>25<br>24<br>24<br>25<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>4<br>4<br>4<br>5<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>6<br>6                          | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3.4           53.0         0           38.8         2           20.1         1           20.7         2           91.0         0           43.3         55.4           21.4         2           62.1         8           62.2         8           3.8         2           4.1         2           62.2         8           6.2         1           42.4         2                                                                                                                                                                                                                              | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \text{r each part} \\ \hline \text{r each part} \\ \hline \text{s} \\ 5-7 & 18-1-2-20-3-1 \\ 3-6 & 14-10-18-17-5 \\ \hline \text{s} \\ 4-5 & 10-9-14-6-19- \\ 4-7 & 12-2-14-6-8-7 \\ 4-4 & 14-13-3-16-17 \\ 5-5 & 20-14-2-6-19- \\ 4-4 & 10-6-2-17-16- \\ 6-4 & 13-4-9-7-14-1 \\ 5-5 & 10-4-16-14-7- \\ 3-4 & 4-10-2-7-16-1 \\ 3-4 & 10-16-18-17-5 \\ 2-4 & 10-16-18-17-5 \\ 2-4 & 5-9-14-6-13-1 \\ \hline \text{evaluations} \\ \hline \text{c} \\ \text{approach} \\ \hline \text{r} \\ 7-6 & 6-12-17-9-20- \\ 4-5 & 1-4-10-3-2-16 \\ 5-5 & 11-9-2-3-18-1 \\ 5-5 & 6-17-13-2-7-1 \\ 5-5 & 9-3-10-17-14- \\ 5-5 & 9-3-10-17-14- \\ 5-5 & 19-6-13-16-18 \\ 6-6 & 3-16-5-9-20-1 \\ \hline \text{c} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \label{eq:posterior} Optimal order of machines \\ \hline 4-10-17-5-6-8-7-11-12-15-13-16-4-19-9\\ -6-8-4-2-7-9-1-20-11-3-15-19-13-16-12\\ \hline 2-16-12-18-1-17-5-8-11-20-3-7-15-4-13\\ -1-17-20-10-15-11-3-16-19-18-5-9-13-4\\ -19-9-1-7-11-5-18-6-8-15-20-4-12-10-2\\ 17-15-7-10-18-8-12-11-1-9-5-4-3-16-13\\ 1-18-8-20-11-7-15-5-13-19-12-4-9-3-14\\ 9-1-2-3-6-12-20-10-16-18-17-11-15-5-8\\ 2-19-17-5-1-3-6-11-9-18-8-13-12-20-15\\ 7-5-9-1-13-3-14-6-18-8-20-15-19-12\\ 14-6-1-8-4-2-17-20-11-19-7-15-13-3-12\\ -6-9-8-4-1-2-7-11-20-15-14-19-13-3-12\\ -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12\\ 8-8-1-4-2-17-11-20-15-14-19-13-3-12\\ 8-8-1-4-2-17-11-20-9-3-7-15-12-10-16\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Number of evaluations           20,000           40,000           20,000 | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PS0<br>AIS<br>SFHA<br>TPC GA<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>SA_PS5<br>SA_PS6<br>CA<br>SA_PS1<br>SA_PS1<br>SA_PS1<br>SA_PS1<br>SA_PS1<br>SA_PS1<br>SA_PS1<br>SA_PS1<br>SA_PS1<br>SA_PS1<br>SA_PS1<br>SA_PS1<br>CA<br>SA_PS1<br>CA<br>SA_PS1<br>CA<br>SA_PS1<br>SA_PS5<br>SA_PS6<br>CA<br>SA_PS1<br>CA<br>SA_PS1<br>SA_PS5<br>SA_PS6<br>CA<br>SA_PS1<br>SA_PS5<br>SA_PS6<br>CA<br>SA_PS1<br>SA_PS5<br>SA_PS6<br>CA<br>SA_PS1<br>SA_PS5<br>SA_PS6<br>CA<br>SA_PS1<br>SA_PS6<br>CA<br>SA_PS1<br>SA_PS5<br>SA_PS6<br>CA<br>SA_PS6<br>CA<br>SA_PS6<br>CA<br>SA_PS6<br>CA<br>SA_PS6<br>CA<br>SA_PS6<br>CA<br>SA_PS6<br>CA<br>SA_PS6<br>CA<br>SA_PS6<br>CA<br>SA_PS6<br>CA<br>SA_PS6<br>CA<br>SA_PS6<br>CA<br>SA_PS6<br>CA<br>SA_PS6<br>CA<br>SA_PS6<br>CA<br>SA<br>SA<br>SA<br>SA<br>SA<br>SA<br>SA<br>SA<br>SA<br>SA<br>SA<br>SA<br>SA | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>21<br>22<br>22<br>21<br>8<br>16<br>16<br>16<br>16<br>16<br>16<br>17<br>28<br>23<br>24<br>24<br>25<br>24<br>24<br>25<br>24<br>24<br>25<br>24<br>24<br>25<br>24<br>26<br>27<br>27<br>28<br>27<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>28<br>27<br>29<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>4<br>4<br>4<br>4<br>5<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           53.0         0           38.8         2           80.8         0           20.1         1           20.7         2           91.0         0           43.3         55.4           62.1         8           62.1         8           62.2         8           62.2         1           42.4         2           62.2         2           62.2         2           3.8         2           6.2         1           42.4         2           62.2         2           3.8         2           6.2         1           42.4         2           6.2         1           42.2         2 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \textbf{r} each part \\ \hline \textbf{iapproach} \\ 5-7 & 18-1-2-20-3-1 \\ 3-6 & 14-10-18-17-5 \\ \hline \textbf{4-5} & \textbf{10-9-14-6-19-} \\ \hline \textbf{4-7} & 12-2-14-6-8-7 \\ \hline \textbf{4-4} & 14-13-3-16-17 \\ \hline \textbf{5-5} & 20-14-2-6-19- \\ \hline \textbf{4-4} & 10-6-2-17-16- \\ \hline \textbf{6-4} & 13-4-9-7-14-1 \\ \hline \textbf{5-5} & 10-4-16-14-7- \\ \hline \textbf{3-4} & \textbf{4-10-2-7-16-1} \\ \hline \textbf{3-4} & \textbf{10-16-18-5-9-} \\ \hline \textbf{4-4} & \textbf{10-16-18-17-5} \\ \hline \textbf{2-4} & \textbf{5-9-14-6-13-1} \\ \hline \textbf{evaluations} \\ \hline \textbf{Capproach} \\ \hline \textbf{7-6} & 6-12-17-9-20- \\ \hline \textbf{4-5} & 1-4-10-3-2-16 \\ \hline \textbf{5-5} & 11-9-2-3-18-1 \\ \hline \textbf{5-5} & \textbf{6-17-13-2-7-1} \\ \hline \textbf{5-5} & \textbf{5-3} & \textbf{8-9-12-13-1} \\ \hline \textbf{5-5} & \textbf{9-3-10-17-14-1} \\ \hline \textbf{5-5} & \textbf{19-6-13-16-18} \\ \hline \textbf{6-6} & \textbf{3-16-5-9-20-1} \\ \hline \textbf{5-5} & 20-15-4-9-16-1 \\ \hline \textbf{5-5} & 20-15-4-9-16-18 \\ \hline \textbf{6-6} & \textbf{3-16-5-9-20-1} \\ \hline \textbf{5-5} & 20-15-4-9-16-18 \\ \hline \textbf{6-6} & \textbf{3-16-5-9-20-1} \\ \hline \textbf{5-5} & 20-15-4-9-16-18 \\ \hline \textbf{6-6} & \textbf{3-16-5-9-20-1} \\ \hline \textbf{5-5} & 20-15-4-9-16-18 \\ \hline \textbf{5-5} & 20-15-4-9-16-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \label{eq:optimal order of machines} \\ \hline \\ 4-10-17-5-6-8-7-11-12-15-13-16-4-19-9\\ -6-8-4-2-7-9-1-20-11-3-15-19-13-16-12\\ \textbf{2-16-12-18-1-17-5-8-11-20-3-7-15-4-13}\\ -1-17-20-10-15-11-3-16-19-18-5-9-13-4\\ -19-9-1-7-11-5-18-6-8-15-20-4-12-10-2\\ 17-15-7-10-18-8-12-11-1-9-5-4-3-16-13\\ 1-18-8-20-11-7-15-5-13-19-12-4-9-3-14\\ 9-1-2-3-6-12-20-10-16-18-17-11-15-5-8\\ 2-19-17-5-1-3-6-11-9-18-8-13-12-20-15\\ 7-5-9-1-11-3-13-14-6-18-8-20-15-19-12\\ 14-6-1-8-4-2-17-20-11-19-7-15-13-3-12\\ -6-9-8-4-1-2-7-11-20-15-14-19-13-3-12\\ -6-9-8-1-4-2-7-11-20-15-14-19-13-3-12\\ 8-8-1-4-2-17-11-20-19-3-7-15-12-10-16\\ \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Number of evaluations           20,000           40,000           20,000 | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PSO<br>AIS<br>SFHA<br>TPC GA<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>21<br>22<br>22<br>18<br>16<br>16<br>16<br>16<br>16<br>16<br>17<br>28<br>23<br>24<br>24<br>24<br>25<br>24<br>24<br>25<br>24<br>24<br>28<br>28<br>20<br>20<br>25<br>24<br>24<br>25<br>24<br>24<br>25<br>24<br>24<br>25<br>24<br>24<br>25<br>24<br>20<br>25<br>26<br>26<br>27<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>6<br>4<br>4<br>4<br>4<br>5<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           53.0         0           38.8         2           80.8         0           20.1         1           20.7         2           91.0         0           43.3         55.4           62.1         8           1.3         0           21.4         2           62.1         8           62.2         8           62.2         1           42.4         2           42.4         2           45.9         3           39.3         3                                                                                                                                                   | TABL         ISON FOR THE 20-M         PU       Congestion for         MIN_SUM       SUM         2.0 $6-3-2-$ 3.3 $4-2-3-$ 3.6 $5-4-2-$ 5.9 $6-4-4-$ 5.9 $6-4-4-$ 5.9 $6-4-4-$ 6.9 $4-4-3-$ 2.3 $6-4-3-$ 1.5 $4-4-4-$ 3.0 $4-4-4-$ 5.1 $6-3-2-$ <b>2.3</b> $6-4-3-$ 3.0 $4-4-4-$ 5.1 $6-3-2-$ <b>4.4 4.4</b> 5.1 $6-4-3-2-$ <b>2.8 4-2-2- 3.0 4-4-4</b> 5.1 $6-3-2-$ <b>2.8 4-2-2- 3.9</b> $5-4-2-$ <b>Number of colstandormal methods MIN MAX</b> 0.9 $6-5-4-4-2-$ 2.9 $5-5-4-4-2-5-5-2-5-4-4-2-5-5-5-4-4-2-5-5-5-5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \textbf{r} each part \\ \hline \textbf{r} each part \\ \hline \textbf{r} approach \\ 5-7 & 18-1-2-20-3-1 \\ 3-6 & 14-10-18-17-5 \\ \hline \textbf{4-7} & 12-2-14-6-19- \\ \hline \textbf{4-7} & 12-2-14-6-8-7 \\ \hline \textbf{4-4} & 10-9-14-6-19- \\ \hline \textbf{4-4} & 10-6-2-17-16- \\ \hline \textbf{6-4} & 13-4-9-7-14-1 \\ \hline \textbf{5-5} & 20-14-2-6-19- \\ \hline \textbf{4-4} & 10-6-2-17-16- \\ \hline \textbf{6-4} & 13-4-9-7-14-1 \\ \hline \textbf{5-5} & 10-4-16-14-7- \\ \hline \textbf{3-4} & \textbf{4-10-2-7-16-1} \\ \hline \textbf{3-4} & \textbf{10-16-18-5-9-} \\ \hline \textbf{4-4} & \textbf{10-16-18-17-5} \\ \hline \textbf{2-4} & \textbf{5-9-14-6-13-1} \\ \hline \textbf{evaluations} \\ \hline \textbf{C} approach \\ \hline \textbf{7-6} & 6-12-17-9-20- \\ \hline \textbf{4-5} & 1-4-10-3-2-16 \\ \hline \textbf{5-5} & 11-9-2-3-18-1 \\ \hline \textbf{5-5} & \textbf{5-9} -3-10-17-14-1 \\ \hline \textbf{5-5} & 19-6-13-16-18 \\ \hline \textbf{6-6} & \textbf{3-16-5-9-20-1} \\ \hline \textbf{5-5} & 20-15-4-9-16- \\ \hline \textbf{4-4} & \textbf{14} -\textbf{4-2-10-10-6} \\ \hline \textbf{5-5} & \textbf{5-9-3-10-17-14-1} \\ \hline \textbf{5-5} & 5-9-20-15-4-9-16-18-10-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18-10-18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} \mbox{Optimal order of machines} \\ \hline \end{tabular} \\ \mbox{4-10-17-5-6-8-7-11-12-15-13-16-4-19-9} \\ \mbox{-6-8-4-2-7-9-1-20-11-3-15-19-13-16-12} \\ \mbox{2-16-12-18-1-17-5-8-11-20-3-7-15-4-13} \\ \mbox{-1-17-20-10-15-11-3-16-19-18-5-9-13-4} \\ \mbox{-19-9-1-7-11-5-18-6-8-15-20-4-12-10-2} \\ \mbox{17-15-7-10-18-8-12-11-1-9-5-4-3-16-13} \\ \mbox{1-18-8-20-11-7-15-5-13-19-12-4-9-3-14} \\ \mbox{9-1-2-3-6-12-20-10-16-18-17-11-15-5-8} \\ \mbox{2-19-17-5-1-3-6-11-9-18-8-13-12-20-15} \\ \mbox{-15-9-1-11-3-13-14-6-18-8-20-15-19-12} \\ \mbox{14-6-1-8-4-2-17-20-15-14-19-13-3-12} \\ \mbox{-6-9-8-4-1-2-7-11-20-15-14-19-13-3-12} \\ \mbox{-6-9-8-4-1-2-7-11-20-15-14-19-13-3-12} \\ \mbox{-6-9-8-4-1-2-7-11-20-15-14-19-13-3-12} \\ \mbox{-8-1-4-2-17-11-20-19-3-7-15-12-10-16} \\ \ \mbox{-14-20-5-15-18-7-6-17-11-16-2-19-1-4} \\ \mbox{16-7-5-8-6-19-4-2-13-12-1-11-18-15-20} \\ \mbox{-2-7-5-11-12-10-8-15-1-9-20-3-14-17} \\ \mbox{0-14-20-5-15-18-7-6-17-11-16-2-19-1-4} \\ \mbox{16-7-5-8-6-19-4-2-13-12-1-11-18-15-20} \\ \mbox{-2-7-5-11-12-10-8-15-1-9-20-3-14-17} \\ \mbox{0-14-20-5-15-18-7-6-17-11-16-2-19-1-4} \\ \mbox{16-7-5-8-6-19-4-2-13-12-1-11-18-15-20} \\ \mbox{-2-7-5-11-20-18-7-6-13-18-8-9-20-11-12-15} \\ \mbox{19-17-7-5-1-3-6-13-18-8-9-20-11-12-15} \\ \mbox{19-15-7-14-16-13-13-12-15} \\ \mbox{19-15-7-14-16-13-13-12-15} \\ \mbox{19-15-7-14-16-13-13-12-15} \\ \mbox{19-15-7-14-15-13-13-12-15} \\ \mbox{19-15-7-14-15-15} \\ \mbox{19-15-7-14-15-15} \\ \mbox{19-15-7-14-15-15} \\ \mbox{19-15-7-14-15-15} \\ \mbo$ |
| Number of evaluations           20,000           40,000           20,000 | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PSO<br>AIS<br>SFHA<br>TPC GA<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS3<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>AIS<br>SA_PS4<br>SA_PS5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>22<br>22<br>18<br>16<br>16<br>16<br>16<br>16<br>17<br>28<br>23<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>5<br>6<br>4<br>4<br>4<br>5<br>7<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                     | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           33.4         1           53.0         0           38.8         5           80.8         2           20.1         1           20.7         3           91.0         0           43.3         5           55.4         2           62.1         8           62.1         8           62.2         8           4.1         2           4.2.4         3           42.4         5           39.3         3           18.2         1                                                                                                                                                     | TABL         ISON FOR THE 20-M         PU       Congestion for         MIN_SUM         2.0 $6-3-2-$ 3.3 $4-2-2-$ 1.1 $4-2-3-$ 3.6 $5-4-2-$ 5.9 $6-4-4-$ 5.9 $6-4-4-$ 5.9 $6-4-4-$ 6.0 $4-4-4-$ 5.1 $6-3-2-$ 4.30 $4-4-4-$ 5.1 $6-3-2-$ 2.3 $6-4-3-$ 1.5 $4-4-4-$ 6.1 $6-3-2-$ 2.8 $4-2-2-$ 8.9 $5-4-2-$ 8.9 $5-4-2-$ 8.9 $5-4-2-$ Number of $c$ MIN_MAX         0.9 $6-5-4-$ 2.9 $5-5-4-$ 2.0 $5-5-4-$ 2.1 $5-5-4-$ 2.2 $5-5-4-$ 2.8 $5-4-5-$ 2.4 $4-5-5-$ 3.0 $4-4-6-$ 3.1 $4-5-5-$ 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \text{JE IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \textbf{r} each part \\ \hline \textbf{lapproach} \\ \hline \textbf{5-7} \\ \textbf{18-1-2-20-3-1} \\ \hline \textbf{3-6} \\ \textbf{14-10-18-17-5} \\ \hline \textbf{4-5} \\ \textbf{10-9-14-6-19-} \\ \hline \textbf{4-7} \\ \textbf{12-2-14-6-8-7} \\ \hline \textbf{4-4} \\ \textbf{14-13-3-16-17} \\ \hline \textbf{5-5} \\ \textbf{20-14-2-6-19-} \\ \hline \textbf{4-4} \\ \textbf{10-6-2-17-16-} \\ \hline \textbf{6-4} \\ \textbf{13-4-9-7-14-1} \\ \hline \textbf{5-5} \\ \textbf{10-4-16-14-7-} \\ \hline \textbf{3-4} \\ \textbf{4-10-2-7-16-1} \\ \hline \textbf{3-4} \\ \textbf{10-16-18-17-5} \\ \hline \textbf{4-4} \\ \textbf{10-16-18-17-5} \\ \hline \textbf{4-4} \\ \textbf{10-16-18-17-5} \\ \hline \textbf{4-4} \\ \textbf{10-16-18-17-5} \\ \hline \textbf{2-4} \\ \hline \textbf{5-5} \\ \textbf{1-9-2-3-18-1} \\ \hline \textbf{5-5} \\ \hline \textbf{5-5} \\ \textbf{1-9-2-3-18-1} \\ \hline \textbf{5-5} \\ \hline \textbf{5-5} \\ \textbf{9-3-10-17-14-5-5} \\ \hline \textbf{5-5} \\ \hline \textbf{9-6-13-16-18} \\ \hline \textbf{6-6} \\ \hline \textbf{3-16-5-9-20-1} \\ \hline \textbf{5-5} \\ \hline \textbf{9-6-13-16-18} \\ \hline \textbf{6-6} \\ \hline \textbf{3-16-5-9-20-1} \\ \hline \textbf{5-5} \\ \hline \textbf{2-4} \\ \hline \textbf{4-4} \\ \hline \textbf{14-4-2-10-16-3-4} \\ \hline \textbf{4-4} \\ \hline \textbf{14-5-5-14-10-16-18-17-5-5} \\ \hline \textbf{4-4} \\ \hline \textbf{14-5-5-14-10-16-18-17-5-5} \\ \hline \textbf{5-5} \\ \textbf{5-5} \\ \hline \textbf{5-5} \\ \textbf{5-5} \\ \hline \textbf{5-5} \\ \hline \textbf{5-5} \\ \textbf{5-5} \\ \hline \textbf{5-5} \\ \hline \textbf{5-5} \\ \textbf{5-5} \\ \hline \textbf{5-5} \\ \hline \textbf{5-5} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \mbox{Optimal order of machines} \\ \mbox{4-10-17-5-6-8-7-11-12-15-13-16-4-19-9} \\ \mbox{-}6-8-4-2-7-9-1-20-11-3-15-19-13-16-12} \\ \mbox{2-16-12-18-1-17-5-8-11-20-3-7-15-4-13} \\ \mbox{-}1-17-20-10-15-11-3-16-19-18-5-9-13-4} \\ \mbox{-}19-9-1-7-11-5-18-6-8-15-20-4-12-10-2} \\ \mbox{17-15-7-10-18-8-12-11-1-9-5-4-3-16-13} \\ \mbox{-}1-8-8-20-11-7-15-5-13-19-12-4-9-3-14} \\ \mbox{9-12-3-6-12-20-10-16-18-17-11-15-5-8} \\ \mbox{2-19-17-5-1-3-6-11-9-18-8-13-12-20-15} \\ \mbox{7-5-9-1-11-3-13-14-6-18-8-20-15-19-12} \\ \mbox{14-6-1-8-4-2-17-20-11-19-7-15-13-3-12} \\ \mbox{-}6-9-8-4-1-2-7-11-20-15-14-19-13-3-12} \\ \mbox{-}6-9-8-4-1-2-7-11-20-15-14-19-13-3-12} \\ \mbox{-}6-9-8-1-4-2-7-11-20-15-14-19-13-3-12} \\ \mbox{-}8-8-1-4-2-17-11-20-15-14-19-13-3-12} \\ \mbox{-}8-8-1-4-2-7-11-20-15-14-19-13-3-12} \\ \mbox{-}8-8-1-4-2-17-11-20-15-14-19-13-3-12} \\ \mbox{-}8-8-1-4-2-17-11-20-15-8-15-19-7-13-12} \\ \mbox{-}3-15-20-10-4-17-6-16-14-5-7-8-1-19-12} \\ \mbox{-}8-5-11-20-3-19-12-9-15-10-1-8-16-14-4} \\ \mbox{0-14-20-5-15-18-7-6-17-11-16-2-19-14} \\ \mbox{16-7-5-8-6-19-4-2-13-12-1-11-18-15-20} \\ \mbox{-}4-2-7-5-11-2-10-8-15-1-9-20-3-14-17} \\ \mbox{0-15-7-14-16-18-8-11-19-4-13-2-17-12} \\ \mbox{12-5-11-2-1-3-8-13-18-8-9-20-11-12-15} \\ \mbox{-}8-4-2-17-20-11-3-7-15-19-13-12-10-16} \\ \mbox{-}9-6-14-2-7-10-15-7-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-7-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-13-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-13-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-13-15-19-13-12-10-16} \\ \mbox{-}9-6-19-14-20-5-15-19-13-15-19-13-12-10-16} \\ \m$          |
| Number of evaluations           20,000           40,000           20,000 | Algorithm<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>PSO<br>AIS<br>SFHA<br>TPC GA<br>DEA_1<br>DEA_1<br>DEA_2<br>GA<br>SA_PS1<br>SA_PS2<br>SA_PS3<br>SA_PS3<br>SA_PS4<br>SA_PS5<br>SA_PS4<br>SA_PS5<br>SA_PS6<br>TPC GA<br>AIS<br>SFHA<br>SA_PS5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cost<br>min_sum_r<br>23<br>17<br>18<br>22<br>22<br>21<br>21<br>22<br>22<br>22<br>18<br>16<br>16<br>16<br>16<br>16<br>17<br>7<br>28<br>23<br>24<br>24<br>24<br>24<br>24<br>25<br>24<br>24<br>24<br>25<br>24<br>24<br>25<br>24<br>24<br>25<br>24<br>26<br>28<br>20<br>17<br>17<br>18<br>22<br>22<br>22<br>21<br>21<br>21<br>22<br>22<br>22<br>21<br>21<br>21<br>22<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cost<br>nin_max<br>7<br>6<br>5<br>7<br>6<br>5<br>6<br>6<br>6<br>5<br>6<br>4<br>4<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                   | COMPAR           SE         C           (%)         ti           32.4         2           66.6         3           33.4         1           53.0         0           38.8         2           20.1         2           91.0         0           43.3         5           55.4         2           62.1         8           62.1         8           62.2         8           6.2         1           445.2         2           6.2         1           42.4         4           45.9         3           18.2         1           16.5         1                                                                                                                                                      | TABL         ISON FOR THE 20-M         PU       Congestion for         MIN_SUM         2.0 $6-3-2-$ 3.3 $4-2-3-$ 0.6 $5-4-2-$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 5.9 $6-4$ 6.0 $4-4$ 5.1 $6-3-2-$ <b>8</b> $4-2-2-$ <b>8</b> $4-2-2-$ <b>8</b> $4-2-2-$ <b>8</b> $4-2-2-$ <b>8</b> $4-2-2-$ <b>1</b> $4-5-5-$ <b>1</b> $4-5-5-$ <b>3</b> $4-4-4-$ <b>1</b> $4-5-5-$ <b>3</b> $4-4-2-$ <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \text{E IV} \\ \hline \text{IACHINE, 5-PART PROBLEM} \\ \hline \text{r each part} \\ \hline \text$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c} \mbox{Optimal order of machines} \\ \hline \end{tabular} \\ \mbox{4-10-17-5-6-8-7-11-12-15-13-16-4-19-9} \\ \mbox{-}6-8-4-2-7-9-1-20-11-3-15-19-13-16-12} \\ \mbox{2-16-12-18-1-17-5-8-11-20-3-7-15-4-13} \\ \mbox{-}1-17-20-10-15-11-3-16-19-18-5-9-13-4} \\ \mbox{-}19-9-1-7-11-5-18-6-8-15-20-4-12-10-2} \\ \mbox{17-5-7-10-18-8-12-11-1-9-5-4-3-16-13} \\ \mbox{-}1-8-8-20-11-7-15-5-13-19-12-4-9-3-14} \\ \mbox{9-12-3-6-12-20-10-16-18-17-11-15-5-8} \\ \mbox{2-19-17-5-1-3-6-11-9-18-8-13-12-20-15} \\ \mbox{7-5-9-1-11-3-13-14-6-18-8-20-15-19-12} \\ \mbox{14-6-1-8-4-2-17-20-11-19-7-15-13-3-12} \\ \mbox{-}6-9-8-1-4-2-7-11-20-15-14-19-13-3-12} \\ \mbox{-}6-9-8-1-4-2-7-11-20-15-14-19-13-3-12} \\ \mbox{8-8-1-4-2-17-11-20-5-8-15-19-7-13-12} \\ \mbox{3-15-14-19-1-16-8-10-11-13-4-2-18-7-5} \\ \mbox{-}9-17-14-6-18-11-20-5-8-15-19-7-13-12} \\ \mbox{3-15-20-10-4-17-6-16-14-5-7-8-1-19-12} \\ \mbox{8-5-11-20-3-19-12-9-15-10-1-8-16-14-4} \\ \mbox{0-14-20-5-15-18-7-6-17-11-16-2-19-1-4} \\ \mbox{16-7-8-8-6-19-4-2-13-12-1-11-18-15-20} \\ \mbox{-}4-2-7-5-13-18-7-17-19-6-14-3-8-10} \\ \mbox{19-17-7-5-1-3-6-13-18-8-9-20-11-12-15} \\ \mbox{-}8-4-2-17-20-11-3-7-15-19-13-12-10-16} \\ \mbox{-}9-6-8-4-1-2-7-11-20-15-14-19-13-3-12} \\ \mbox{-}0-15-14-20-5-15-18-7-6-15-14-19-13-3-12} \\ \mbox{-}0-17-12-10-8-15-1-9-10-18-16-14-4} \\ \mbox{19-17-7-5-1-3-6-13-18-8-9-20-11-12-15} \\ \mbox{-}8-4-2-17-20-11-3-7-15-19-13-12-10-16} \\ \mbox{-}9-6-8-4-1-2-7-11-20-15-14-19-13-3-12} \\ \mbox{-}2-17-20-11-3-7-15-19-13-12-10-16} \\ \mbox{-}9-6-8-4-1-2-7-11-20-15-14-19-13-3-12} \\ \mbox{-}2-17-20-11-3-7-15-19-13-12-10-16} \\ \mbox{-}9-6-8-4-1-2-7-11-20-15-14-19-13-3-12} \\ \mbox{-}10-17-7-5-13-6-13-18-8-9-20-11-12-15} \\ \mbox{-}10-17-7-5-13-6-13-18-8-9-20-11-12-15} \\ \mbox{-}10-17-7-5-13-6-13-18-8-9-20-11-12-15} \\ \mbox{-}10-17-7-5-13-6-13-18-8-9-20-11-12-15} \\ \mbox{-}10-17-7-5-13-6-13-18-8-9-20-11-12-15} \\ \mbox{-}10-17-7-5-13-6-13-18-8-9-20-11-12-15} \\ \mbox{-}10-17-19-15-14-19-13-3-12} \\ \mbox{-}10-17-7-5-13-6-13-18-8-9-20-11-12-15} \\ \mbox{-}10-17-7-5-13-6-13-18-8-9-20-11-12-15} \\ \mbox{-}1$    |

| COMPARISON FOR THE 15-MACHINE, 9-PART PROBLEM |           |         |         |      |      |                          |                                     |  |
|-----------------------------------------------|-----------|---------|---------|------|------|--------------------------|-------------------------------------|--|
| Number of                                     | Algorithm | Cost    | Cost    | SE   | CPU  | Congestion for each part | Optimal order of machines           |  |
| evaluations                                   | -         | min_sum | min_max | (%)  | time |                          | *                                   |  |
|                                               | DEA 1     | 20      |         | 47.0 | 12.0 | MIN_SUM approach         |                                     |  |
|                                               | DEA_I     | 28      | 4       | 47.8 | 12.0 | 3-4-4-2-4-2-3-2          | 9-4-5-11-13-7-10-3-1-2-12-6-8-15-14 |  |
|                                               | DEA_2     | 24      | 4       | 39.5 | 9.0  | 3-4-3-2-2-4-1-4-1        | 5-7-11-13-10-3-1-6-15-12-8-14-9-2-4 |  |
|                                               | GA        | 24      | 4       | 31.6 | 3.8  | 2-4-3-2-2-4-1-4-2        | 4-7-5-11-13-10-3-1-6-15-8-14-9-2-12 |  |
|                                               | SA_PS1    | 26      | 5       | 77.2 | 29.9 | 5-5-2-2-1-3-2-3-3        | 7-5-6-14-11-3-8-15-13-2-10-1-9-12-4 |  |
| 20.000                                        | SA_PS2    | 28      | 5       | 62.9 | 16.3 | 5-4-3-2-2-3-1-3-5        | 4-12-2-5-3-15-14-6-7-8-11-13-10-9-1 |  |
| 20,000                                        | SA_PS3    | 26      | 5       | 34.7 | 9.9  | 5-4-2-2-1-4-1-3-4        | 10-14-7-3-15-11-1-12-2-13-5-6-9-8-4 |  |
|                                               | SA_PS4    | 28      | 5       | 29.3 | 2.7  | 5-5-3-2-1-3-2-3-4        | 14-7-5-10-9-12-11-6-3-2-15-4-13-1-8 |  |
|                                               | SA_PS5    | 32      | 6       | 40.8 | 6.3  | 5-3-2-2-3-6-1-5-5        | 12-10-3-1-15-4-14-5-7-2-13-6-8-9-11 |  |
|                                               | SA_PS6    | 26      | 5       | 37.7 | 1.4  | 4-4-2-2-2-5-1-3-3        | 7-1-10-8-5-14-11-3-2-6-13-9-4-12-15 |  |
|                                               | TPC GA    | 24      | 4       | 27.4 | 1.2  | 2-4-3-2-3-4-1-4-1        | 5-7-11-13-10-3-1-6-15-8-12-14-9-4-2 |  |
|                                               | PSO       | 24      | 4       | 33.3 | _    | 2-4-4-2-2-3-1-4-2        | 4-5-11-7-10-3-15-13-1-12-6-8-14-9-2 |  |
| 10.000                                        | AIS       | 24      | 3       | 31.2 | 4.7  | 3-3-3-3-2-3-1-3-3        | 5-11-7-10-3-2-15-13-1-6-12-8-14-9-4 |  |
| 40,000                                        | SFHA      | 24      | 3       | 31.1 | 4.5  | 3-3-3-3-2-3-1-3-3        | 5-7-11-10-3-2-15-13-1-6-12-8-14-9-4 |  |
|                                               | TPC GA    | 24      | 4       | 46.9 | 4.2  | 2-4-4-2-2-4-1-4-1        | 4-5-7-11-10-13-3-1-6-15-12-8-14-9-2 |  |
| Number of evaluations                         |           |         |         |      |      |                          |                                     |  |
|                                               |           |         |         |      |      | MIN_MAX approach         |                                     |  |
|                                               | DEA_1     | 33      | 6       | 47.7 | 12.5 | 4-6-4-3-4-2-4-3          | 9-4-5-11-13-7-10-3-1-2-12-6-8-15-14 |  |
|                                               | DEA_2     | 28      | 4       | 10.7 | 14.9 | 3-4-3-3-3-3-3-3-3-3      | 7-11-3-4-2-15-5-13-8-1-10-9-6-12-14 |  |
|                                               | GA        | 28      | 4       | 13.3 | 13.3 | 4-4-3-3-2-4-2-3-3        | 7-14-4-11-2-10-5-13-12-3-6-8-9-1-15 |  |
|                                               | SA_PS1    | 32      | 4       | 64.7 | 17.0 | 4-3-3-4-3-4-3-4-4        | 8-7-11-10-3-5-2-15-14-13-1-6-9-12-4 |  |
|                                               | SA_PS2    | 31      | 4       | 23.7 | 1.9  | 4-4-3-4-2-4-3-4-3        | 4-5-10-13-1-7-8-6-9-11-3-2-12-15-14 |  |
| 20,000                                        | SA_PS3    | 32      | 4       | 20.1 | 1.5  | 4-4-3-4-2-3-4            | 15-7-5-10-12-14-13-11-9-1-4-3-6-2-8 |  |
|                                               | SA_PS4    | 34      | 4       | 36.1 | 2.3  | 4-4-4-3-4-3-4-4          | 15-13-11-10-4-5-1-7-12-3-6-2-14-8-9 |  |
|                                               | SA_PS5    | 30      | 4       | 41.8 | 7.2  | 4-4-3-2-4-2-4-3          | 14-4-11-5-10-3-2-1-15-13-12-8-9-6-7 |  |
|                                               | SA_PS6    | 30      | 4       | 45.2 | 8.3  | 4-4-3-1-3-3-4-4          | 4-13-1-8-14-7-10-6-9-5-11-12-3-2-15 |  |
|                                               | TPC GA    | 24      | 4       | 70.8 | 3.3  | 2-3-4-3-2-4-1-3-2        | 4-5-7-11-13-10-3-1-6-2-15-8-12-14-9 |  |
|                                               | AIS       | 24      | 4       | 28.4 | 4.4  | 2-4-3-3-2-3-1-3-3        | 4-7-5-11-10-3-15-2-13-1-6-8-12-14-9 |  |
| 40,000                                        | SFHA      | 24      | 3       | 26.9 | 4.2  | 3-3-3-3-2-3-1-3-3        | 5-11-7-10-3-2-15-13-1-12-6-8-14-9-4 |  |
|                                               | TPC GA    | 24      | 4       | 34.4 | 3.2  | 3-4-3-2-2-4-1-4-1        | 7-5-11-10-13-3-1-6-15-8-12-14-9-2-4 |  |

| TABLE VI<br>Comparison for the 30-Machine, 10-Part Problem |           |                                         |                 |        |                 |                                   |                                          |                                              |  |
|------------------------------------------------------------|-----------|-----------------------------------------|-----------------|--------|-----------------|-----------------------------------|------------------------------------------|----------------------------------------------|--|
| Number of evaluations                                      | Algorithm | Cost<br>min_sum                         | Cost<br>min_max | SE (%) | CPU<br>time (s) | Overall<br>processing<br>time (s) | Congestion for each part                 | Optimal order of machines                    |  |
| MIN_SUM approach                                           |           |                                         |                 |        |                 |                                   |                                          |                                              |  |
|                                                            | DEA 1     | (0)                                     | 10              | 40.5   | 2.2             | 0.1                               | 10-11-7-4-12                             | 12-23-15-3-4-6-17-9-7-13-11-22-5-26-30-16-   |  |
|                                                            | DEA_I     | 69                                      | 12              | 40.5   | 3.3             | 8.1                               | -1-9-8-2-5                               | 25-20-27-18-19-8-21-10-2-1-29-14-24-28       |  |
|                                                            | DEA 2     | 52                                      | 12              | 747    | 2.6             | 1 9                               | 5-6-7-2-12                               | 12-13-6-29-3-14-27-17-9-7-11-30-23-5-2-21-   |  |
|                                                            | DEA_2     | 55                                      | 12              | /4./   | 5.0             | 4.0                               | -1 - 10 - 7 - 1 - 2                      | 4-10-25-1-22-8-20-24-26-19-18-15-28-16       |  |
|                                                            | GA        | 61                                      | 12              | 85     | 3.0             | 35.3                              | 8-7-8-3-12                               | 7-30-17-19-27-14-28-15-9-23-5-21-8-1-24-16-  |  |
|                                                            | UA        | 01                                      | 12              | 0.5    | 5.0             | 55.5                              | -0-10-6-1-6                              | 12-13-6-11-10-3-2-4-22-20-29-26-25-18        |  |
|                                                            | SA DS1    | 68                                      | 14              | 74.2   | 16.5            | 22.2                              | 8-9-7-3-11                               | 21-9-24-12-19-7-25-3-6-11-28-5-10-4-29-13-   |  |
|                                                            | 54_151    | 00                                      | 14              | / 4.2  | 10.5            | 22.2                              | -1-14-8-1-6                              | 23-17-8-2-18-1-16-27-30-22-15-14-20-26       |  |
|                                                            | SA_PS2    | 68                                      | 11              | 81.5   | 11.0            | 13.5                              | 8-9-8-3-11                               | 20-8-23-12-24-9-30-6-29-1-28-5-26-25-19-3-   |  |
| 20.000                                                     |           |                                         |                 |        |                 |                                   | -1-11-8-2-7                              | 11-16-4-10-7-14-17-13-18-27-15-21-2-22       |  |
| 20,000                                                     | SA_PS3    | 69                                      | 12              | 61.6   | 15.2            | 24.6                              | 10-9-7-4-12                              | 4-3-14-27-13-6-28-30-5-10-17-1-22-29-15-8-   |  |
|                                                            |           |                                         |                 |        |                 |                                   | -0-10-7-3-7                              | 25-12-6-9-23-16-11-20-2-21-7-24-18-19        |  |
|                                                            | SA PS4    | S4 68                                   | 13              | 34.9   | 6.6             | 18.0                              | 9-7-8-3-13                               | 6-13-18-21-3-5-26-28-11-16-29-23-12-8-10-25- |  |
|                                                            | 5/1_1 54  |                                         |                 |        |                 | 10.9                              | -1-11-7-2-7                              | 17-4-14-7-22-19-15-27-9-30-1-2-20-24         |  |
|                                                            | SA PS5    | 69                                      | 14              | 377    | 15              | 4.0                               | 8-9-8-4-14                               | 17-1-28-7-21-15-18-26-29-24-14-9-30-27-20-   |  |
|                                                            | 5/1_1 55  | 07                                      | 14              | 57.7   | 1.5             | 4.0                               | -1-10-7-2-6                              | 19-3-16-22-25-10-11-13-8-5-6-23-2-4-12       |  |
|                                                            | SA PS6    | 68                                      | 12              | 35.9   | 93              | 25.9                              | 8-9-9-3-12                               | 26-28-22-25-8-15-4-7-9-2-11-30-13-18-1-6-    |  |
|                                                            | 5/1_1 50  | 08                                      | 12              | 55.7   | 1.5             | 23.7                              | -1-10-8-2-6                              | 27-16-10-12-5-3-17-19-23-29-14-24-21-20      |  |
|                                                            | TPC GA    | 53                                      | 8               | 92.1   | 77              | 84                                | 8-8-6-2-7                                | 10-3-18-14-20-15-13-12-4-17-27-9-2-6-29-7-   |  |
|                                                            | ine on    | 55                                      | 0               | 72.1   | ·•·             | 0.4                               | -1-8-6-2-5                               | 16-11-21-22-25-30-28-24-26-19-5-23-8-1       |  |
|                                                            | PSO       | 53                                      | 12              | 63.3   | _               |                                   | 5-6-7-2-12                               | 13-12-6-3-14-29-17-27-9-7-11-30-5-23-2-21-   |  |
| 40 000                                                     | 150       | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                 | 05.5   | _               |                                   | -1-10-7-1-2                              | 10-4-1-22-25-20-8-24-26-18-19-28-16-15       |  |
| -0,000                                                     | AIS       | 50                                      | 8               | 27.9   | 64              | 22.9                              | 7-6-6-2-8                                | 21-8-15-12-13-30-3-4-10-17-27-1-14-9-22-     |  |
|                                                            | AIS       | AIS 30 8                                | 21.9            | 0.4    | 22.7            | -0-8-7-1-5                        | 7-2-6-25-20-29-24-26-16-11-19-28-23-18-5 |                                              |  |

| TABLE V                                       |
|-----------------------------------------------|
| COMPARISON FOR THE 15-MACHINE, 9-PART PROBLEM |

| Number of evaluations | Algorithm | Cost<br>min_sum | Cost<br>min_max | SE (%) | CPU<br>time (s) | Overall<br>processing<br>time (s) | Congestion for each part | Optimal order of machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|-----------------------|-----------|-----------------|-----------------|--------|-----------------|-----------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                       | SFHA      | 50              | 8               | 26.3   | 6.0             | 22.8                              | 7-6-6-2-8                | 21-8-15-12-13-10-3-4-30-17-27-1-14-9-22-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                       | STIM      | 50              | 0               | 20.5   | 0.0             | 22.0                              | -0-8-7-1-5               | 7-2-6-25-20-29-24-26-16-11-19-28-23-18-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                       | TPC GA    | 49              | 8               | 76 1   | 12.5            | 16.4                              | 7-7-7-3-7                | 26-15-16-18-12-21-6-3-5-4-10-27-17-14-9-7-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                       | ine dir   | .,              | 0               | /0.1   | 12.0            | 10.1                              | -1-8-5-1-3               | 28-13-11-30-23-1-2-20-25-29-22-8-19-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| MIN_MAX approach      |           |                 |                 |        |                 |                                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                       | DEA 1     | 70              | 12              | 40.5   | 37              | 0.1                               | 9-10-9-5-12              | 6-16-20-4-28-17-9-23-21-1-8-18-22-24-11-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                       | DEA_I     | 19              | 12              | 40.5   | 5.7             | 9.1                               | -1-11-9-3-10             | 28-10-30-13-27-25-3-19-29-15-14-2-12-5-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                       | DEA 2     | 68              | 0               | 36.2   | 24              | 6.6                               | 9–9–9–4–9                | 12-28-27-8-11-23-30-3-17-1-18-4-2-21-10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                       | DEA_2     | 08              | 9               | 50.2   | 2.4             | 0.0                               | -1-9-8-3-7               | 14-29-7-15-9-6-22-24-20-25-5-13-26-16-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                       | GA        | 74              | 10              | 14.6   | 6.5             | 11.5                              | 10-10-10-4-10            | 6-9-7-18-10-3-15-17-28-23-19-25-1-13-16-21-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                       | UA        | /+              | 10              | 14.0   | 0.5             | 44.5                              | -1 - 10 - 7 - 2 - 7      | 14-4-29-11-22-30-12-24-2-6-20-27-5-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                       | SA DS1    | 77              | 11              | 14.2   | 78              | 54.0                              | 11-11-8-5-11             | 3-25-17-1-29-16-14-20-18-13-11-6-21-5-9-27-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                       | 5A_151    | //              | 11              | 14.2   | 7.0             | 54.9                              | -1-10-10-2-8             | 22-8-10-2-24-4-19-7-15-30-28-23-12-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                       | SA PS2    | SA_PS2 76       | 11              | 17.0   | 1.7             | 10.0                              | 10-8-11-4-11             | -15-10-21-24-19-12-17-9-4-7-20-5-2-1-25-29-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                       | 5A_152    |                 | 11              |        |                 | 10.0                              | -1-11-9-2-9              | 26-14-28-16-22-3-27-23-13-18-11-8-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 20.000                | SA PS3    | 73              | 11              | 34     | 3.0             | 114 7                             | 10-9-10-2-11             | -13 - 17 - 8 - 1 - 20 - 18 - 15 - 3 - 30 - 28 - 6 - 21 - 14 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 10 - 10 - 10 - 10 - 10 - 10 |  |  |
| 20,000                | 5A_1 55   | 15              | 11              | 5.4    | 5.9             | 114./                             | -1 - 11 - 8 - 3 - 8      | 22-9-26-29-5-19-2-16-24-11-23-27-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                       | SA PS4    | 78              | 11              | 51     | 61              | 110.6                             | 11-11-9-5-11             | -13 - 17 - 8 - 1 - 20 - 18 - 15 - 3 - 30 - 28 - 6 - 21 - 14 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 4 - 10 - 12 - 10 - 10 - 10 - 10 - 10 - 10 |  |  |
|                       | 5A_1 54   | 78              | 11              | 5.1    | 0.1             | 119.0                             | -0-11-10-2-8             | 22-9-26-29-5-19-2-16-24-11-23-27-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|                       | SA 1955   | 76              | 11              | 10.3   | 0.2 2.2         | 32.0                              | 10-10-9-4-11             | 5-9-20-5-28-11-14-3-29-15-26-10-24-2-25-16-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                       | 5A_1 55   | 70              | 11              | 10.5   | 5.5             | 52.0                              | -1 - 11 - 10 - 1 - 9     | 19-23-13-8-12-30-17-18-21-4-1-27-7-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                       | SA PS6    | 71              | 11              | 79     | 1.0             | 12.6                              | 10-10-8-4-11             | -3 - 25 - 20 - 16 - 23 - 21 - 10 - 6 - 14 - 15 - 22 - 26 - 29 - 9 - 18 - 25 - 20 - 16 - 23 - 21 - 10 - 6 - 14 - 15 - 22 - 26 - 29 - 9 - 18 - 25 - 20 - 20 - 20 - 20 - 20 - 20 - 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                       | 5A_P50    | SA_F50 /1       | 11              | 7.9    | 1.0             | 12.0                              | -1-11-7-3-6              | 24-17-13-7-27-11-1-19-30-5-2-12-8-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                       | TPC CA    | 56              | 8               | 02.1   | 74              | 8.0                               | 7-8-8-4-7                | 20-26-19-23-8-1-18-15-14-12-25-6-9-29-7-16-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                       | IFC GA    | TUGA 30         | ð               | 92.1   | /.4             | 0.0                               | -1-7-7-1-6               | 5-21-10-11-22-3-30-28-24-13-4-27-17-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                       | AIS       | 51              | 51 8            | 21.8   | 58              | 26.6                              | 8-7-6-2-8                | 1-8-15-12-3-13-10-4-30-17-1-22-27-14-9-7-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                       | AIS       | 5 51            |                 | 21.8   | 5.8             | 20.0                              | -0-8-6-1-5               | 20-28-25-6-26-11-23-29-24-19-18-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 40.000                | SFHA      | SEHA 50         | 50 8            | 10 /   | 5.5             | 28.4                              | 7-6-6-2-8                | 1-8-15-13-12-30-3-4-10-17-27-1-14-9-22-7-2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| +0,000                |           | 50              |                 | 19.4   |                 |                                   | -0-8-7-1-5               | 6-25-20-29-24-26-16-11-19-28-23-18-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                       |           | 50              | 7               | 03 5   | 15.5            | 16.6                              | 7-7-7-3-7                | 6-21-3-13-5-4-11-17-30-20-1-25-22-26-8-18-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                       | II C GA   | 50              | /               | 35.5   | 15.5            | 10.0                              | -0-7-7-1-4               | 19-15-14-24-12-10-9-7-28-23-27-2-16-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |

#### REFERENCES

- Tompkins J. A., White J. A., Bozer Y. A., Tanchoco J. M. A. (2003) Facilities planning, 3rd edn. Wiley, New York.
- [2] Huang, C., Wong, C. K., & Tam, C. M. (2010). Optimization of material hoisting operations and storage locations in multi-storey building construction by mixed-integer programming. Automation in Construction, 19(5), 656–663.
- [3] Tompkins J. A., White J. A. (1984) Facilities planning. Wiley, New York
- [4] Afentakis, P. (1989): A loop layout design problem for flexible manufacturing systems, International Journal of Flexible Manufacturing Systems, 1, 2 175-196.
- [5] Leung, J. (1992) A graph-theoretic heuristic for designing loop-layout manufacturing systems. European Journal of Operational Research, 57, 243-252.
- [6] Bozer Y. A., Rim S. C. (1989) Exact solution procedures for the circular layout problem. Technical Report 8933. University of Michigan.
- [7] Kouvelis P., Kim M. W. (1992). Unidirectional loop network layout problem in automated manufacturing systems. Oper Res 40:533–550.
- [8] Tansel B. C., Bilen C. (1998) Move based heuristics for the unidirectional loop network layout problem. Eur J Oper Res 108(1):36–48.
- [9] Cheng, R. and Gen, M. Genetic algorithms for designing loop layout manufacturing systems, in Proceedings of the 18th International Conference on Computer and Industrial Engineering, 1995, pp. 187 191.
- [10] Banerjee P., Zhou Y. (1995) Facilities layout design optimization with single loop material flow path configuration. Int J Prod Res 33(1):183– 203.
- [11] Cheng, R., Gen, M. (1998): Loop layout design problem in flexible manufacturing systems using genetic algorithms, Computers and Industrial Engineering, 34, 1 53-61.
- [12] Tian, P., Ma, J., Zhang, D.-Mo., 1999. Application of simulated annealing to the combinatorial optimization problem with permutation property: An investigation of generation mechanism. European Journal of Operational Research 118, 81–94.
- [13] Bennell J. A., Potts C. N., Whitehead J. D. (2002) Local search algorithms for the min-max loop layout problem. J Oper Res Soc 53:1109–1117.
- [14] Nearchou A. C. (2006): Meta-heuristics from nature for the loop layout design problem. Int J Prod Econ 101:312–328.

- [15] Kumar R. M. S., Asokan P., Kumanan S. (2008) Design of loop layout in flexible manufacturing system using non-traditional optimization technique. Int J Adv Manuf Technol 38(5–6):594–599.
- [16] Kumar R. M. S., Asokan P., Kumanan S. (2009) Artificial immune system based algorithm for the unidirectional loop layout problem in a flexible manufacturing system. Int J Adv Manuf Technol 40(56):553– 565.
- [17] Ma S., Liu Z. C., Shi Y. J. (2013) A dual system method with differential evolution and genetic algorithm for loop-based station sequencing problem. Inf Technol J 12(4):728–734.
- [18] Hu Zhang, Min-min Xia, Li-ling Jiang, Yi Zhang, Tong-tong Lu, (2009) "Research on Applying Unidirectional Loop Layout to Optimize Facility Layout in Workshop Based on Improved Genetic Algorithm".
- [19] Niroomand S, Vizvari B (2013) A mixed integer linear programming formulation of closed loop layout with exact distances. J Ind Prod Eng 30(3):190–201.
- [20] Niroomand S., Vizvari B. (2016) Modified migrating birds optimization algorithm for closed loop layout with exact distances in flexible manufacturing systems. Expert Systems with Applications, Vol.42 (19) :6586-6597.
- [21] Ramezani M., Bashiri M., Moghaddam R. T. (2012) A robust design for a closed loop supply chain network under an uncertain environment. Int J Adv Manuf Technol. 1–19 M.
- [22] Saravanan & S. Ganesh Kumar (2014): Design and optimisation of loop layout problems flexible manufacturing system using sheep flock heredity algorithm.
- [23] Anandaraman C. (2011) An improved sheep flock heredity algorithm for job shop scheduling and flow shop scheduling problems. Int J Ind Eng Comput 2(4):749–764.
- [24] Manita G., Korbaa O., (2013), A Min-Max ANT colony algorithm for machine loop layout problem, 21st Mediterranean Conference on Control & Automation 978-1-4799-0997.
- [25] Hou L., Liu Z., Shi Y., Zheng X., (2016) Optimizing Machine Assignment and Loop Layout in Tandem AGV Workshop by Co-Evolutionary Methodology, 20<sup>th</sup> International Conference on Computer Supported Cooperative Work in Design 978-1-5090-1915.
- [26] Holland, J. H., (1975). Adaptation in Natural and Artificial Systems. The University of Michigan Press, Ann Arbor, MI.