Routing Medical Images with Tabu Search and Simulated Annealing: A Study on Quality of Service
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33156
Routing Medical Images with Tabu Search and Simulated Annealing: A Study on Quality of Service

Authors: Mejía M. Paula, Ramírez L. Leonardo, Puerta A. Gabriel

Abstract:

In telemedicine, the image repository service is important to increase the accuracy of diagnostic support of medical personnel. This study makes comparison between two routing algorithms regarding the quality of service (QoS), to be able to analyze the optimal performance at the time of loading and/or downloading of medical images. This study focused on comparing the performance of Tabu Search with other heuristic and metaheuristic algorithms that improve QoS in telemedicine services in Colombia. For this, Tabu Search and Simulated Annealing heuristic algorithms are chosen for their high usability in this type of applications; the QoS is measured taking into account the following metrics: Delay, Throughput, Jitter and Latency. In addition, routing tests were carried out on ten images in digital image and communication in medicine (DICOM) format of 40 MB. These tests were carried out for ten minutes with different traffic conditions, reaching a total of 25 tests, from a server of Universidad Militar Nueva Granada (UMNG) in Bogotá-Colombia to a remote user in Universidad de Santiago de Chile (USACH) - Chile. The results show that Tabu search presents a better QoS performance compared to Simulated Annealing, managing to optimize the routing of medical images, a basic requirement to offer diagnostic images services in telemedicine.

Keywords: Medical image, QoS, simulated annealing, Tabu search, telemedicine.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.2643597

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973

References:


[1] Babulak, E. (2006). Quality of service provision assessment in the healthcare information and telecommunications infrastructures. International journal of medical informatics, 75(3-4), 246-252.
[2] Shaikh, A., Misbahuddin, M., & Memon, M. S. (2008, April). A system design for a telemedicine health care system. In International Multi Topic Conference (pp. 295-305). Springer, Berlin, Heidelberg.
[3] Oddershede, A., & Carrasco, R. (2010, July). Methodology to evaluate and improve the QoS ICT networks in the healthcare service. In Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010 7th International Symposium on (pp. 871-875). IEEE.
[4] Basalo, P. M. R. (2010). Algoritmos heurísticos y aplicaciones a métodos formales (Doctoral dissertation, Universidad Complutense de Madrid).
[5] Moreno, L. F., Díaz, F. J., Peña, G. E., & Rivera, J. C. (2007). Análisis comparativo entre dos algoritmos heurísticos para resolver el problema de planeación de tareas con restricción de recursos (RCPSP). Dyna, 74(151), 171-183.
[6] Skorin-Kapov, N. (2006). Heuristic algorithms for the routing and wavelength assignment of scheduled lightpath demands in optical networks. IEEE Journal on Selected Areas in Communications, 24(8), 2-15.
[7] Goścień, R., Walkowiak, K., & Klinkowski, M. (2015). Tabu search algorithm for routing, modulation and spectrum allocation in elastic optical network with anycast and unicast traffic. Computer Networks, 79, 148-165.
[8] Rodríguez, A. B., & Saavedra, F. (2010). Optimización del algoritmo genético para la solución integral de enrutamiento en redes fotónicas. Información tecnológica, 21(3), 125-133.
[9] Rodríguez, A., Saavedra, F., & Ramírez, L. (2011). Simulated Annealing una Propuesta de Solución al Problema RWA en Redes Fotónicas. In Proceedings of XVIII Congreso Internacional De Ingeniería Eléctrica, Electrónica, Sistemas Y Ramas Afines (IEEE InterconUNI).
[10] Castro, A., Velasco, L., Ruiz, M., Klinkowski, M., FernáNdez-Palacios, J. P., & Careglio, D. (2012). Dynamic routing and spectrum (re) allocation in future flexgrid optical networks. Computer Networks, 56(12), 2869-2883.
[11] Bhaskaran, K., Triay, J., & Vokkarane, V. M. (2011, June). Dynamic anycast routing and wavelength assignment in WDM networks using ant colony optimization (ACO). In Communications (ICC), 2011 IEEE International Conference on (pp. 1-6). IEEE.
[12] Triay, J., & Cervello-Pastor, C. (2010). An ant-based algorithm for distributed routing and wavelength assignment in dynamic optical networks. IEEE journal on selected areas in communications, 28(4).
[13] Pham, D., & Karaboga, D. (2012). Intelligent optimisation techniques: genetic algorithms, tabu search, simulated annealing and neural networks. Springer Science & Business Media.
[14] Pavon-Marino, P D. (2012). Algoritmos de tipo búsqueda tabú (tabu search) para el diseño de un encaminamiento con protección 1+1 Escuela técnica superior de ingeniera en telecomunicación.
[15] Pavon-Marino, P D. (2012). Algoritmos de enfriamiento simulado (simulated annealing) Escuela técnica superior de ingeniera en telecomunicación.
[16] Fernández Gambín, A. (2015). Desarrollo de casos de estudio sobre la herramienta de planificación de redes Net2Plan.