Search results for: Thermal stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2281

Search results for: Thermal stress

1801 Reaction to the Fire of a Composite Material the Base of Scrapes of Tires End Latex for Thermal Isolation

Authors: E. T. L. Cöuras Ford, V. A. C. Vale, J. U. L. Mendes, R. M. Nascimento

Abstract:

The great majority of the applications of thermal isolation in the strip of drops and averages temperatures (up to 200ºC), it is made of materials aggressive nature, such an as glass wool, rock wool, polystyrene, EPS among others. Such materials, in spite of the effectiveness in the retention of the flow of heat, possess considerable cost and when discarded they are long years to be to decompose. In that context, trying to adapt the world politics the about of the preservation of the environment, a study began with intention of developing a material composite, with properties of thermal, originating from insulating industrial residues. In this research, the behavior of the composite was analyzed, as submitted the fire. For this, the reaction rehearsals were accomplished to the fire for the composites 2:1; 1:1; 1:2 and for the Latex, based in the "con" experiment in agreement with the norm ASTM - E 1334 - 90. As consequence, in function of the answers of the system was possible to be observed to the acting of each mixture proportion.

Keywords: Composite, Latex, Reaction to the fire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012
1800 Effect of Collector Aspect Ratio on the Thermal Performance of Wavy Finned Absorber Solar Air Heater

Authors: Abhishek Priyam, Prabha Chand

Abstract:

A theoretical investigation on the effect of collector aspect ratio on the thermal performance of wavy finned absorber solar air heaters has been performed. For the constant collector area, the various performance parameters have been calculated for plane and wavy finned solar air heaters. It has been found that the performance of wavy finned solar air heater improved with the increase in the collector aspect ratio. The performance of wavy finned solar air heater has been found 30 percent higher than those of plane solar air heater. The obtained results for wavy fin solar air heaters are compared with the available experimental data of most common type solar air heaters.

Keywords: Wavy fin, aspect ratio, solar air heater, thermal efficiency, collector efficiency factor, temperature rise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
1799 Surviving Abiotic Stress: The Relationship between High Light and High Salt Tolerance

Authors: Rutanachai Thaipratum

Abstract:

The mechanism of abiotic stress tolerance is crucial for plants to survive in harsh condition and the knowledge of this mechanism can be use to solve the problem of declining productivity of plants or crops around the world. However in-depth description is still unclear and it is argued, in particular that there is a relationship between high salinity tolerance and the ability to tolerate high light condition. In this study, Dunaliella salina, which can withstand high salt was used as a model. Chlorophyll fluorometer for nonphotochemical quenching (NPQ) measurement and high-performance liquid chromatography for pigment determination was used. The results show that NPQ value and the amount of pigment were increased along with the levels of salinity. However, it establish a clear relationship between high salt and high light but the further study to optimized the solutions mentioned above is still required.

Keywords: Abiotic stress tolerance, Dunaliella salina, Nonphotochemical quenching, Zeaxanthin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
1798 Hemodynamic Characteristics in the Human Carotid Artery Model Induced by Blood-Arterial Wall Interactions

Authors: Taewon Seo

Abstract:

The characteristics of physiological blood flow in human carotid arterial bifurcation model have been numerically studied using a fully coupled fluid-structure interaction (FSI) analysis. This computational model with the fluid-structure interaction is constructed to investigate the flow characteristics and wall shear stress in the carotid artery. As the flow begins to decelerate after the peak flow, a large recirculation zone develops at the non-divider wall of both internal carotid artery (ICA) and external carotid artery (ECA) in FSI model due to the elastic energy stored in the expanding compliant wall. The calculated difference in wall shear stress (WSS) in both Non-FSI and FSI models is a range of between 5 and 11% at the mean WSS. The low WSS corresponds to regions of carotid artery that are more susceptible to atherosclerosis.

Keywords: Carotid artery, Fluid-structure interaction, Hemodynamics, Wall shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841
1797 Assessing Overall Thermal Conductance Value of Low-Rise Residential Home Exterior Above-Grade Walls Using Infrared Thermography Methods

Authors: Matthew D. Baffa

Abstract:

Infrared thermography is a non-destructive test method used to estimate surface temperatures based on the amount of electromagnetic energy radiated by building envelope components. These surface temperatures are indicators of various qualitative building envelope deficiencies such as locations and extent of heat loss, thermal bridging, damaged or missing thermal insulation, air leakage, and moisture presence in roof, floor, and wall assemblies. Although infrared thermography is commonly used for qualitative deficiency detection in buildings, this study assesses its use as a quantitative method to estimate the overall thermal conductance value (U-value) of the exterior above-grade walls of a study home. The overall U-value of exterior above-grade walls in a home provides useful insight into the energy consumption and thermal comfort of a home. Three methodologies from the literature were employed to estimate the overall U-value by equating conductive heat loss through the exterior above-grade walls to the sum of convective and radiant heat losses of the walls. Outdoor infrared thermography field measurements of the exterior above-grade wall surface and reflective temperatures and emissivity values for various components of the exterior above-grade wall assemblies were carried out during winter months at the study home using a basic thermal imager device. The overall U-values estimated from each methodology from the literature using the recorded field measurements were compared to the nominal exterior above-grade wall overall U-value calculated from materials and dimensions detailed in architectural drawings of the study home. The nominal overall U-value was validated through calendarization and weather normalization of utility bills for the study home as well as various estimated heat loss quantities from a HOT2000 computer model of the study home and other methods. Under ideal environmental conditions, the estimated overall U-values deviated from the nominal overall U-value between ±2% to ±33%. This study suggests infrared thermography can estimate the overall U-value of exterior above-grade walls in low-rise residential homes with a fair amount of accuracy.

Keywords: Emissivity, heat loss, infrared thermography, thermal conductance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
1796 Generation of 3D Models Obtained with Low-Cost RGB and Thermal Sensors Mounted on Drones

Authors: Julio Manuel de Luis Ruiz, Javier Sedano Cibrián, Rubén Pérez Álvarez, Raúl Pereda García, Felipe Piña García

Abstract:

Nowadays it is common to resort to aerial photography to carry out the prospection and/or exploration of archaeological sites. In recent years, Unmanned Aerial Vehicles (UAVs) have been applied as the vehicles that carry the sensor. This implies certain advantages, such as the possibility of including low-cost sensors, given that these vehicles can carry the sensor at relatively low altitudes. Due to this, low-cost dual sensors have recently begun to be used. This new equipment can collaborate with classic Digital Elevation Models (DEMs) in the exploration of archaeological sites, but this entails the need for a methodological setting to optimize the acquisition, processing and exploitation of the information provided by low-cost dual sensors. This research focuses on the design of an appropriate workflow to obtain 3D models with low-cost sensors carried on UAVs, both in the RGB and thermal domains. All the foregoing has been applied to the archaeological site of Juliobriga, located in Cantabria (Spain). To this end, a flight with this type of sensors has been planned, developed and analyzed. It has been applied to the archaeological site of Juliobriga (Cantabria, Spain). A strong dependence of the thermal sensor on the GSD, and the capability of this technique to interpret underground materials. This research allows to state that the thermal nature of the site does not provide main information about the site itself, but with combination with other types of information, such as the DEM, the typology of materials, etc., can produce very positive results with respect to the exploration and knowledge of the site. 

Keywords: process optimization, RGB models, thermal models, UAV, workflow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 577
1795 A Comparative CFD Study on Solar Dimple Plate Collector with Flat Plate Collector to Augment the Thermal Performance

Authors: Manjunath M. S., K. Vasudeva Karanth, N. Yagnesh Sharma

Abstract:

It is well known that surface enhancements play an important role in augmenting the thermal performance of flat plate solar collector. In this paper, an attempt is made to explain in a comparative way the effect of surface geometry of solar collector having dimple geometry with that of a flat plate solar collector of the same size. A CFD analysis was carried out for the two cases, subjected to a constant heat flux of 600W/m2 and 1000W/m2. It can be inferred from the study that the absorber plate temperature shows a rise of average surface temperature of about 50C for the dimple solar collector when compared to a flat plate solar collector. Most importantly, the average exit water temperature shows a marked improvement of about 5.50C for a dimple solar collector as compared to that of a flat plate solar collector.

Keywords: CFD, dimple-collector, flat-plate-collector, surface-enhancement, thermal-performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3721
1794 Investigation of Cascade Loop Heat Pipes

Authors: Nandy Putra, Atrialdipa Duanovsah, Kristofer Haliansyah

Abstract:

The aim of this research is to design a LHP with low thermal resistance and low condenser temperature. A Self-designed cascade LHP was tested by using biomaterial, sintered copper powder, and aluminum screen mesh as the wick. Using pure water as the working fluid for the first level of the LHP and 96% alcohol as the working fluid for the second level of LHP, the experiments were run with 10W, 20W, and 30W heat input. Experimental result shows that the usage of biomaterial as wick could reduce more temperature at evaporator than by using sintered copper powder and screen mesh up to 22.63% and 37.41% respectively. The lowest thermal resistance occurred during the usage of biomaterial as wick of heat pipe, which is 2.06 oC/W. The usage of cascade system could be applied to LHP to reduce the temperature at condenser and reduced thermal resistance up to 17.6%.

Keywords: Biomaterial, cascade loop heat pipe, screen mesh, sintered Cu.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 893
1793 Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer

Authors: K. Benyounes, A. Benmounah

Abstract:

Cement-based grouts has been used successfully to repair cracks in many concrete structures such as bridges, tunnels, buildings and to consolidate soils or rock foundations. In the present study the rheological characterization of cement grout with water/binder ratio (W/B) is fixed at 0.5. The effect of the replacement of cement by bentonite (2 to 10% wt) in presence of superplasticizer (0.5% wt) was investigated. Several rheological tests were carried out by using controlled-stress rheometer equipped with vane geometry in temperature of 20°C. To highlight the influence of bentonite and superplasticizer on the rheological behavior of grout cement, various flow tests in a range of shear rate from 0 to 200 s-1 were observed. Cement grout showed a non-Newtonian viscosity behavior at all concentrations of bentonite. Three parameter model Herschel- Bulkley was chosen for fitting of experimental data. Based on the values of correlation coefficients of the estimated parameters, The Herschel-Bulkley law model well described the rheological behavior of the grouts. Test results showed that the dosage of bentonite increases the viscosity and yield stress of the system and introduces more thixotropy. While the addition of both bentonite and superplasticizer with cement grout improve significantly the fluidity and reduced the yield stress due to the action of dispersion of SP.

Keywords: Cement grout, bentonite, superplasticizer, viscosity, yield stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3541
1792 Viscoelastic Characterization of Bovine Trabecular Bone Samples

Authors: Ramirez D. Edgar I., Angeles H. José J., Ruiz C. Osvaldo, Jacobo A. Victor H., Ortiz P. Armando

Abstract:

Knowledge of bone mechanical properties is important for bone substitutes design and fabrication, and more efficient prostheses development. The aim of this study is to characterize the viscoelastic behavior of bone specimens, through stress relaxation and fatigue tests performed to trabecular bone samples from bovine femoral heads. Relaxation tests consisted on preloading the samples at five different magnitudes and evaluate them for 1020 seconds, adjusting the results to a KWW mathematical model. Fatigue tests consisted of 700 load cycles and analyze their status at the end of the tests. As a conclusion we have that between relaxation stress and each preload there is linear relation and for samples with initial Young´s modulus greater than 1.5 GPa showed no effects due fatigue test loading cycles.

Keywords: Bone viscoelasticity, fatigue test, stress relaxation test, trabecular bone properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
1791 Evaluation of Factors Affecting Freezing Point of Milk

Authors: Jelena Zagorska, Inga Ciprovica

Abstract:

The freezing point of milk is in important indicator of the milk quality. The freezing point of milk is determined primarily to prove milk adulteration with water and to determine the amount of water in it. Chemical composition and properties of milk, thermal treatment and presence of any substance can influence freezing point of product. There are different substances, which can be added to milk with main purpose to prolong shelf-life of raw milk. There are detergent, preservatives, formaldehyde, hydrogen peroxide, antibiotics, sodium carbonate, and hydrogen peroxide. Therefore the aim of the present study was to determine freezing point of milk, skimmed milk, pasteurized milk and milk with different substances (formaldehyde, antibiotics, sodium carbonate, hydrogen peroxide, disinfectant, and detergent) in different concentrations. The thermal treatment and different undesirable substances presence in milk have significant influence on freezing point of it.

Keywords: Antibiotics, freezing point, milk, pH, thermal treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10318
1790 Adaptive Responses of Carum copticum to in vitro Salt Stress

Authors: R. Razavizadeh, F. Adabavazeh, M. Rezaee Chermahini

Abstract:

Salinity is one of the most widespread agricultural problems in arid and semi-arid areas that limits the plant growth and crop productivity. In this study, the salt stress effects on protein, reducing sugar, proline contents and antioxidant enzymes activities of Carum copticum L. under in vitro conditions were studied. Seeds of C. copticum were cultured in Murashige and Skoog (MS) medium containing 0, 25, 50, 100 and 150 mM NaCl and calli were cultured in MS medium containing 1 μM 2, 4-dichlorophenoxyacetic acid, 4 μM benzyl amino purine and different levels of NaCl (0, 25, 50, 100 and 150 mM). After NaCl treatment for 28 days, the proline and reducing sugar contents of shoots, roots and calli increased significantly in relation to the severity of the salt stress. The highest amount of proline and carbohydrate were observed at 150 and 100 mM NaCl, respectively. The reducing sugar accumulation in shoots was the highest as compared to roots, whereas, proline contents did not show any significant difference in roots and shoots under salt stress. The results showed significant reduction of protein contents in seedlings and calli. Based on these results, proteins extracted from the shoots, roots and calli of C. copticum treated with 150 mM NaCl showed the lowest contents. The positive relationships were observed between activity of antioxidant enzymes and the increase in stress levels. Catalase, ascorbate peroxidase and superoxide dismutase activity increased significantly under salt concentrations in comparison to the control. These results suggest that the accumulation of proline and sugars, and activation of antioxidant enzymes play adaptive roles in the adaptation of seedlings and callus of C. copticum to saline conditions.

Keywords: Antioxidant enzymes, Carum copticum, organic solutes, salt stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1026
1789 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds are not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: Structural health monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2712
1788 Water Vapor Plasma Torch: Design, Characteristics and Applications

Authors: A. Tamošiūnas, P. Valatkevičius, V. Grigaitiene, V. Valinčius

Abstract:

The atmospheric pressure plasma torch with a direct current arc discharge stabilized by water vapor vortex was experimentally investigated. Overheated up to 450K water vapor was used as plasma forming gas. Plasma torch design is one of the most important factors leading to a stable operation of the device. The electrical and thermal characteristics of the plasma torch were determined during the experimental investigations. The design and the basic characteristics of the water vapor plasma torch are presented in the paper. Plasma torches with the electric arc stabilized by water vapor vortex provide special performance characteristics in some plasma processing applications such as thermal plasma neutralization and destruction of organic wastes enabling to extract high caloric value synthesis gas as by-product of the process. Syngas could be used as a surrogate fuel partly replacing the dependence on the fossil fuels or used as a feedstock for hydrogen, methanol production.

Keywords: Arc discharge, atmospheric pressure thermal plasma, plasma torch, water vapor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4451
1787 Comprehensive Studies on Mechanical Stress Analysis of Functionally Graded Plates

Authors: Kyung-Su Na, Ji-Hwan Kim

Abstract:

Stress analysis of functionally graded composite plates composed of ceramic, functionally graded material and metal layers is investigated using 3-D finite element method. In FGM layer, material properties are assumed to be varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The 3-D finite element model is adopted by using an 18-node solid element to analyze more accurately the variation of material properties in the thickness direction. Numerical results are compared for three types of materials. In the analysis, the tensile and the compressive stresses are summarized for various FGM thickness ratios, volume fraction distributions, geometric parameters and mechanical loads.

Keywords: Functionally graded materials, Stress analysis, 3-D finite element method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
1786 Prediction of Fatigue Crack Growth of Aeronautical Aluminum Alloy

Authors: M. Benachour, M. Benguediab, A. Hadjoui, N. Benachour

Abstract:

In this paper fatigue crack growth behavior of aeronautical aluminum alloy 2024 T351 was studied. Effects of various loading and geometrical parameters are studied such as stress ratio, amplitude loading, etc. The fatigue crack growth with constant amplitude is studied using the AFGROW code when NASGRO model is used. The effect of the stress ratio is highlighted, where one notices a shift of the curves of crack growth. The comparative study between two orientations L-T and T-L on fatigue behavior are presented and shows the variation on the fatigue life. L-T orientation presents a good fatigue crack growth resistance. Effects of crack closure are shown in Paris domain and that no crack closure phenomenons are present at high stress intensity factor.

Keywords: Fatigue crack, orientation effect, crack closure, aluminum alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
1785 Thermal Stability and Crystallization Behaviour of Modified ABS/PP Nanocomposites

Authors: Marianna I. Triantou, Petroula A. Tarantili

Abstract:

In this research work, poly (acrylonitrile-butadienestyrene)/ polypropylene (ABS/PP) blends were processed by melt compounding in a twin-screw extruder. Upgrading of the thermal characteristics of the obtained materials was attempted by the incorporation of organically modified montmorillonite (OMMT), as well as, by the addition of two types of compatibilizers; polypropylene grafted with maleic anhydride (PP-g-MAH) and ABS grafted with maleic anhydride (ABS-g-MAH). The effect of the above treatments was investigated separately and in combination. Increasing the PP content in ABS matrix seems to increase the thermal stability of their blend and the glass transition temperature (Tg) of SAN phase of ABS. From the other part, the addition of ABS to PP promotes the formation of its β-phase, which is maximum at 30 wt% ABS concentration, and increases the crystallization temperature (Tc) of PP. In addition, it increases the crystallization rate of PP.The β-phase of PP in ABS/PP blends is reduced by the addition of compatibilizers or/and organoclay reinforcement. The incorporation of compatibilizers increases the thermal stability of PP and reduces its melting (ΔΗm) and crystallization (ΔΗc) enthalpies. Furthermore it decreases slightly the Tgs of PP and SAN phases of ABS/PP blends. Regarding the storage modulus of the ABS/PP blends, it presents a change in their behavior at about 10°C and return to their initial behavior at ~110°C. The incorporation of OMMT to no compatibilized and compatibilized ABS/PP blends enhances their storage modulus.

Keywords: Acrylonitrile, butadiene, styrene terpolymer, compatibilizer, organoclay, polypropylene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2893
1784 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: Building energy management, machine learning, simulation-based optimization, operation planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
1783 Experimental Investigation on the Lithium-ion Battery Thermal Management System Based on U-Shaped Micro Heat Pipe Array in High Temperature Environment

Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao

Abstract:

In this study, a type of active air cooling thermal management system (TMS) based on U-shaped micro heat pipe array (MHPA) is established for the battery energy storage box which operates in high ambient temperature all the year round. The thermal management performance of the active air cooling TMS based on U-shaped MHPA under different ambient temperatures and different cooling conditions is analyzed by the method of experimental research. Results show that even if the battery energy storage box operates at a high ambient temperature of 45 °C, the active air cooling TMS based on U-shaped MHPA controls not only the maximum temperature of the battery in the battery energy storage box below 55 °C, but also the maximum temperature difference in the battery energy storage box below 5 °C during the whole charge-discharge process. The experimental results provide guidance for the application of the battery energy storage box TMS that operates in high temperature areas.

Keywords: Active air cooling, lithium-ion battery, micro heat pipe array, thermal management system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 305
1782 Unsteady Temperature Distribution in a Finite Functionally Graded Cylinder

Authors: A. Amiri Delouei

Abstract:

In the current study, two-dimensional unsteady heat conduction in a functionally graded cylinder is studied analytically. The temperature distribution is in radial and longitudinal directions. Heat conduction coefficients are considered a power function of radius both in radial and longitudinal directions. The proposed solution can exactly satisfy the boundary conditions. Analytical unsteady temperature distribution for different parameters of functionally graded cylinder is investigated. The achieved exact solution is useful for thermal stress analysis of functionally graded cylinders. Regarding the analytical approach, this solution can be used to understand the concepts of heat conduction in functionally graded materials.

Keywords: Functionally graded materials, unsteady heat conduction, cylinder, Temperature distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1186
1781 Rarefactive and Compressive Solitary Waves in Warm Plasma with Positrons and Nonthermal Electrons

Authors: Hamid Reza Pakzad

Abstract:

Ion-acoustic solitary waves in a plasma with nonthermal electrons, thermal positrons and warm ions are investigated using Sagdeev-s pseudopotential technique. We study the effects of non-thermal electrons and ion temperature on solitons and show both negative and positive potential waves are possible.

Keywords: Ion acoustic waves, Solitons, Nonlinear phenomena, Sagdeev potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1106
1780 Studying the Effect of Shading by Rooftop PV Panels on Dwellings’ Thermal Performance

Authors: Saad Odeh

Abstract:

Thermal performance is considered to be a key measure in building sustainability. One of the technologies used in the current building sustainable design is the rooftop solar PV power generators. The application of this type of technology has expanded vastly during the last five years in many countries. This paper studies the effect of roof shading developed by the solar PV panels on dwellings’ thermal performance. The analysis in this work is performed by using two types of packages: “AccuRate Sustainability” for rating the energy efficiency of residential building design, and “PVSYST” for the solar PV power system design. The former package is used to calculate the annual heating and cooling load, and the later package is used to evaluate the power production from the roof top PV system. The analysis correlates the electrical energy generated from the PV panels to the change in the heating and cooling load due to roof shading. Different roof orientation, roof inclination, roof insulation, as well as PV panel area are considered in this study. The analysis shows that the drop in energy efficiency due to the shaded area of the roof by PV panels is negligible compared to the energy generated by these panels.

Keywords: Energy efficiency, roof shading, thermal performance, PV panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245
1779 Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis

Authors: Bandula-Heva, T., Dhanasekar, M.

Abstract:

True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predicted plastic strains. Coupons obtained at varying depths of the railhead were, therefore, tested under axial tension and the strains were measured using strain gauges as well as an image analysis technique, known as the Particle Image Velocimetry (PIV). The head hardened steel exhibit existence of three distinct zones of yield strength; the yield strength as the ratio of the average yield strength provided in the standard (σyr=780MPa) and the corresponding depth as the ratio of the head hardened zone along the axis of symmetry are as follows: (1.17 σyr, 20%), (1.06 σyr, 20%-80%) and (0.71 σyr, > 80%). The stress-strain curves exhibit limited plastic zone with fracture occurring at strain less than 0.1.

Keywords: Stress-Strain Curve, Tensile Test, Particle Image Velocimetry, Railhead Metal Properties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3411
1778 School Design and Energy Efficiency

Authors: B. Su

Abstract:

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only need heating during the winter. The space hating energy is the major portion of winter school energy consumption and the winter energy consumption is major portion of annual school energy consumption. School building thermal design should focus on the winter thermal performance for reducing the space heating energy. A number of Auckland schools- design data and energy consumption data are used for this study. This pilot study investigates the relationships between their energy consumption data and school building design data to improve future school design for energy efficiency.

Keywords: Building energy efficiency, building thermal performance, school building design, school energy consumption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
1777 Synthesis of Polystyrene Grafting Filler Nanoparticles: Effect of Grafting on Mechanical Reinforcement

Authors: M. Khlifa, A. Youssef, A. F. Zaed, A. Kraft, V. Arrighi

Abstract:

A series of polystyrene (PS) nanoparticles were prepared by grafting polystyrene from both aggregated silica and colloidally dispersed silica nanoparticles using atom-transfer radical polymerisation (ATRP). Cross-linking and macroscopic gelation were minimised by using a miniemulsion system. The thermal and mechanical behaviour of the nanocomposites have been examined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA).

Keywords: ATRP, nanocomposites, polystyrene, reinforcement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484
1776 Chlorophyll Fluorescence as Criterion for the Diagnosis Salt Stress in Wheat (Triticum aestivum) Plants

Authors: M. Abdeshahian, M. Nabipour, M. Meskarbashee

Abstract:

To investigate effect of salt stress on Chlorophyll fluorescence four cultivars (fong,star,chamran and kharchia) of wheat (Triticum aestivum) plants subjected to salinity levels ( control,8,12 and 16 dsm-1 ) from one week after emergence to the end of stem elongation under greenhouse condition . results showed that quantum yield of photosystem II from light adopted leaves (ΦPSII), Photochemical quenching (qP) ,quantum yield of dark adopted leaves (fv/fm) and non photochemical quenching (NPq) were affected by salt stress . Salinity levels affected photosynthetic rate. Star and fong cultivars showed minimum and maximum levels of photosynthetic rate in respectively. Minimum photosynthetic rate differences between levels of salinity were shown in Kharchia. Shoot dry matter of all cultivars decreased by increasing salinity levels. Results showed that non photochemical quenching by salinity levels attribute to the decreases in shoot dry matter.

Keywords: salt stress, wheat, chlorophyll fluorescence, photosynthesis , shoot dry matter .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
1775 Dispersion of a Solute in Peristaltic Motion of a Couple Stress Fluid in the Presence of Magnetic Field

Authors: Habtu Alemayehu, G. Radhakrishnamacharya

Abstract:

An analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid in the presence of magnetic field with both homogeneous and heterogeneous chemical reactions is presented. The average effective dispersion coefficient has been found using Taylor-s limiting condition and long wavelength approximation. The effects of various relevant parameters on the average effective coefficient of dispersion have been studied. The average effective dispersion coefficient tends to decrease with magnetic field parameter, homogeneous chemical reaction rate parameter and amplitude ratio but tends to increase with heterogeneous chemical reaction rate parameter.

Keywords: Dispersion, Peristalsis, Couple stress fluid, Chemicalreaction, Magnetic field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
1774 Numerical Simulation of Punching Shear of Flat Plates with Low Reinforcement

Authors: Fatema-Tuz-Zahura, Raquib Ahsan

Abstract:

Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. In the present study, a 3D finite element model of a flat plate with low reinforcement ratio and without any transverse reinforcement has been developed. Punching shear stress and the deflection data were obtained on the surface of the flat plate as well as through the thickness of the model from numerical simulations. The obtained data were compared with the experimental results. Variation of punching stress with respect to deflection as obtained from numerical results is found to be in good agreement with the experimental results; the range of variation of punching stress is within 5%. The numerical simulation shows an early and gradual onset of nonlinearity, whereas the same is late and abrupt as observed in the experimental results. The range of variation of punching stress for different slab thicknesses between experimental and numerical results is less than 15%. The developed numerical model is useful to complement available punching test series performed in the past. The results obtained from the numerical model will be helpful for designing retrofitting schemes of flat plates.

Keywords: Flat plate, finite element model, punching shear, reinforcement ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
1773 Emission Constrained Hydrothermal Scheduling Algorithm

Authors: Sayeed Salam

Abstract:

This paper presents an efficient emission constrained hydrothermal scheduling algorithm that deals with nonlinear functions such as the water discharge characteristics, thermal cost, and transmission loss. It is then incorporated into the hydrothermal coordination program. The program has been tested on a practical utility system having 32 thermal and 12 hydro generating units. Test results show that a slight increase in production cost causes a substantial reduction in emission.

Keywords: Emission constraint, Hydrothermal coordination, and Hydrothermal scheduling algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
1772 Study and Evaluation of Added Stresses under Foundation due to Adjacent Structure

Authors: Alireza M. goltabar, Issa shooshpasha , Reza Shamstabar kami , Mostafa Habibi

Abstract:

Added stresses due to adjacent structure should be considered in foundation design and stress control in soil under the structure. This case is considered less than other cases in design and calculation whereas stresses in implementation are greater than analytical stress. Structure load are transmitted to earth by foundation and role of foundation is propagation of load on the continuous and half extreme soil. This act cause that, present stresses lessen to allowable strength of soil. Some researchers such as Boussinesq and westergaurd by using of some assumption studied on this issue, theorically. Target of this paper is study and evaluation of added stresses under structure due to adjacent structure. For this purpose, by using of assumption, theoric relation and numeral methods, effects of adjacent structure with 4 to 10 storeys on the main structure with 4 storeys are studied and effect of parameters and sensitivity of them are evaluated.

Keywords: stress, soil, adjacent structure, foundation, loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437