Olive Leaves Extract Restored the antioxidant Perturbations in Red Blood Cells Hemolysate in Streptozotocin Induced Diabetic Rats
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33087
Olive Leaves Extract Restored the antioxidant Perturbations in Red Blood Cells Hemolysate in Streptozotocin Induced Diabetic Rats

Authors: Ismail I. Abo Ghanema, Kadry M. Sadek

Abstract:

Oxidative stress and overwhelming free radicals associated with diabetes mellitus are likely to be linked with development of certain complication such as retinopathy, nephropathy and neuropathy. Treatment of diabetic subjects with antioxidant may be of advantage in attenuating these complications. Olive leaf (Oleaeuropaea), has been endowed with many beneficial and health promoting properties mostly linked to its antioxidant activity. This study aimed to evaluate the significance of supplementation of Olive leaves extract (OLE) in reducing oxidative stress, hyperglycemia and hyperlipidemia in Sterptozotocin (STZ)- induced diabetic rats. After induction of diabetes, a significant rise in plasma glucose, lipid profiles except High density lipoproteincholestrol (HDLc), malondialdehyde (MDA) and significant decrease of plasma insulin, HDLc and Plasma reduced glutathione GSH as well as alteration in enzymatic antioxidants was observed in all diabetic animals. During treatment of diabetic rats with 0.5g/kg body weight of Olive leaves extract (OLE) the levels of plasma (MDA) ,(GSH), insulin, lipid profiles along with blood glucose and erythrocyte enzymatic antioxidant enzymes were significantly restored to establish values that were not different from normal control rats. Untreated diabetic rats on the other hand demonstrated persistent alterations in the oxidative stress marker (MDA), blood glucose, insulin, lipid profiles and the antioxidant parameters. These results demonstrate that OLE may be of advantage in inhibiting hyperglycemia, hyperlipidemia and oxidative stress induced by diabetes and suggest that administration of OLE may be helpful in the prevention or at least reduced of diabetic complications associated with oxidative stress.

Keywords: Diabetes mellitus, olive leaves, oxidative stress, red blood cells

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1083815

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3063

References:


[1] Kamtchouing, P.; Kahpui, S.M.; Djomeni Dzeufiet, P. D.; T-edong, L.; Asongalem, E. A.; Dimoa, T. Anti-diabetic activity of methanol/ methylene chloride stem bark extracts of Terminalia superba and Canarium schweinfurthii on streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2006, 104, 306-309.
[2] Ceriello, A. Oxidative stress and glycemic regulation. Metabolism 2000, 49,27-29.
[3] Gumieniczek, A. Effects of pioglitazone on hyperglycemia-induced alterations in antioxidative system in tissues of alloxan-treated diabetic animals. Exp. Toxicol. Pathol. 2005, 56, 321-326.
[4] Chaudhry, J.; Ghosh, N. N.; Roy, K.; Chandra, R. Antihypergly-cemic effect of a thiazolidinedione analogue and its role in amelior-ating oxidative stress in alloxan-induced diabetic rats. Life Sci. 2007,80, 1135-1142.
[5] Karaoz, E.; Gultekin, F.; Akdogan, M.; Oncu, M.; Gokcimen, A.Protective role of melatonin and a combination of vitamin C and vitamin E on lung toxicity induced by chlorpyrifos-ethyl in rats. Exp. Toxicol. Pathol. 2002, 54,97-108.
[6] Al-Azzawie,H.;Alhamdani,M. S. S.Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci. 2006, 78, 1371- 1377.
[7] Bouaziz, M.; Chamkha, M.; Sayadi, S. Comparative study on phenolic content and antioxidant activity during maturation of the olive cultivar Chemlali from Tunisia. J. Agric. Food Chem., 2004, 52, 5476-5481.
[8] Allouche, N., Feki, I.; Sayadi, S. Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill waste waters. J. Agric. Food Chem., 2004, 52, 267-273.
[9] Jemai, H.; Fki, I.; Bouaziz,M.; Bouallagui, Z.; El Feki,A.; Isoda,H.; Sayadi, S. Lipid-lowering and antioxidant effects of hydroxytyrosol and its triacetylated derivative recovered from olive tree leaves in cholesterol-fed rats. J. Agric. Food Chem. 2008b, 56, 2630-2636.
[10] Briante, R.; Patumi, M.; Terenziani, S.; Bismuto, E.; Febbraio, F.; Nucci, R. Olea europaea L. leaf extract and derivatives: antioxidant properties. J. Agric. Food Chem. 2002, 17, 4934-4940.
[11] Amro, B.; Aburjai, T.; Al-Khalil, S. Antioxidative and radical scavenging effects of olive cake extract. Fitoterapia 2002, 73,456-461.
[12] Visioli, F.; Bellasta, S.; Galli, C. Oleuropein, the bitter principle of olives, enhances nitric oxide production bymousemacrophages. Life Sci. 1998a, 62, 541-546.
[13] Visioli, F.; Poli, A.; Galli, C. Antioxidant and other biological activities of phenols from olives and olive oil. Med. Res. Rev. 2002b, 22, 65-75.
[14] Gonzalez, M.; Zarzuelo, A.; Gamez, M. J.; Utrilla, M. P.; Jimenez, J.; Osuna, I. Hypoglycemic activity of olive leaf. Planta Med. 1992, 58, 513-515.
[15] Waterman, E; Lockwood, B. Active components and clinical implications of olive oil. Altern. Med. Rev. 2007, 12, 331-42.
[16] Manna, C.;DellaRagione, F.; Cucciola, V.; Borriello,A.;D-Angelo, S.; Galletti, P.; Zappia, V. Biological effects of hydroxytyrosol, a polyphenol from olive oil endowed with antioxidant activity. Adv. Exp. Med. Biol. 1999, 472,115-130.
[17] Fragopoulou, E.; Nomikos, T.; Karantonis, H C.; Apostolakis, C.; Pliakis, E.; Samiotaki, M.; Panayotou, G.; Antonopoulou, S. Biological activity of acetylated phenolic compounds. J. Agric. Food Chem. 2007, 55,80-89.
[18] Visioli, F.; Bellomo, G.; Galli, C. Free radical-scavenging properties of olive oil polyphenols. Biochem. Biophys. Res. Commun. 1998b, 247, 60-64.
[19] Carrasco-Pancorbo, A.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Del Carlo, M.; Gallina-Toschi, T.; Lercker, G.; Compagnone, D.; Fernndez-Gutirrez, A. Evaluation of the antioxidant capacity of individual phenolic compounds in virgin olive oil. J. Agric. Food Chem. 2005, 53, 8918-8925.
[20] Visioli, F., Caruso, D., Galli, C., Viappiani, S., Galli, G., Sala, A., 2000. Olive oils rich in natural catecholic phenols decrease isoprostane excretion in humans. Biochemical and Biophysical Research Communications. 278, 797- 799.
[21] Eidi, A.; Eidi, M.; and Darzi, R. 2009; Antidiabetic effects of olea europaea L. in normal and diabetic rats . Phytother. Res. 23: 347-350.
[22] NIH, National Institute of Health. Guide for the care and use of laboratory animal. Public health service, NIH publication no. 1985; 86- 23, Bethesda, MD.
[23] El-Seifi, S.; Abdel- Moneim, A. and Badir, N. (1993): The effect of Ambrosia maritima and Cleome droserfolia on serum insulin and glucose concentrations in diabetic rats. J. Egypt. Ger. Soc. Zool., 12(A): 305-328.
[24] Placer ZA, Crushman L and Son BC. Estimation of product of lipid peroxidation (malondialdehyde) in biochemical system. Anal. Biochem. 1966; 16: 359-364.
[25] Sedlack J and Lindsay RH. Estimation of total protein bound and non protein sulfhydryl groups in tissues with Ellman reagent. Anal. Biochem. 1968; 86: 271-278.
[26] Kaplan, L.A. (1984): Glucose. Clin Chem The C. V. Mosby Co.St Louis. Toronto. Princeton, 1032-1036. Cited in Diamond Pamphlet.
[27] Marschner, I.; Bottermann, P.; Erhardt, F.; Linke, R.; Maier, V.; Schwandt, P.; Vogt, W. and Scriba, P. C. (1974): Group experiments on the radioimmunological insulin determination. Horm. Metab. Res., 6: 293-296.
[28] Fossati, P. and Prencipe, L. (1982): Serum triglycerides determined colourimetrically with an enzyme that produces hydrogen peroxide. Clin. Chem., 28(1): 2077-2080.
[29] Deeg, R. and Ziegenohrm (1983): Kinetic enzymatic method for automated determination of total cholesterol in serum. J. Clin. Chem., 29(10): 1798-1802.
[30] Friendewald, W. T. (1972): Estimation of the concentration of lowdensity lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin. Chem., 18: 499-502.
[31] Burstein, M.; Selvenick, H. R. and Morfin, R. (1970): Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J. Lipid Res., 11: 583-595.
[32] Martin Mateo MC, Martin B, Santos Beneit M, Rabadan J. Catalase activity in erythrocytes from colon and gastric cancer patients. Influence of nickel, lead, mercury, and cadmium. Biol Trace Elem Res. 1997 Apr; 57(1): 79-90 .
[33] Chiu, D.; Fredrick, H. and Tappel, A. L (1976): Purification and properties of rat lung soluble glutathione peroxidase. Biochemica .et Biophysica. Acta., 445: 558-566.
[34] Sinha K A. Calorimetric assay of catalase. Anal. Biochem. 1971; 47:389-394.
[35] Misra H P and Fridovich I. The Role of Superoxide Anion in the Autooxidation of Epinephrine and a Simple Assay for Superoxide Dismutase. J. Biol. Chem. 1972; 247(12) : 3170-3175.
[36] Baynes, J. W. Role of oxidative stress in development of complications in diabetes. Diabetes 1991, 40, 405-412.
[37] Hamden, K.; Carreau, S.; Boujbiha, M. A.; Lajmi, S.; Aloulou, D.; Kchaou, D.; El feki, A. Hyperglycaemia, stress oxidant, liver dysfunction and histological changes in diabetic male rat pancreas and liver: Protective effect of 17 β- estradiol. Steroids 2008, 73, 495-501.
[38] Duzguner, V.; Kaya, S. Effect of zinc on the lipid peroxidation and the antioxidant defense systems of the alloxan-induced diabetic rabbits. Free Radical Biol. Med. 2007, 42, 1481-1486.
[39] Lei, J.; Hong-Yu, X.; Li-Ji, J.; Shu-Ying, L. and Yong-Ping, X. (2008): Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur. J.of Pharmacol., 582: 162-167.
[40] Lyons, T.J., 1991. Oxidized low density lipoproteins: a role in the pathogenesis of atherosclerosis in diabetes? Diabetic Medicine 8, 411 - 419.
[41] MacRury, S.M.; Gordon, D.; Wilson, R.; Bradley, H.; Gemmell, C.G.; Paterson, J.R.; Rumley, A.G. and MacCuish, A.C. (1993): A comparison of different methods of assessing free radical activity in type 2 diabetes and peripheral vascular disease. Diabet. Med., 10: 331- 335.
[42] Ghiselli, A.; Laurenti, O.; De Mattia, G.; Maiani, G. and Ferro Luzzi, A. (1992): Salicylate hydroxylation as an early marker of in vivo oxidative stress in diabetic patients. Free Radic. Biol. and Med., 13: 621-626.
[43] Zoppini, G.; Targher, G.; Monauni, T.; Faccini, G.; Pasqualini, E.; Martinelli, C.; Zenari, M.L. and Muggeo, M. (1996): Increase in circulating products of lipid peroxidation in smokers with IDDM. Diabetes Care., 19: 1233-1236.
[44] Haffner, S.M.; Agil, A.; Mykkanen, L.; Stern, M.P. and Jialal, I. (1995): Plasma oxidizability in subjects with normal glucose tolerance, impaired glucose tolerance, and NIDDM. Diabetes.
[45] Mustafa, A. and David, E. Laaksonen. (2002): Diabetes, Oxidative stress and Physical exercise. J.of Sports Sci. and Med., 1: 1-14.
[46] Bouaziz, M.; Sayadi, S. Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree. Eur. J. Lipid Sci. Technol. 2005, 107,118-125.
[47] Jemai H, El Feki A and Sayadi S. Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J. Agric. Food Chem. 2009; 57: 8798 -8804.
[48] Dragana D, Slavica R, Nevena V. R, Nataša D . P, Aleksandar D and Dušan M. M. Olive leaf extract modulates cold restraint stress-induced oxidative changes in rat liver J. Serb. Chem. Soc. 2011; 76 (9) 1207- 1218.
[49] El-Damrawy, S. Z Alleviate the oxidative stress in aged rabbit bucks by using olive leave extract egypt. poult. sci. vol (31) (iv): (737-744), 2011.
[50] Vina, J.; Borras, C.; Gomez-Cabrera, M. C.; Orr, W. C. Role of reactive oxygen species and (phyto)oestrogens in the modulation of adaptive response to stress. Free Radical Res. 2006, 40,111-119.
[51] Lee, O.H.; Lee, B.Y. ; Lee, J.; Lee, H.B; Son, J.Y.; Park, C.S.; Shetty, K and Kim, Y.C. 2009. Assessment of phenolics-enriched extract and fractions of olive leaves and their antioxidant activities. Bioresour . Technol. 100: 6107-6113.
[52] Lee, O.H.; and Lee, B.Y. 2010.Antioxidant and antimicrobial activities of combined phenolics in olea europaea leaf extract. Bioresour .Technol. 101: 3751-3754
[53] Masella, R., Vari, R., D-Archivio, M., Di Benedetto, R., Matarrese, P., Malorni, W., Scazzocchio, B., Giovannini, C., 2004. Extra virgin olive oil biophenols inhibit cell-mediated oxidation of LDL by increasing the mRNA transcription of glutathione-related enzymes. Journal of Nutrition 134, 785- 791.
[54] Madar, Z., Maayan, N., Sarit, O., Eliraz, A., 2004. Antioxidants modulate the nitric oxide system and SOD activity and expression in rat epithelial lung cells. Asia Pacific Journal of Clinical Nutrition 13, S101.
[55] Andrikopoulos, N.K., Kaliora, A.C., Assimopoulou, A.N., Papageorgiou, V.P.,2002. Inhibitory activity of minor polyphenolic and nonpolyphenolic constituents of olive oil against in vitro low-density lipoprotein oxidation. Journal of Medicinal Food 5, 1 -7.
[56] de la Puerta, R., Ruiz Gutierrez, V., Hoult, J.R., 1999. Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochemical Pharmacology 57, 445- 449.
[57] Sajad, H. M.; Abdul, B.; Bhagat, R.C.; Darzi, M.M. and Abdul, W. S. (2008): Biochemical and Histomorphological Study of Streptozotocin- Induced Diabetes Mellitus in Rabbits. Pakistan J.of Nutr., 7 (2): 359- 364.
[58] Suryawanshi, N.P. ; Bhutey, A.K. ; Nagdeote, A.N. ; Jadhav, A.A. and Manoorkar, G.S. (2006): Study Of Lipid Peroxide And Lipid Profile In Diabetes Mellitus. Indian J. of Clin. Biochem., 21: (1) 126-130.
[59] Jouad, H.; Haloui, M.; Rhiouani, H.; El Hilaly, J.; Eddouks, M. Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North Center Region of Morocco (fez-Boulemane). J. Ethnopharmacol. 2001, 77, 175-182.
[60] Eriko K, Shinya Y, Isafumi M, Mitsuhiro K, Kazuaki K, Yasuhiro O and Yoji T. Identification of Anti-╬▒-Amylase Components from Olive Leaf Extracts Food Science and Technology Research2003; Vol. 9 , No. 1 pp.35-39.
[61] Fki, I.; Sahnoun, Z.; Sayadi, S. Hypocholesterolemic effects of phenolic extracts and purified hydroxytyrosol recovered from olive mill wastewater in rats fed a cholesterol-rich diet. J. Agric. Food Chem. 2007, 55, 624-631.
[62] Prince, P. S. M; Menon, V. P.; Gunasekaran, G. Hypolipidemic action of Tinospora cardifolia roots in alloxan diabetic rats. J. Ethnopharmacol. 1999, 64,53-57.
[63] Somova, L. I.; Shode, F. O.; Ramnanan, P.; Nadar, A. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea, subspecies africana leaves. J. Ethnopharmacol. 2003, 84, 299-305.
[64] Omar, S. (2010). Cardioprotective and neuroprotective roles of oleuropein in olive. Saudi Pharmaceutical J., 5: 1-11
[65] Coni, E.; Bendetto, R.; pasquale, M ;.Masella, R.; Modesti, D.; Mattei ,R.; and Carlini, E.A. 2000. Rotective effect of oleuropein an olive oil biophenol, on low densitylipoprotein oxidizability in rabbits. Lipids 35: 45-54.
[66] Andreadou, I.; Iliodromitis, E.K.; Mikros E.; Constantinou, M.; Kakoulidou ,A.; and Kremastinos, D.T. 2006. The olive constituent oleuropein exhibits anti-ischemic, antioxidative and hypolipidemic effects in anesthetized rabbits. J. Nutr. 136 .2219-2213 .
[67] Visioli, F.; Galli, C.; Galli, G.; Caruso, D. 2002 a .Biological activities and metabolic fate of olive oil phenols. Eur . J. Lipid Sci. Technol. 104: 677-684 .
[68] Komeili GH, Miri Moghaddam E., Effect of Aqueous Extract of Olive Leaf on Serum Glucose and Lipids in Diabetic Rats Iranian Journal of Endocrinology and Metabolism, 2008; 10 (4) :389-394
[69] Bursill, C. A.; Roach, P. D. Modulation of cholesterol metabolism by the green tea polyphenol ( )-epigallocatechin gallate in cultured human liver (HepG2) cells. J. Agric. Food Chem. 2006, 54, 1621-1626.
[70] Krzeminski, R.; Gorinstein, S.; Leontowicz, H.; Leontowicz, M.; Gralak, M.; Czerwinski, J.; Lojek, A.; Ciz, M.; Martin-Belloso, O.; Gligelmo-Miguel, N.; Trakhtenberg, S. Effect of different olive oils on bile excretion in rats fed cholesterol-containing and cholesterol-free diets. J. Agric. Food Chem. 2003, 51, 5774-5779.
[71] Vinson, J. A.; Liang, X. Q.; Proch, J.; Hontz, B. A.; Dancel, J.; Sandone, N. Polyphenol antioxidants in citrus juices: in vitro and in vivo studies relevant to heart disease. Flavonoids in cell function. Ad . Exp. Med. Biol. 2002, 505, 113-122.