Search results for: Pressure port
970 Application of Natural Clay to Formulate Nontraditional Completion Fluid that Triples Oil Productivity
Authors: Munawar Khalil, Badrul Mohamed Jan, Abdul Aziz Abdul Raman
Abstract:
In the last decades, the problem of perforation damage has been considered as the major factor for the reduction of oil productivity. Underbalance perforation is considered as one of the best means to minimize or overcome this problem. By maintaining wellbore pressure lower than formation pressure, perforation damage could be minimize or eliminated. This can be achieved by the use of nontraditional lightweight completion fluid. This paper presents the effect of natural clay in formulating nontraditional completion fluid to ensure successful perforation job and increase of production rate. Natural clay is used as homogenizing agent to create a stable and non-damaging low-density completion fluid. Results indicate that the addition of natural clay dramatically increase the stability of the final fluids. In addition, field test has shown that the application of nontraditional completion fluid increases oil production by three folds.Keywords: Completion fluid, underbalance, clay, oil production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393969 Numerical Simulation of Diesel Sprays under Hot Bomb Conditions
Authors: Ishtiaq A. Chaudhry, Zia R Tahir, F. A. Siddiqui, F. Noor, M. J. Rashid
Abstract:
It has experimentally been proved that the performance of compression ignition (C.I.) engine is spray characteristics related. In modern diesel engine the spray formation and the eventual combustion process are the vital processes that offer more challenges towards enhancing the engine performance. In the present work the numerical simulation has been carried out for evaporating diesel sprays using Fluent software. For computational fluid dynamics simulation “Meshing” is done using Gambit software before transmitting it into Fluent. The simulation is carried out using hot bomb conditions under varying chamber conditions such as gas pressure, nozzle diameter and fuel injection pressure. For comparison purpose, the numerical simulations the chamber conditions were kept the same as that of the experimental data. At varying chamber conditions the spray penetration rates are compared with the existing experimental results.
Keywords: Evaporating diesel sprays, Penetration rates, Hot bomb conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184968 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor
Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir
Abstract:
This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.Keywords: Centrifugal compressor, contra-rotating, interaction rotor, vacuum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829967 Effects of Axial Loads and Soil Density on Pile Group Subjected to Triangular Soil Movement
Authors: Ihsan Al-Abboodi, Tahsin Toma-Sabbagh
Abstract:
Laboratory tests have been carried out to investigate the response of 2x2 pile group subjected to triangular soil movement. The pile group was instrumented with displacement and tilting devices at the pile cap and strain gauges on two piles of the group. In this paper, results from four model tests were presented to study the effects of axial loads and soil density on the lateral behavior of piles. The responses in terms of bending moment, shear force, soil pressure, deflection, and rotation of piles were compared. Test results indicate that increasing the soil strength could increase the measured moment, shear, soil pressure, and pile deformations. Most importantly, adding loads to the pile cap induces additional moment to the head of front-pile row unlike the back-pile row which was influenced insignificantly.
Keywords: Pile group, passive piles, lateral soil movement, soil density, axial loads.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158966 A CFD Study of Turbulent Convective Heat Transfer Enhancement in Circular Pipeflow
Authors: Perumal Kumar, Rajamohan Ganesan
Abstract:
Addition of milli or micro sized particles to the heat transfer fluid is one of the many techniques employed for improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. Nanoparticles also increase the viscosity of the basefluid resulting in higher pressure drop for the nanofluid compared to the base fluid. So it is imperative that the Reynolds number (Re) and the volume fraction have to be optimum for better thermal hydraulic effectiveness. In this work, the heat transfer enhancement using aluminium oxide nanofluid using low and high volume fraction nanofluids in turbulent pipe flow with constant wall temperature has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach. Nanofluid, up till a volume fraction of 1% is found to be an effective heat transfer enhancement technique. The Nusselt number (Nu) and friction factor predictions for the low volume fractions (i.e. 0.02%, 0.1 and 0.5%) agree very well with the experimental values of Sundar and Sharma (2010). While, predictions for the high volume fraction nanofluids (i.e. 1%, 4% and 6%) are found to have reasonable agreement with both experimental and numerical results available in the literature. So the computationally inexpensive single phase approach can be used for heat transfer and pressure drop prediction of new nanofluids.Keywords: Heat transfer intensification, nanofluid, CFD, friction factor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2875965 Optimization of Diverter Box Configuration in a V94.2 Gas Turbine Exhaust System using Numerical Simulation
Authors: A. Mohajer, A. Noroozi, S. Norouzi
Abstract:
The bypass exhaust system of a 160 MW combined cycle has been modeled and analyzed using numerical simulation in 2D prospective. Analysis was carried out using the commercial numerical simulation software, FLUENT 6.2. All inputs were based on the technical data gathered from working conditions of a Siemens V94.2 gas turbine, installed in the Yazd power plant. This paper deals with reduction of pressure drop in bypass exhaust system using turning vanes mounted in diverter box in order to alleviate turbulent energy dissipation rate above diverter box. The geometry of such turning vanes has been optimized based on the flow pattern at diverter box inlet. The results show that the use of optimized turning vanes in diverter box can improve the flow pattern and eliminate vortices around sharp edges just before the silencer. Furthermore, this optimization could decrease the pressure drop in bypass exhaust system and leads to higher plant efficiency.
Keywords: Numerical simulation, Diverter box, Turning vanes, Exhaust system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2804964 Body Mass Index, Components of Metabolic Syndrome and Hyperuricemia among Women in Postmenopausal Period
Authors: Vladyslav Povoroznyuk, Galina Dubetska, Roksolana Povoroznyuk
Abstract:
In recent years, the problem of hyperuricemia is getting a particular importance due to its increased incidence in the world population. The aim of this study was to determine uriс acid level in blood serum, incidence of hyperuricemia among women in postmenopausal period and their association with body mass index and some components of metabolic syndrome (triglyceride, cholesterol, systolic and diastolic pressure). We examined 412 women in postmenopausal period. They were divided in to the following groups: I group (BMI = 18,5-24,9), II group (BMI = 25,0-29,9), III group (BMI = 30,0-34,9), IV group (BMI > 35). We determined uric acid level among women during postmenopausal period depending on their body mass index. The higher level of uric acid was found in patients with the maximal body mass index (BMI > 35). In the I group it was 277,52 ± 8,40; in the II group – 286,81 ± 7,79; in the III group – 291,81 ± 7,56; in the IV group – 327,17 ± 12,17. Incidence of hyperuricemia among women in the I group was 10,2%, in the II group – 15,9%; in the III group – 21,2%, in the IV group – 34,2%. We found an interdependence between an uric acid level and BMI in the examined women (r = 0,21, p < 0,05). We determined that the highest level of triglyceride (F = 18,62, p < 0,05), cholesterol (F = 3,64, p < 0,05), atherogenic coefficient (F = 22,64, p < 0,05), systolic (F = 10,5, p < 0,05) and diastolic pressure (F = 4,30, p < 0,05) was among women with hyperuricemia. It was an interdependence between an uric acid level and triglyceride (r = 0,26, p < 0,05), atherogenic coefficient (r = 0,24, p < 0,05) among women in postmenopausal period.
Keywords: Hyperuricemia, uric acid, body mass index, metabolic syndrome, triglyceride, cholesterol, atherogenic coefficient, systolic and diastolic pressure, women.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 449963 Study of Atmospheric System and its Effect on Flood in Isfahan
Authors: Amir Gandomkar
Abstract:
Heavy rains are one of the features of arid and semi arid climates which result in flood. This kind of rainfall originates from environmental and synoptic conditions. Mediterranean cyclones are the major factor in heavy rainfall in Iran, but these cyclones do not happen in some parts of Iran such as Southern and Southeastern areas. In this study, it has been tried to pinpoint the synoptic reasons of heavy rainfall in Isfahan through the analysis of the relationship between this rainfall in Isfahan and atmospheric system over Iran and the areas around it. The findings of this study show that the major factor have is the arrival of Sudanese low pressure system in this region from the southwest, of course if the ascent local conditions such as heat occur, the heaviest rains happen in Isfahan. In fact this kind of rainfall in Isfahan has a Sudanese origin and if it is accompanied by Mediterranean system, heavier rain falls.Keywords: Flood, Atmospheric Systems, Synoptic Study, Geopotential Height, Sudanese Low Pressure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482962 Investigation of the Effect of Grid Size on External Store Separation Trajectory Using CFD
Authors: Alaa A. Osman, Amgad M. Bayoumy, Ismail El baialy, Osama E. Abdellatif, Essam E. Khallil
Abstract:
In this paper, a numerical simulation of a finned store separating from a wing-pylon configuration has been studied and validated. A dynamic unstructured tetrahedral mesh approach is accomplished by using three grid sizes to numerically solving the discretized three dimensional, inviscid and compressible Euler equations. The method used for computations of separation of an external store assuming quasi-steady flow condition. Computations of quasi-steady flow have been directly coupled to a six degree-offreedom (6DOF) rigid-body motion code to generate store trajectories. The pressure coefficients at four different angular cuts and time histories of various trajectory parameters and wing pressure distribution during the store separation are compared for every grid size with published experimental data.
Keywords: CFD Modelling, Quasi-steady Flow, Moving-body Trajectories, Transonic Store Separation, Moving-body Trajectories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2987961 Evaluating the Small-Strain Mechanical Properties of Cement-Treated Clayey Soils Based on the Confining Pressure
Authors: M. A. Putera, N. Yasufuku, A. Alowaisy, R. Ishikura, J. G. Hussary, A. Rifa’i
Abstract:
Indonesia’s government has planned a project for a high-speed railway connecting the capital cities, Jakarta and Surabaya, about 700 km. Based on that location, it has been planning construction above the lowland soil region. The lowland soil region comprises cohesive soil with high water content and high compressibility index, which in fact, led to a settlement problem. Among the variety of railway track structures, the adoption of the ballastless track was used effectively to reduce the settlement; it provided a lightweight structure and minimized workspace. Contradictorily, deploying this thin layer structure above the lowland area was compensated with several problems, such as lack of bearing capacity and deflection behavior during traffic loading. It is necessary to combine with ground improvement to assure a settlement behavior on the clayey soil. Reflecting on the assurance of strength increment and working period, those were convinced by adopting methods such as cement-treated soil as the substructure of railway track. Particularly, evaluating mechanical properties in the field has been well known by using the plate load test and cone penetration test. However, observing an increment of mechanical properties has uncertainty, especially for evaluating cement-treated soil on the substructure. The current quality control of cement-treated soils was established by laboratory tests. Moreover, using small strain devices measurement in the laboratory can predict more reliable results that are identical to field measurement tests. Aims of this research are to show an intercorrelation of confining pressure with the initial condition of the Young’s modulus (E0), Poisson ratio (υ0) and Shear modulus (G0) within small strain ranges. Furthermore, discrepancies between those parameters were also investigated. Experimental result confirmed the intercorrelation between cement content and confining pressure with a power function. In addition, higher cement ratios have discrepancies, conversely with low mixing ratios.
Keywords: Cement content, confining pressure, high-speed railway, small strain ranges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423960 1-D Modeling of Hydrate Decomposition in Porous Media
Authors: F. Esmaeilzadeh, M. E. Zeighami, J. Fathi
Abstract:
This paper describes a one-dimensional numerical model for natural gas production from the dissociation of methane hydrate in hydrate-capped gas reservoir under depressurization and thermal stimulation. Some of the hydrate reservoirs discovered are overlying a free-gas layer, known as hydrate-capped gas reservoirs. These reservoirs are thought to be easiest and probably the first type of hydrate reservoirs to be produced. The mathematical equations that can be described this type of reservoir include mass balance, heat balance and kinetics of hydrate decomposition. These non-linear partial differential equations are solved using finite-difference fully implicit scheme. In the model, the effect of convection and conduction heat transfer, variation change of formation porosity, the effect of using different equations of state such as PR and ER and steam or hot water injection are considered. In addition distributions of pressure, temperature, saturation of gas, hydrate and water in the reservoir are evaluated. It is shown that the gas production rate is a sensitive function of well pressure.
Keywords: Hydrate reservoir, numerical modeling, depressurization, thermal stimulation, gas generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055959 Implementation of a Low-Cost Instrumentation for an Open Cycle Wind Tunnel to Evaluate Pressure Coefficient
Authors: Cristian P. Topa, Esteban A. Valencia, Victor H. Hidalgo, Marco A. Martinez
Abstract:
Wind tunnel experiments for aerodynamic profiles display numerous advantages, such as: clean steady laminar flow, controlled environmental conditions, streamlines visualization, and real data acquisition. However, the experiment instrumentation usually is expensive, and hence, each test implies a incremented in design cost. The aim of this work is to select and implement a low-cost static pressure data acquisition system for a NACA 2412 airfoil in an open cycle wind tunnel. This work compares wind tunnel experiment with Computational Fluid Dynamics (CFD) simulation and parametric analysis. The experiment was evaluated at Reynolds of 1.65 e5, with increasing angles from -5° to 15°. The comparison between the approaches show good enough accuracy, between the experiment and CFD, additional parametric analysis results differ widely from the other methods, which complies with the lack of accuracy of the lateral approach due its simplicity.Keywords: Wind tunnel, low cost instrumentation, experimental testing, CFD simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816958 A Finite Difference Calculation Procedure for the Navier-Stokes Equations on a Staggered Curvilinear Grid
Authors: R. M. Barron, B. Zogheib
Abstract:
A new numerical method for solving the twodimensional, steady, incompressible, viscous flow equations on a Curvilinear staggered grid is presented in this paper. The proposed methodology is finite difference based, but essentially takes advantage of the best features of two well-established numerical formulations, the finite difference and finite volume methods. Some weaknesses of the finite difference approach are removed by exploiting the strengths of the finite volume method. In particular, the issue of velocity-pressure coupling is dealt with in the proposed finite difference formulation by developing a pressure correction equation in a manner similar to the SIMPLE approach commonly used in finite volume formulations. However, since this is purely a finite difference formulation, numerical approximation of fluxes is not required. Results obtained from the present method are based on the first-order upwind scheme for the convective terms, but the methodology can easily be modified to accommodate higher order differencing schemes.Keywords: Curvilinear, finite difference, finite volume, SIMPLE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3203957 The Fabrication of Scintillator Column by Hydraulic Pressure Injection Method
Authors: C. C. Chen, C. M. Chu, C. J. Wang, C. Y. Chen, K. J. Huang
Abstract:
Cesiumiodide with Na doping (CsI(Na)) solution or melt is easily forming three- dimension dendrites on the free surface. The defects or bobbles form inside the CsI(Na) during the solution or melt solidification. The defects or bobbles can further effect the x-ray path in the CsI(Na) crystal and decrease the scintillation characteristics of CsI(Na). In order to enhance the CsI(Na) scintillated property we made single crystal of CsI(Na) column in the anodic aluminum oxide (AAO) template by hydraulic pressure injection method. It is interesting that when CsI(Na) melt is confined in the small AAO channels, the column grow as stable single column without any dendrites. The high aspect ratio (100~10000) of AAO and nano to sub-micron channel structure which is a suitable template for single of crystal CsI(Na) formation. In this work, a new low-cost approach to fabricate scintillator crystals using anodic aluminum oxide (AAO) rather than Si is reported, which can produce scintillator crystals with a wide range of controllable size to optimize their performance in X-ray detection.
Keywords: Cesiumiodide, AAO, scintillator, crystal, X-ray.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2064956 Slug Initiation Evaluation in Long Horizontal Channels Experimentally
Authors: P. Adibi, M. R. Ansari, S. Jafari, B. Habibpour, E. Salimi
Abstract:
In this paper, the effect of gas and liquid superficial inlet velocities and for the first time the effect of liquid holdup on slug initiation position are studied experimentally. Empirical correlations are also presented based on the obtained results. The tests are conducted for three liquid holdups in a long horizontal channel with dimensions of 5cm10cm and 36m length. Usl and Usg rated as to 0.11m/s to 0.56m/s and 1.88m/s to 13m/s, respectively. The obtained results show that as αl=0.25, slug initiation position is increasing monotonically with Usl and Usg. During αl=0.50, slug initiation position is almost constant. For αl=0.75, slug initiation position is decreasing monotonically with Usl and Usg. In the case of equal void fraction of phases, generated slugs are weakly (low pressure). However, for the unequal void fraction of phases strong slugs (high pressure) are formed.
Keywords: Liquid holdup, Long horizontal channel, Slug initiation position, Superficial inlet velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868955 An Improved Single Point Closure Model Based on Dissipation Anisotropy for Geophysical Turbulent Flows
Authors: A. P. Joshi, H. V. Warrior, J. P. Panda
Abstract:
This paper is a continuation of the work carried out by various turbulence modelers in Oceanography on the topic of oceanic turbulent mixing. It evaluates the evolution of ocean water temperature and salinity by the appropriate modeling of turbulent mixing utilizing proper prescription of eddy viscosity. Many modelers in past have suggested including terms like shear, buoyancy and vorticity to be the parameters that decide the slow pressure strain correlation. We add to it the fact that dissipation anisotropy also modifies the correlation through eddy viscosity parameterization. This recalibrates the established correlation constants slightly and gives improved results. This anisotropization of dissipation implies that the critical Richardson’s number increases much beyond unity (to 1.66) to accommodate enhanced mixing, as is seen in reality. The model is run for a couple of test cases in the General Ocean Turbulence Model (GOTM) and the results are presented here.
Keywords: Anisotropy, GOTM, pressure-strain correlation, Richardson Critical number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949954 Guidelines for Selecting the Appropriate Heel Insert for Long-Standing Ladies
Authors: Atisthan Wuttimanop, Suchada Rianmora, Mahint Mahattanakorn
Abstract:
Feet and ankles are parts of human body that receive high-pressure in every day. Feet disorders such as ankle sprain, achilles tendonitis, heel pain, and plantar fasciitis are very common. There are many causes for these feet disorders such as wearing high heels, obesity, sports activity, and standing for a long time. There are many reliefs for feet disorders such as heel insert. However, they come in various shapes and use different materials. There are no specifications in which type is suitable for specific user. This has led to the proposed research to provide guidelines for selecting the appropriate heel insert for ladies who face with long-standing carriers. This research uses contact-measuring techniques to test forces, contact area, and pressure acting on a person’s feet in various standing positions with different insert materials and shapes. The proper material for making insert will be presented and discussed.
Keywords: Heel inserts, Long-standing person, Contact-data acquisition, Finite element analysis, Ethylene-vinyl acetate (EVA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1888953 The Role of the Urban Renewal Projects on the Reshaping of the Cities: İzmir (Turkey) Case
Authors: Sibel Ecemis Kiliç, Neslihan Karatas
Abstract:
The concept of urban transformation came about through interventions aimed at bringing socially and economically problematic areas of cities into use. The issue of urban transformation arose frequently during the post-2000 period in particular, and legal regulations on this matter were also developed in Turkey. Urban transformation project would be a focal point for the formation of the city in the near future. Izmir, which is third largest city of Turkey, is an important trade and port city. But, assessment of the current situation shows that, the majority of existing residential areas was formed with squatters and unplanned settlements in Izmir city center. Therefore an important part of these areas have significant problems in terms of the quality of life, safety and environmental quality. In this study, the central policies in Turkey and local policies in Đzmir about urban transformation will be considered. In addition, urban renewal projects that are being implemented in Izmir were discussed and suggestions will be developed in accordance with this policy.
Keywords: urban transformation, urban renewal projects, Izmir, urban planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822952 Generalized Differential Quadrature Nonlinear Consolidation Analysis of Clay Layer with Time-Varied Drainage Conditions
Authors: A. Bahmanikashkouli, O.R. Bahadori Nezhad
Abstract:
In this article, the phenomenon of nonlinear consolidation in saturated and homogeneous clay layer is studied. Considering time-varied drainage model, the excess pore water pressure in the layer depth is calculated. The Generalized Differential Quadrature (GDQ) method is used for the modeling and numerical analysis. For the purpose of analysis, first the domain of independent variables (i.e., time and clay layer depth) is discretized by the Chebyshev-Gauss-Lobatto series and then the nonlinear system of equations obtained from the GDQ method is solved by means of the Newton-Raphson approach. The obtained results indicate that the Generalized Differential Quadrature method, in addition to being simple to apply, enjoys a very high accuracy in the calculation of excess pore water pressure.Keywords: Generalized Differential Quadrature method, Nonlinear consolidation, Nonlinear system of equations, Time-varied drainage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028951 Experimental Investigation on the Efficiency of Expanded Polystyrene Geofoam Post and Beam System in Protecting Lifelines
Authors: Masood Abdollahi, Seyed Naser Moghaddas Tafreshi
Abstract:
Expanded polystyrene (EPS) geofoam is a cellular geosynthetic material that can be used to protect lifelines (e.g. pipelines, electricity cables, etc.) below ground. Post and beam system is the most recent configuration of EPS blocks which can be implemented for this purpose. It provides a void space atop lifelines which allows settlement of the loading surface with imposing no pressure on the lifelines system. This paper investigates the efficiency of the configuration of post-beam system subjected to static loading. To evaluate the soil surface settlement, beam deformation and transferred pressure over the beam, laboratory tests using two different densities for EPS blocks are conducted. The effect of geogrid-reinforcing the cover soil on system response is also investigated. The experimental results show favorable performance of EPS post and beam configuration in protecting underground lifelines.Keywords: Beam deformation, EPS block, laboratory test, post-beam system, soil surface settlement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095950 Critical Heights of Sloped Unsupported Trenches in Unsaturated Sand
Authors: Won Taek Oh, Adin Richard
Abstract:
Workers are often required to enter unsupported trenches during the construction process, which may present serious risks. Trench failures can result in death or damage to adjacent properties, therefore trenches should be excavated with extreme precaution. Excavation work is often done in unsaturated soils, where the critical height (i.e. maximum depth that can be excavated without failure) of unsupported trenches can be more reliably estimated by considering the influence of matric suction. In this study, coupled stress/pore-water pressure analyses are conducted to investigate the critical height of sloped unsupported trenches considering the influence of pore-water pressure redistribution caused by excavating. Four different wall slopes (1.5V:1H, 2V:1H, 3V:1H, and 90°) and a vertical trench with the top 0.3 m sloped 1:1 were considered in the analyses with multiple depths of the ground water table in a sand. For comparison, the critical heights were also estimated using the limit equilibrium method for the same excavation scenarios used in the coupled analyses.
Keywords: Critical height, matric suction, unsaturated soil, unsupported trench.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064949 Flow of a Second Order Fluid through Constricted Tube with Slip Velocity at Wall Using Integral Method
Authors: Nosheen Zareen Khan, Abdul Majeed Siddiqui, Muhammad Afzal Rana
Abstract:
The steady flow of a second order fluid through constricted tube with slip velocity at wall is modeled and analyzed theoretically. The governing equations are simplified by implying no slip in radial direction. Based on Karman Pohlhausen procedure polynomial solution for axial velocity profile is presented. Expressions for pressure gradient, shear stress, separation and reattachment points, and radial velocity are also calculated. The effect of slip and no slip velocity on magnitude velocity, shear stress, and pressure gradient are discussed and depicted graphically. It is noted that when Reynolds number increases magnitude velocity of the fluid decreases in both slip and no slip conditions. It is also found that the wall shear stress, separation, and reattachment points are strongly affected by Reynolds number.Keywords: Approximate solution, constricted tube, non-Newtonian fluids, Reynolds number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726948 Performance, Emission and Combustion Characteristics of Direct Injection Diesel Engine Running on Rice Bran Oil / Diesel Fuel Blend
Authors: B.K.Venkanna, C. Venkataramana Reddy, Swati B Wadawadagi
Abstract:
Triglycerides and their derivatives are considered as viable alternatives for diesel fuels. Rice bran oil is used as diesel fuel. Highly viscous rice bran oil can be reduced by blending it with diesel fuel. The present research is aimed to investigate experimentally the performance, exhaust emission and combustion characteristics of a direct injection (DI) diesel engine, typically used in agricultural sector, over the entire load range when fuelled with rice bran oil and diesel fuel blends, RB10 (10% rice bran oil + 90% diesel fuel) to RB50. The performance, emission and combustion parameters of RB20 were found to be very close to neat diesel fuel (ND). The injector opening pressure (IOP) undoubtedly is of prime importance in diesel engine operation. Performance, emission and combustion characteristics with RB30 at enhanced IOPs are better than ND. Improved premixed heat release rate were noticed with RB30 when the IOP is enhanced.
Keywords: Rice bran oil, injector opening pressure, performance, emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372947 CFD Analysis of Incompressible Turbulent Swirling Flow through Circle Grids Space Filling Plate
Authors: B. Manshoor, M. Jaat, Amir Khalid
Abstract:
Circle grid space filling plate is a flow conditioner with a fractal pattern and used to eliminate turbulence originating from pipe fittings in experimental fluid flow applications. In this paper, steady state, incompressible, swirling turbulent flow through circle grid space filling plate has been studied. The solution and the analysis were carried out using finite volume CFD solver FLUENT 6.2. Three turbulence models were used in the numerical investigation and their results were compared with the pressure drop correlation of BS EN ISO 5167-2:2003. The turbulence models investigated here are the standard k-ε, realizable k-ε, and the Reynolds Stress Model (RSM). The results showed that the RSM model gave the best agreement with the ISO pressure drop correlation. The effects of circle grids space filling plate thickness and Reynolds number on the flow characteristics have been investigated as well.
Keywords: Flow conditioning, turbulent flow, turbulent modeling, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078946 Effect of Density on the Shear Modulus and Damping Ratio of Saturated Sand in Small Strain
Authors: M. Kakavand, S. A. Naeini
Abstract:
Dynamic properties of soil in small strains, especially for geotechnical engineers, are important for describing the behavior of soil and estimation of the earth structure deformations and structures, especially significant structures. This paper presents the effect of density on the shear modulus and damping ratio of saturated clean sand at various isotropic confining pressures. For this purpose, the specimens were compared with two different relative densities, loose Dr = 30% and dense Dr = 70%. Dynamic parameters were attained from a series of consolidated undrained fixed – free type torsional resonant column tests in small strain. Sand No. 161 is selected for this paper. The experiments show that by increasing sand density and confining pressure, the shear modulus increases and the damping ratio decreases.
Keywords: Dynamic properties, shear modulus, damping ratio, clean sand, density, confining pressure, resonant column/torsional simple shear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886945 Investigating the Effect of Velocity Inlet and Carrying Fluid on the Flow inside Coronary Artery
Authors: Mohammadreza Nezamirad, Nasim Sabetpour, Azadeh Yazdi, Amirmasoud Hamedi
Abstract:
In this study OpenFOAM 4.4.2 was used to investigate flow inside the coronary artery of the heart. This step is the first step of our future project, which is to include conjugate heat transfer of the heart with three main coronary arteries. Three different velocities were used as inlet boundary conditions to see the effect of velocity increase on velocity, pressure, and wall shear of the coronary artery. Also, three different fluids, namely the University of Wisconsin solution, gelatin, and blood was used to investigate the effect of different fluids on flow inside the coronary artery. A code based on Reynolds Stress Navier Stokes (RANS) equations was written and implemented with the real boundary condition that was calculated based on MRI images. In order to improve the accuracy of the current numerical scheme, hex dominant mesh is utilized. When the inlet velocity increases to 0.5 m/s, velocity, wall shear stress, and pressure increase at the narrower parts.
Keywords: CFD, heart, simulation, OpenFOAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 457944 Heating of High-Density Hydrogen by High- Current Arc Radiation
Authors: A. V. Budin, Ph. G. Rutberg, M. E. Pinchuk, A. A. Bogomaz, V. Yu. Svetova
Abstract:
The investigation results of high-density hydrogen heating by high-current electric arc are presented at initial pressure from 5 MPa to 160 MPa with current amplitude up to 1.6 MA and current rate of rise 109-1011 A/s. When changing the initial pressure and current rate of rise, channel temperature varies from several electronvolts to hundreds electronvolts. Arc channel radius is several millimeters. But the radius of the discharge chamber greater than the radius of the arc channel on approximately order of magnitude. High efficiency of gas heating is caused by radiation absorption of hydrogen surrounding the arc. Current channel consist from vapor of the initiating wire. At current rate of rise of 109 A/s and relatively small current amplitude gas heating occurs due to radiation absorption in the band transparency of hydrogen by the wire vapours with photon energies less than 13.6 eV. At current rate of rise of 1011 A/s gas heating is due to hydrogen absorption of soft X-rays from discharge channel.Keywords: High-density hydrogen heating by high-current electric arc.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586943 Implementation of the SIP Express Router with Mediaproxy Method on VoIP
Authors: Heru Nurwarsito, R. Arief Setyawan, Rakhmadhany Primananda
Abstract:
Voice Over IP (VoIP) is a technology that could pass the voice traffic and data packet form over an IP network. Network can be used for intranet or Internet. Phone calls using VoIP has advantages in terms of cheaper cost of PSTN phone to more than half, because the cost is calculated by the cost of the global nature of the Internet. Session Initiation Protocol (SIP) is a signaling protocol at the application layer which serves to establish, modify, and terminate a multimedia session involving one or more users. This SIP signaling has SIP message in text form that is used for session management by the SIP components, such as User Agent, Registrar, Redirect Server, and Proxy Server. To build a SIP communication is required SIP Express Router (SER) to be able to receive SIP messages, for handling the basic functions of SIP messages. Problems occur when the NAT through which affects the voice communication will be blocked starting from the sound that is not sent or one side of the sound are sent (half duplex). How that could be used to penetrate NAT is to use a given mediaproxy random RTP port to penetrate NAT.Keywords: VoIP, SIP, SIP Express Router, NAT, Mediaproxy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558942 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm
Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon
Abstract:
Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.
Keywords: Exergy analysis, Genetic algorithm, Rankine cycle, Single and Multi-objective function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630941 Design of a MSF Desalination Plant to be Supplied by a New Specific 42 MW Power Plant Located in Iran
Authors: Rouzbeh Shafaghat, Hoda Shafaghat, Fatemeh Ghanbari, Pouya Sirous Rezaei, Rohollah Espanani
Abstract:
Nowadays, desalination of salt water is considered an important industrial process. In many parts of the world, particularly in the gulf countries, the multi-stage flash (MSF) water desalination has an essential contribution in the production of fresh water. In this study, a simple mathematical model is defined to design a MSF desalination system and the feasibility of using the MSF desalination process in proximity of a 42 MW power plant is investigated. This power plant can just provide 10 ton/h superheated steam from low pressure (LP) section of heat recovery steam generator (HRSG) for thermal desalting system. The designed MSF system with gained output ratio (GOR) of 10.3 has 24 flashing stages and can produce 2480 ton/d of fresh water. The expected performance characteristics of the designed MSF desalination plant are determined. In addition, the effect of motive water pressure on the amount of non-condensable gases removed by water jet vacuum pumps is investigated.
Keywords: Design, dual-purpose power plant, mathematical model, MSF desalination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3986