Search results for: Mechanical properties.
2964 Degree of Milling Effects on the Sorghum (Sorghum bicolor) Flours, Physicochemical Properties and Kinetics of Starch Digestion
Authors: Brou K., Guéhi T., Konan A. G., Gbakayoro J. B., Gnakri D.
Abstract:
Two types of crushing were applied to grains of red sorghum: manual crushing using a mortar and pestle of kitchen and mechanical crushing using a hammer mill. The flours obtained at the end of these various crushing were filtered and subdivided in different fractions according to the diameters of the mesh of the sieves (0.16mm; 0.25mm; 0.315mm; 0.4mm, and 0.63mm…). Some physical, chemical and nutritional traits of these flours were evaluated using Association of Official Analytical Chemists (AOAC). In vitro digestibility of these flours was also studied with freezing of flour 1% like substrate and α-amylase from B. licheniformis (E.C.3.2.1.1; Megazyme, Wicklow, Ireland). The results revealed that the batches of flours which have the finest diameters as 0.16mm; 0.25mm are the richest one in nutrients and are also the most digestible. Also mechanical crushing is the best mean to obtain significant amount of flours. In conclusion, the type of crushing and the size of the particles have an impact on the final concentration of some nutrients of the flours obtained. Indeed, the finest particles (0.16mm – 0.25mm 0.315mm) obtained after sifting of the flours are more nutritive and have a better digestibility than others size. So the finest particles could be advised for management of cereals namely the sorghum for the production of the infantile foods.
Keywords: Nutrients, digestibility, crush, flour, milling, granulometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20222963 Visualization of Flow Behaviour in Micro-Cavities during Micro Injection Moulding
Authors: Reza Gheisari, Paulo J. Bartolo, Nicholas Goddard
Abstract:
Polymeric micro-cantilevers (Cs) are rapidly becoming popular for MEMS applications such as chemo- and biosensing as well as purely electromechanical applications such as microrelays. Polymer materials present suitable physical and chemical properties combined with low-cost mass production. Hence, micro-cantilevers made of polymers indicate much more biocompatibility and adaptability of rapid prototyping along with mechanical properties. This research studies the effects of three process and one size factors on the filling behaviour in micro cavity, and the role of each in the replication of micro parts using different polymer materials i.e. polypropylene (PP) SABIC 56M10 and acrylonitrile butadiene styrene (ABS) Magnum 8434 . In particular, the following factors are considered: barrel temperature, mould temperature, injection speed and the thickness of micro features. The study revealed that the barrel temperature and the injection speed are the key factors affecting the flow length of micro features replicated in PP and ABS. For both materials, an increase of feature sizes improves the melt flow. However, the melt fill of micro features does not increase linearly with the increase of their thickness.Keywords: Flow length, micro-cantilevers, micro injection moulding, microfabrication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19692962 Prediction of Protein Subchloroplast Locations using Random Forests
Authors: Chun-Wei Tung, Chyn Liaw, Shinn-Jang Ho, Shinn-Ying Ho
Abstract:
Protein subchloroplast locations are correlated with its functions. In contrast to the large amount of available protein sequences, the information of their locations and functions is less known. The experiment works for identification of protein locations and functions are costly and time consuming. The accurate prediction of protein subchloroplast locations can accelerate the study of functions of proteins in chloroplast. This study proposes a Random Forest based method, ChloroRF, to predict protein subchloroplast locations using interpretable physicochemical properties. In addition to high prediction accuracy, the ChloroRF is able to select important physicochemical properties. The important physicochemical properties are also analyzed to provide insights into the underlying mechanism.Keywords: Chloroplast, Physicochemical properties, Proteinlocations, Random Forests.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16772961 Mechanical Behavior of Deep-Drawn Cups with Aluminum/Duralumin Multi-Layered Clad Structures
Authors: Hideaki Tsukamoto, Yoshiki Komiya, Hisashi Sato, Yoshimi Watanabe
Abstract:
This study aims to investigate mechanical behavior of deep-drawn cups consisting of aluminum (A1050)/ duralumin (A2017) multi-layered clad structures with micro- and macro-scale functional gradients. Such multi-layered clad structures are possibly used for a new type of crash-boxes in automobiles to effectively absorb the impact forces generated when automobiles having collisions. The effect of heat treatments on microstructure, compositional gradient, micro hardness in 2 and 6-layered aluminum/ duralumin clad structures, which were fabricated by hot rolling, have been investigated. Impact compressive behavior of deep-drawn cups consisting of such aluminum/ duralumin clad structures has been also investigated in terms of energy absorption and maximum force. Deep-drawn cups consisting of 6-layerd clad structures with microand macro-scale functional gradients exhibit superior properties in impact compressive tests.Keywords: Crash box, functionally graded material (FGM), Impact compressive property, Multi-layered clad structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21302960 Secondary Effects on Water Vapor Transport Properties Measured by Cup Method
Authors: Z. Pavlík, J. Fořt, J. Žumár, M. Pavlíková, R. Černý
Abstract:
The cup method is applied for the measurement of water vapor transport properties of porous materials worldwide. However, in practical applications the experimental results are often used without taking into account some secondary effects which can play an important role under specific conditions. In this paper, the effect of temperature on water vapor transport properties of cellular concrete is studied, together with the influence of sample thickness. At first, the bulk density, matrix density, total open porosity and sorption and desorption isotherms are measured for material characterization purposes. Then, the steady state cup method is used for determination of water vapor transport properties, whereas the measurements are performed at several temperatures and for three different sample thicknesses.
Keywords: Water vapor transport, cellular concrete, cup method, temperature, sample thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18962959 Microscopic Analysis of Interfacial Transition Zone of Cementitious Composites Prepared by Various Mixing Procedures
Authors: Josef Fládr, Jiří Němeček, Veronika Koudelková, Petr Bílý
Abstract:
Mechanical parameters of cementitious composites differ quite significantly based on the composition of cement matrix. They are also influenced by mixing times and procedure. The research presented in this paper was aimed at identification of differences in microstructure of normal strength (NSC) and differently mixed high strength (HSC) cementitious composites. Scanning electron microscopy (SEM) investigation together with energy dispersive X-ray spectroscopy (EDX) phase analysis of NSC and HSC samples was conducted. Evaluation of interfacial transition zone (ITZ) between the aggregate and cement matrix was performed. Volume share, thickness, porosity and composition of ITZ were studied. In case of HSC, samples obtained by several different mixing procedures were compared in order to find the most suitable procedure. In case of NSC, ITZ was identified around 40-50% of aggregate grains and its thickness typically ranged between 10 and 40 µm. Higher porosity and lower share of clinker was observed in this area as a result of increased water-to-cement ratio (w/c) and the lack of fine particles improving the grading curve of the aggregate. Typical ITZ with lower content of Ca was observed only in one HSC sample, where it was developed around less than 15% of aggregate grains. The typical thickness of ITZ in this sample was similar to ITZ in NSC (between 5 and 40 µm). In the remaining four HSC samples, no ITZ was observed. In general, the share of ITZ in HSC samples was found to be significantly smaller than in NSC samples. As ITZ is the weakest part of the material, this result explains to large extent the improved mechanical properties of HSC compared to NSC. Based on the comparison of characteristics of ITZ in HSC samples prepared by different mixing procedures, the most suitable mixing procedure from the point of view of properties of ITZ was identified.
Keywords: Energy dispersive X-ray spectroscopy, high strength concrete, interfacial transition zone, mixing procedure, normal strength concrete, scanning electron microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12742958 Analysis of Physicochemical Properties on Prediction of R5, X4 and R5X4 HIV-1 Coreceptor Usage
Authors: Kai-Ti Hsu, Hui-Ling Huang, Chun-Wei Tung, Yi-Hsiung Chen, Shinn-Ying Ho
Abstract:
Bioinformatics methods for predicting the T cell coreceptor usage from the array of membrane protein of HIV-1 are investigated. In this study, we aim to propose an effective prediction method for dealing with the three-class classification problem of CXCR4 (X4), CCR5 (R5) and CCR5/CXCR4 (R5X4). We made efforts in investigating the coreceptor prediction problem as follows: 1) proposing a feature set of informative physicochemical properties which is cooperated with SVM to achieve high prediction test accuracy of 81.48%, compared with the existing method with accuracy of 70.00%; 2) establishing a large up-to-date data set by increasing the size from 159 to 1225 sequences to verify the proposed prediction method where the mean test accuracy is 88.59%, and 3) analyzing the set of 14 informative physicochemical properties to further understand the characteristics of HIV-1coreceptors.Keywords: Coreceptor, genetic algorithm, HIV-1, SVM, physicochemical properties, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23852957 Municipal Solid Waste: Pre-Treatment Options and Benefits on Landfill Emissions
Authors: Bakare Babatunde Femi
Abstract:
Municipal solid waste (MSW) comprises of a wide range of heterogeneous materials generated by individual, household or organization and may include food waste, garden wastes, papers, textiles, rubbers, plastics, glass, ceramics, metals, wood wastes, construction wastes but it is not limited to the above mentioned fractions. The most common Municipal Solid Waste pretreatment method in use is thermal pretreatment (incineration) and Mechanical Biological pretreatment. This paper presents an overview of these two pretreatment methods describing their benefits and laboratory scale reactors that simulate landfill conditions were constructed in order to compare emissions in terms of biogas production and leachate contamination between untreated Municipal Solid Waste and Mechanical Biological Pretreated waste. The findings of this study showed that Mechanical Biological pretreatment of waste reduces the emission level of waste and the benefit over the landfilling of untreated waste is significant.Keywords: emissions, mechanical biological pretreatment, MSW, thermal pretreatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29142956 Preparation of Polylactic Acid Graft Polyvinyl Acetate Compatibilizers for 50/50 Starch/PLLA Blending
Authors: S. Buchatip, A. Petchsuk
Abstract:
Polylactic acid-g-polyvinyl acetate (PLLA-g-PVAc) was used as a compatibilizer for 50/50 starch/PLLA blend. PLLA-g- PVAc with different mol% of PVAc contents were prepared by grafting PVAc onto PLLA backbone via free radical polymerization in solution process. Various conditions such as type and the amount of initiator, monomer concentration, polymerization time and temperature were studied. Results showed that the highest mol% of PVAc grafting (16 mol%) was achieved by conducting graft copolymerization in toluene at 110°C for 10 h using DCP as an initiator. Chemical structure of the PVAc grafted PLLA was confirmed by 1H NMR. Blending of modified starch and PLLA in the presence compatibilizer with different amounts and mol% PVAc was acquired using internal mixer at 160°C for 15 min. Effects of PVAc content and the amount of compatibilizer on mechanical properties of polymer blend were studied. Results revealed that tensile strength and tensile modulus of polymer blend with higher PVAc grafting content compatibilizer showed better properties than that of lower PVAc grafting content compatibilizer. The amount of compatibilizer was found optimized in the range of 0.5-1.0 Wt% depending on the mol% PVAc.Keywords: starch, PLLA, compatibilizer, free radical polymerization, blending
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24752955 Sericin Film: Influence of Concentration on its Physical Properties
Authors: N. Namviriyachote, N. Bang, P. Aramwit
Abstract:
Silk sericin (SS) is a glue-like protein from silkworm cocoon. With its outstanding moisturization and activation collagen synthesis properties, silk protein is applied for wound healing. Since wound dressing in film preparation can facilitate patients- convenience and reduce risk of wound contraction, SS and polyvinyl alcohol (PVA) films were prepared with various concentrations of SS. Their physical properties such as surface density, light transmission, protein dissolution and tensile modulus were investigated. The results presented that 3% SS with 2% PVA is the best ingredient for SS film forming.Keywords: Sericin, silk protein, film, wound healing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21302954 Production of Carbon Nanotubes by Iron Catalyst
Authors: Ezgi Dündar-Tekkaya, Nilgün Karatepe
Abstract:
Carbon nanotubes (CNTs) with their high mechanical, electrical, thermal and chemical properties are regarded as promising materials for many different potential applications. Having unique properties they can be used in a wide range of fields such as electronic devices, electrodes, drug delivery systems, hydrogen storage, textile etc. Catalytic chemical vapor deposition (CCVD) is a common method for CNT production especially for mass production. Catalysts impregnated on a suitable substrate are important for production with chemical vapor deposition (CVD) method. Iron catalyst and MgO substrate is one of most common catalyst-substrate combination used for CNT. In this study, CNTs were produced by CCVD of acetylene (C2H2) on magnesium oxide (MgO) powder substrate impregnated by iron nitrate (Fe(NO3)3•9H2O) solution. The CNT synthesis conditions were as follows: at synthesis temperatures of 500 and 800°C multiwall and single wall CNTs were produced respectively. Iron (Fe) catalysts were prepared by with Fe:MgO ratio of 1:100, 5:100 and 10:100. The duration of syntheses were 30 and 60 minutes for all temperatures and catalyst percentages. The synthesized materials were characterized by thermal gravimetric analysis (TGA), transmission electron microscopy (TEM) and Raman spectroscopy.Keywords: Carbon nanotube, catalyst, catalytic chemical vapordeposition, iron
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28952953 Effect of Laser Power and Powder Flow Rate on Properties of Laser Metal Deposited Ti6Al4V
Authors: Mukul Shukla, Rasheedat M. Mahamood, Esther T. Akinlabi, Sisa. Pityana
Abstract:
Laser Metal Deposition (LMD) is an additive manufacturing process with capabilities that include: producing new part directly from 3 Dimensional Computer Aided Design (3D CAD) model, building new part on the existing old component and repairing an existing high valued component parts that would have been discarded in the past. With all these capabilities and its advantages over other additive manufacturing techniques, the underlying physics of the LMD process is yet to be fully understood probably because of high interaction between the processing parameters and studying many parameters at the same time makes it further complex to understand. In this study, the effect of laser power and powder flow rate on physical properties (deposition height and deposition width), metallurgical property (microstructure) and mechanical (microhardness) properties on laser deposited most widely used aerospace alloy are studied. Also, because the Ti6Al4V is very expensive, and LMD is capable of reducing buy-to-fly ratio of aerospace parts, the material utilization efficiency is also studied. Four sets of experiments were performed and repeated to establish repeatability using laser power of 1.8 kW and 3.0 kW, powder flow rate of 2.88 g/min and 5.67 g/min, and keeping the gas flow rate and scanning speed constant at 2 l/min and 0.005 m/s respectively. The deposition height / width are found to increase with increase in laser power and increase in powder flow rate. The material utilization is favoured by higher power while higher powder flow rate reduces material utilization. The results are presented and fully discussed.Keywords: Laser Metal Deposition, Material Efficiency, Microstructure, Ti6Al4V.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36292952 Effects of Paste Content on Flow Characteristics of SCC Containing Local Natural Pozzolan
Authors: Muhammad Nouman Haral, Abdulaziz I. Al-Negheimesh, Galal Fares, Mohammad Iqbal Khan, Abdulrahman M. Alhozaimy
Abstract:
Natural pozzolan (NP) is one of the potential prehistoric alternative binders in the construction industry. It has been investigated as cement replacement in ordinary concrete by several researchers for many purposes. Various supplementary cementitious materials (SCMs) such as fly ash, limestone dust and silica fume are widely used in the production of SCC; however, limited studies to address the effect of NP on the properties of SCC are documented. The current research is composed of different SCC paste and concrete mixtures containing different replacement levels of local NP as an alternative SCM. The effect of volume of paste containing different amounts of local NP related to W/B ratio and cement content on SCC fresh properties was assessed. The variations in the fresh properties of SCC paste and concrete represented by slump flow (flowability) and the flow rate were determined and discussed. The results indicated that the flow properties of SCC paste and concrete mixtures, at their optimized superplasticizer dosages, were affected by the binder content of local NP and the total volume fraction of SCC paste.
Keywords: Binder, fresh properties, natural pozzolan, paste, SCC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27852951 Effects of Coupling Agent on the Properties of Henequen Microfiber (NF) Filled High Density Polyethylene (HDPE) Composites
Authors: Pravin Gaikwad, Prakash Mahanwar
Abstract:
The main objective of incorporating natural fibers such as Henequen microfibers (NF) into the High Density Polyethylene (HDPE) polymer matrix is to reduce the cost and to enhance the mechanical as well as other properties. The Henequen microfibers were chopped manually to 5-7mm in length and added into the polymer matrix at the optimized concentration of 8 wt %. In order to facilitate the link between Henequen microfibers (NF) and HDPE matrix, coupling agent such as Glycidoxy (Epoxy) Functional Methoxy Silane (GPTS) at various concentrations from 0.1%, 0.3%, 0.5%, 0.7%, 0.9% and 1% by weight to the total fibers were added. The tensile strength of the composite increased marginally while % elongation at break of the composites decreased with increase in silane loading by wt %. Tensile modulus and stiffness observed increased at 0.9 wt % GPTS loading. Flexural as well as impact strength of the composite decreased with increase in GPTS loading by weight %. Dielectric strength of the composite also found increased marginally up to 0.5wt % silane loading and thereafter remained constant.
Keywords: Henequen microfibers (NF), polymer composites, HDPE, coupling agent, GPTS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24232950 A Class of Recurrent Sequences Exhibiting Some Exciting Properties of Balancing Numbers
Abstract:
The balancing numbers are natural numbers n satisfying the Diophantine equation 1 + 2 + 3 + · · · + (n - 1) = (n + 1) + (n + 2) + · · · + (n + r); r is the balancer corresponding to the balancing number n.The nth balancing number is denoted by Bn and the sequence {Bn}1 n=1 satisfies the recurrence relation Bn+1 = 6Bn-Bn-1. The balancing numbers posses some curious properties, some like Fibonacci numbers and some others are more interesting. This paper is a study of recurrent sequence {xn}1 n=1 satisfying the recurrence relation xn+1 = Axn - Bxn-1 and possessing some curious properties like the balancing numbers.Keywords: Recurrent sequences, Balancing numbers, Lucas balancing numbers, Binet form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15172949 In-Situ EBSD Observations of Bending for Single-Crystalline Pure Copper
Authors: Takashi Sakai, Saori Yoshikawa, Hideo Morimoto
Abstract:
To understand the material characteristics of singleand poly-crystals of pure copper, the respective relationships between crystallographic orientations and microstructures, and the bending and mechanical properties were examined. And texture distribution is also analyzed. A bending test is performed in a SEM apparatus and while its behaviors are observed in situ. Furthermore, some analytical results related to crystal direction maps, inverse pole figures, and textures were obtained from EBSD analyses.
Keywords: Pure Copper, Bending, Single Crystal, SEM-EBSD Analysis, Texture, Microstructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18462948 The Effect of the Deposition Parameters on the Microstructural and Optical Properties of Mn-Doped GeTe Chalcogenide Materials
Authors: Adam Abdalla Elbashir Adam, Xiaomin Cheng, Xiang Shui Miao
Abstract:
In this work, the effect of the magnetron sputtering system parameters on the optical properties of the Mn doped GeTe were investigated. The optical properties of the Ge1-xMnxTe thin films with different thicknesses are determined by analyzing the transmittance and reflectance data. The energy band gaps of the amorphous Mn-doped GeTe thin films with different thicknesses were calculated. The obtained results demonstrated that the energy band gap values of the amorphous films are quite different and they are dependent on the films thicknesses. The extinction coefficients of amorphous Mn-doped GeTe thin films as function of wavelength for different thicknesses were measured. The results showed that the extinction coefficients of all films are varying inversely with their optical transmission. Moreover, the results emphasis that, not only the microstructure, electrical and magnetic properties of Mn doped GeTe thin films vary with the films thicknesses but also the optical properties differ with the film thickness.
Keywords: Phase change magnetic materials, transmittance, absorbance, extinction coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13112947 Study on Ultrasonic Vibration Effects on Grinding Process of Alumina Ceramic (Al2O3)
Authors: Javad Akbari, Hassan Borzoie, Mohammad Hossein Mamduhi
Abstract:
Nowadays, engineering ceramics have significant applications in different industries such as; automotive, aerospace, electrical, electronics and even martial industries due to their attractive physical and mechanical properties like very high hardness and strength at elevated temperatures, chemical stability, low friction and high wear resistance. However, these interesting properties plus low heat conductivity make their machining processes too hard, costly and time consuming. Many attempts have been made in order to make the grinding process of engineering ceramics easier and many scientists have tried to find proper techniques to economize ceramics' machining processes. This paper proposes a new diamond plunge grinding technique using ultrasonic vibration for grinding Alumina ceramic (Al2O3). For this purpose, a set of laboratory equipments have been designed and simulated using Finite Element Method (FEM) and constructed in order to be used in various measurements. The results obtained have been compared with the conventional plunge grinding process without ultrasonic vibration and indicated that the surface roughness and fracture strength improved and the grinding forces decreased.Keywords: Engineering ceramic, Finite Element Method, Plunge grinding, Ultrasonic vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23902946 Analysis and Measuring Surface Roughness of Nonwovens Using Machine Vision Method
Authors: Dariush Semnani, Javad Yekrang, Hossein Ghayoor
Abstract:
Concerning the measurement of friction properties of textiles and fabrics using Kawabata Evaluation System (KES), whose output is constrained to the surface friction factor of fabric, and no other data would be generated; this research has been conducted to gain information about surface roughness regarding its surface friction factor. To assess roughness properties of light nonwovens, a 3-dimensional model of a surface has been simulated with regular sinuous waves through it as an ideal surface. A new factor was defined, namely Surface Roughness Factor, through comparing roughness properties of simulated surface and real specimens. The relation between the proposed factor and friction factor of specimens has been analyzed by regression, and results showed a meaningful correlation between them. It can be inferred that the new presented factor can be used as an acceptable criterion for evaluating the roughness properties of light nonwoven fabrics.Keywords: Surface roughness, Nonwoven, Machine vision, Image processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30922945 Mathematical Model of the Respiratory System – Comparison of the Total Lung Impedance in the Adult and Neonatal Lung
Authors: M. Rozanek, K. Roubik
Abstract:
A mathematical model of the respiratory system is introduced in this study. Geometrical dimensions of the respiratory system were used to compute the acoustic properties of the respiratory system using the electro-acoustic analogy. The effect of the geometrical proportions of the respiratory system is observed in the paper.Keywords: Electro-acoustic analogy, total lung impedance, mechanical parameters, respiratory system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23572944 Mechanical Properties of Enset Fibers Obtained from Different Breeds of Enset Plant
Authors: Diriba T. Balcha, Boris Kulig, Oliver Hensel, Eyassu Woldesenbet
Abstract:
Enset fiber is agricultural waste and available in a surplus amount in Ethiopia. However, the hypothesized variation in properties of this fiber due to diversity of its plant source breed, fiber position within plant stem and chemical treatment duration had not proven that its application for the development of composite products is problematic. Currently, limited data are known on the functional properties of the fiber as a potential functional fiber. Thus, an effort is made in this study to narrow the knowledge gaps by characterizing it. The experimental design was conducted using Design-Expert software and the tensile test was conducted on Enset fiber from 10 breeds: Dego, Dirbo, Gishera, Itine, Siskela, Neciho, Yesherkinke, Tuzuma, Ankogena, and Kucharkia. The effects of 5% Na-OH surface treatment duration and fiber location along and across the plant pseudostem was also investigated. The test result shows that the rupture stress variation is not significant among the fibers from 10 Enset breeds. However, strain variation is significant among the fibers from 10 Enset breeds that breed Dego fiber has the highest strain before failure. Surface treated fibers showed improved rupture strength and elastic modulus per 24 hours of treatment duration. Also, the result showed that chemical treatment can deteriorate the load-bearing capacity of the fiber. The raw fiber has the higher load-bearing capacity than the treated fiber. And, it was noted that both the rupture stress and strain increase in the top to bottom gradient, whereas there is no significant variation across the stem. Elastic modulus variation both along and across the stem was insignificant. The rupture stress, elastic modulus, and strain result of Enset fiber are 360.11 ± 181.86 MPa, 12.80 ± 6.85 GPa and 0.04 ± 0.02 mm/mm, respectively. These results show that Enset fiber is comparable to other natural fibers such as abaca, banana, and sisal fibers and can be used as alternatives natural fiber for composites application. Besides, the insignificant variation of properties among breeds and across stem is essential for all breeds and all leaf sheath of the Enset fiber plant for fiber extraction. The use of short natural fiber over the long is preferable to reduce the significant variation of properties along the stem or fiber direction. In conclusion, Enset fiber application for composite product design and development is mechanically feasible.Keywords: Agricultural waste, chemical treatment, fiber characteristics, natural fiber.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7312943 Effect of Surface Pretreatments on Nanocrystalline Diamond Deposited On Silicon Nitride Substrates
Authors: D.N Awang Sh'ri, E. Hamzah
Abstract:
The deposition of diamond films on a Si3N4 substrate is an attractive technique for industrial applications because of the excellent properties of diamond. Pretreatment of substrate is very important prior to diamond deposition to promote nucleation and adhesion between coating and substrate. Deposition of nanocrystalline diamonds films on silicon nitride substrate have been carried out by HF-CVD technique using mixture of methane and hydrogen gases. Different pretreatment of substrate including chemical etching consists of hot acid etching and basic etching and mechanical etching were used to study the quality of diamond formed on the substrate. The structure and morphology of diamond coating have been studied using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) while diamond film quality has been characterized using Raman spectroscopy. AFM was used to investigate the effect of chemical etching and mechanical pretreatment on the surface roughness of the substrates and the resultant morphology of nanocrystalline diamond. It was found that diamond film deposited on as-received, basic etched and grinded substrate shows the morphology of cauliflower while blasted and acidic etched substrates produce smooth, continuous diamond film. However, the Raman investigation did not show any deviation in quality of diamond film for any pretreatment.Keywords: Nanocrystalline diamond, Chemical VaporDeposition, Pretreatment, Silicon Nitride
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22482942 Studies on the Mechanical Behavior of Bottom Ash for a Sustainable Environment
Authors: B. A. Mir, Asim Malik
Abstract:
Bottom ash is a by-product of the combustion process of coal in furnaces in the production of electricity in thermal power plants. In India, about 75% of total power is produced by using pulverized coal. The coal of India has a high ash content which leads to the generation of a huge quantity of bottom ash per year posing the dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use this industry by-product effectively and efficiently. However, its large-scale utilization is possible only in geotechnical applications, either alone or with soil. In the present investigation, bottom ash was collected from National Capital Power Station Dadri, Uttar Pradesh, India. Test samples of bottom ash admixed with 20% clayey soil were prepared and treated with different cement content by weight and subjected to various laboratory tests for assessing its suitability as an engineered construction material. This study has shown that use of 10% cement content is a viable chemical additive to enhance the mechanical properties of bottom ash, which can be used effectively as an engineered construction material in various geotechnical applications. More importantly, it offers an interesting potential for making use of an industrial waste to overcome challenges posed by bottom ash for a sustainable environment.
Keywords: Bottom ash, environmental pollution, solid waste, sustainable environment, waste utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17202941 Effect of Landfill Leachate on Engineering Properties of Test Soil
Authors: S. A. Nta, M. J. Ayotamuno, I. J. Udom
Abstract:
The work presents result of laboratory analysis of the effects of landfill leachate on engineering properties of test soil. The soil used for the present study was a sandy loam soil and acidic in nature. It was collected at a depth of 0.9 m. The landfill leachate used was collected from a hole dug some meters away from dumped solid waste and analyzed to identify the pollutants and its effect on engineering properties of the test soil. The test soil applied with landfill leachate was collected at 0.25 and 0.50 m radial distances at a depth of 0.15, 0.30, 0.45 and 0.60 m from the point of application of leachate after 50 days were the application of the leachate end and 80 days from the start of the experiment for laboratory analysis. Engineering properties such as particle size distribution, specific gravity, optimum moisture content, maximum dry density, unconfined compressive strength, liquid limit, plastic limit and shrinkage limit were considered. The concentration of various chemicals at 0.25 and 0.50 radial distances and 0.15, 0.30, 0.45 and 0.6 m depth from the point of application of leachate were different. This study founds the effect of landfill leachate on the engineering properties of soil. It can be concluded that, the type of soil, chemical composition of the leachate, infiltration rate, aquifers, ground water table etc., will have a major role on the area of influence zone of the pollutants in a landfill.
Keywords: Engineering properties of test soil, landfill leachate, Municipal solid waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6562940 Open Source Algorithms for 3D Geo-Representation of Subsurface Formations Properties in the Oil and Gas Industry
Authors: Gabriel Quintero
Abstract:
This paper presents the result of the implementation of a series of algorithms intended to be used for representing in most of the 3D geographic software, even Google Earth, the subsurface formations properties combining 2D charts or 3D plots over a 3D background, allowing everyone to use them, no matter the economic size of the company for which they work. Besides the existence of complex and expensive specialized software for modeling subsurface formations based on the same information provided to this one, the use of this open source development shows a higher and easier usability and good results, limiting the rendered properties and polygons to a basic set of charts and tubes.
Keywords: Chart, earth, formations, subsurface, visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19182939 Fracture Characterization of Plain Woven Fabric Glass-Epoxy Composites
Authors: Sabita Rani Sahoo, A.Mishra
Abstract:
Delamination between layers in composite materials is a major structural failure. The delamination resistance is quantified by the critical strain energy release rate (SERR). The present investigation deals with the strain energy release rate of two woven fabric composites. Materials used are made of two types of glass fiber (360 gsm and 600 gsm) of plain weave and epoxy as matrix. The fracture behavior is studied using the mode I, double cantilever beam test and the mode II, end notched flexure test, in order to determine the energy required for the initiation and growth of an artificial crack. The delamination energy of these two materials is compared in order to study the effect of weave and reinforcement on mechanical properties. The fracture mechanism is also analyzed by means of scanning electron microscopy (SEM). It is observed that the plain weave fabric composite with lesser strand width has higher inter laminar fracture properties compared to the plain weave fabric composite with more strand width.
Keywords: Glass- epoxy composites, Fracture Tests: mode I (DCB) and mode II (ENF), Delamination, Calculation of strain energy release rate, SEM Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32532938 Preparation and Characterization of Pure PVA and PVA/MMT Matrix: Effect of Thermal Treatment
Authors: Albana Hasimi, Edlira Tako, Partizan Malkaj, Elvin Çomo, Blerina Papajani, Mirela Ndrita, Ledjan Malaj
Abstract:
Many endeavors have been exerted during the last years for developing new artificial polymeric membranes, which fulfill the demanded conditions for biomedical uses. One of the most tested polymers is Poly(vinyl alcohol) [PVA]. Our teams are based on the possibility of using PVA for personal protective equipment against COVID-19. In personal protective equipment, we explore the possibility of modifying the properties of the polymer by adding Montmorillonite [MMT]. Heat-treatment above the glass transition temperature is used to improve mechanical properties mainly by increasing the crystallinity of the polymer, which acts as a physical network. Temperature-Modulated Differential Scanning Calorimetry (TMDSC) measurements indicated that the presence of 0.5% MMT in PVA causes a higher Tg value and shaped peak of crystallinity. Decomposition is observed at two of the melting points of the crystals during heating 25-240 oC and overlap of the recrystallization ridges during cooling 240-25 oC. This is indicative of the presence of two types (quality or structure) of polymer crystals. On the other hand, some indication of improvement of the quality of the crystals by heat-treatment is given by the distinct non-reversing contribution to melting. Data on sorption and transport of water in PVA films: PVA pure and PVA/MMT matrix, modified by thermal treatment are presented. The membranes become more rigid as a result of the heat treatment and because of this the water uptake is significantly lower in membranes. That is indicated by analysis of the resulting water uptake kinetics. The presence of 0.5% w/w of MMT has no significant impact on the properties of PVA membranes. Water uptake kinetics deviate from Fick’s law due to slow relaxation of glassy polymer matrix for all types of membranes.
Keywords: Crystallinity, montmorillonite, nanocomposite, poly(vinyl alcohol).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262937 Statistical Analysis of the Factors that Influence the Properties of Blueberries from Cultivar Bluecrop
Authors: Raquel P. F. Guiné, Susana R. Matos, Daniela V. T. A. Costa, Fernando J. Gonçalves
Abstract:
Because blueberries are worldwide recognized as a good source of beneficial components, their consumption has increased in the past decades, and so have the scientific works about their properties. Hence, this work was undertaken to evaluate the effect of some production and conservation factors on the properties of blueberries from cultivar Bluecrop. The physical and chemical analyses were done according to established methodologies and then all data was treated using software SPSS for assessment of the possible differences among the factors investigated and/or the correlations between the variables at study. The results showed that location of production influenced some of the berries properties (caliber, sugars, antioxidant activity, color and texture) and that the age of the bushes was correlated with moisture, sugars and acidity, as well as lightness. On the other hand, altitude of the farm only was correlated to sugar content. With regards to conservation, it influenced only anthocyanins content and DPPH antioxidant activity. Finally, the type of extract and the order of extraction had a pronounced influence on all the phenolic properties evaluated.Keywords: Antioxidant activity, blueberry, conservation, geographical origin, phenolic compounds, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21282936 Combination of Standard Secondary Raw Materials and New Production Waste Materials in Green Concrete Technology
Authors: M. Tazky, R. Hela, P. Novosad, L. Osuska
Abstract:
This paper deals with the possibility of safe incorporation fluidised bed combustion fly ash (waste material) into cement matrix together with next commonly used secondary raw material, which is high-temperature fly ash. Both of these materials have a very high pozzolanic ability, and the right combination could bring important improvements in both the physico-mechanical properties and the better durability of a cement composite. This paper tries to determine the correct methodology for designing green concrete by using modern methods measuring rheology of fresh concrete and following hydration processes. The use of fluidised bed combustion fly ash in cement composite production as an admixture is not currently common, but there are some real possibilities for its potential. The most striking negative aspect is its chemical composition which supports the development of new product formation, influencing the durability of the composite. Another disadvantage is the morphology of grains, which have a negative effect on consistency. This raises the question of how this waste can be used in concrete production to emphasize its positive properties and eliminate negatives. The focal point of the experiment carried out on cement pastes was particularly on the progress of hydration processes, aiming for the possible acceleration of pozzolanic reactions of both types of fly ash.
Keywords: High-temperature fly ash, fluidised bed combustion fly ash, pozzolanic, CaO (calcium oxide), rheology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7862935 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature
Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi
Abstract:
The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.
Keywords: Hardness, powder metallurgy, Spark plasma sintering, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577