Search results for: the real-time collision detection.
1208 An Efficient Implementation of High Speed Vedic Multiplier Using Compressors for Image Processing Applications
Authors: Shobha Sharma, Amita Dev, Akanksha Kant
Abstract:
Digital signal processor, image signal processor and FIR filters have multipliers as an important part of their design. On the basis of Vedic mathematics, Vedic multipliers have come out to be very fast multipliers. One of the image processing applications is edge detection. This research presents a small area and high speed 8 bit Vedic multiplier system comprising of compressor based adders. This results in faster edge detection. This architecture is tested on Xilinx vertex 4 FPGA board and simulations were carried out using the Xilinx synthesis tool. Comparisons are made and this system is found to be smaller in area with high speed (the lesser propagation delay). This compressor based Vedic multiplier is 1.1 times speedier than a typical Vedic multiplier. Also, this Vedic Multiplier is 2 times speedier than a ‘simple’ multiplier.Keywords: Detection of edges, Vedic multiplier, image processing, Urdhva Tiryakbhyam sutra.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18241207 Automatically Driven Vector for Guidewire Segmentation in 2D and Biplane Fluoroscopy
Authors: Simon Lessard, Pascal Bigras, Caroline Lau, Daniel Roy, Gilles Soulez, Jacques A. de Guise
Abstract:
The segmentation of endovascular tools in fluoroscopy images can be accurately performed automatically or by minimum user intervention, using known modern techniques. It has been proven in literature, but no clinical implementation exists so far because the computational time requirements of such technology have not yet been met. A classical segmentation scheme is composed of edge enhancement filtering, line detection, and segmentation. A new method is presented that consists of a vector that propagates in the image to track an edge as it advances. The filtering is performed progressively in the projected path of the vector, whose orientation allows for oriented edge detection, and a minimal image area is globally filtered. Such an algorithm is rapidly computed and can be implemented in real-time applications. It was tested on medical fluoroscopy images from an endovascular cerebral intervention. Ex- periments showed that the 2D tracking was limited to guidewires without intersection crosspoints, while the 3D implementation was able to cope with such planar difficulties.
Keywords: Edge detection, Line Enhancement, Segmentation, Fluoroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17301206 Various Information Obtained from Acoustic Emissions Owing to Discharges in XLPE Cable
Authors: Tatsuya Sakoda, Yuta Nakamura, Junichiro Kitajima, Masaki Sugiura, Satoshi Kurihara, Kenji Baba, Koichiro Kaneko, Takayoshi Yarimitsu
Abstract:
An acoustic emission (AE) technique is useful for detection of partial discharges (PDs) at a joint and a terminal section of a cross-linked polyethylene (XLPE) cable. For AE technique, it is not difficult to detect a PD using AE sensors. However, it is difficult to grasp whether the detected AE signal is owing to a single discharge or not. Additionally, when an AE technique is applied at a terminal section of a XLPE cable in salt pollution district, for example, there is possibility of detection of AE signals owing to creeping discharges on the surface of electric power apparatus. In this study, we evaluated AE signals in order to grasp what kind of information we can get from detected AE signals. The results showed that envelop detection of AE signal and a period which some AE signals were continuously detected were good indexes for estimating state-of-discharge.Keywords: acoustic emission, creeping discharge, partial discharge, XLPE cable
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16481205 SIP-Based QoS Management Architecture for IP Multimedia Subsystems over IP Access Networks
Authors: Umber Iqbal, Shaleeza Sohail, Muhammad Younas Javed
Abstract:
True integration of multimedia services over wired or wireless networks increase the productivity and effectiveness in today-s networks. IP Multimedia Subsystems are Next Generation Network architecture to provide the multimedia services over fixed or mobile networks. This paper proposes an extended SIP-based QoS Management architecture for IMS services over underlying IP access networks. To guarantee the end-to-end QoS for IMS services in interconnection backbone, SIP based proxy Modules are introduced to support the QoS provisioning and to reduce the handoff disruption time over IP access networks. In our approach these SIP Modules implement the combination of Diffserv and MPLS QoS mechanisms to assure the guaranteed QoS for real-time multimedia services. To guarantee QoS over access networks, SIP Modules make QoS resource reservations in advance to provide best QoS to IMS users over heterogeneous networks. To obtain more reliable multimedia services, our approach allows the use of SCTP protocol over SIP instead of UDP due to its multi-streaming feature. This architecture enables QoS provisioning for IMS roaming users to differentiate IMS network from other common IP networks for transmission of realtime multimedia services. To validate our approach simulation models are developed on short scale basis. The results show that our approach yields comparable performance for efficient delivery of IMS services over heterogeneous IP access networks.Keywords: SIP-Based QoS Management Architecture, IPMultimedia Subsystems, IP Access Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26261204 Ultra Wideband Breast Cancer Detection by Using SAR for Indication the Tumor Location
Authors: Wittawat Wasusathien, Samran Santalunai, Thanaset Thosdeekoraphat, Chanchai Thongsopa
Abstract:
This paper presents breast cancer detection by observing the specific absorption rate (SAR) intensity for identification tumor location, the tumor is identified in coordinates (x,y,z) system. We examined the frequency between 4-8 GHz to look for the most appropriate frequency. Results are simulated in frequency 4-8 GHz, the model overview include normal breast with 50 mm radian, 5 mm diameter of tumor, and ultra wideband (UWB) bowtie antenna. The models are created and simulated in CST Microwave Studio. For this simulation, we changed antenna to 5 location around the breast, the tumor can be detected when an antenna is close to the tumor location, which the coordinate of maximum SAR is approximated the tumor location. For reliable, we experiment by random tumor location to 3 position in the same size of tumor and simulation the result again by varying the antenna position in 5 position again, and it also detectable the tumor position from the antenna that nearby tumor position by maximum value of SAR, which it can be detected the tumor with precision in all frequency between 4-8 GHz.
Keywords: Specific absorption rate (SAR), ultra wideband (UWB), coordinates and cancer detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27511203 Color Image Edge Detection using Pseudo-Complement and Matrix Operations
Authors: T. N. Janakiraman, P. V. S. S. R. Chandra Mouli
Abstract:
A color image edge detection algorithm is proposed in this paper using Pseudo-complement and matrix rotation operations. First, pseudo-complement method is applied on the image for each channel. Then, matrix operations are applied on the output image of the first stage. Dominant pixels are obtained by image differencing between the pseudo-complement image and the matrix operated image. Median filtering is carried out to smoothen the image thereby removing the isolated pixels. Finally, the dominant or core pixels occurring in at least two channels are selected. On plotting the selected edge pixels, the final edge map of the given color image is obtained. The algorithm is also tested in HSV and YCbCr color spaces. Experimental results on both synthetic and real world images show that the accuracy of the proposed method is comparable to other color edge detectors. All the proposed procedures can be applied to any image domain and runs in polynomial time.Keywords: Color edge detection, dominant pixels, matrixrotation/shift operations, pseudo-complement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23371202 Fuzzy Hyperbolization Image Enhancement and Artificial Neural Network for Anomaly Detection
Authors: Sri Hartati, 1Agus Harjoko, Brad G. Nickerson
Abstract:
A prototype of an anomaly detection system was developed to automate process of recognizing an anomaly of roentgen image by utilizing fuzzy histogram hyperbolization image enhancement and back propagation artificial neural network. The system consists of image acquisition, pre-processor, feature extractor, response selector and output. Fuzzy Histogram Hyperbolization is chosen to improve the quality of the roentgen image. The fuzzy histogram hyperbolization steps consist of fuzzyfication, modification of values of membership functions and defuzzyfication. Image features are extracted after the the quality of the image is improved. The extracted image features are input to the artificial neural network for detecting anomaly. The number of nodes in the proposed ANN layers was made small. Experimental results indicate that the fuzzy histogram hyperbolization method can be used to improve the quality of the image. The system is capable to detect the anomaly in the roentgen image.Keywords: Image processing, artificial neural network, anomaly detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21181201 Detection of Sags, Swells, and Transients Using Windowing Technique Based On Continuous S-Transform (CST)
Authors: K. Daud, A. F. Abidin, N. Hamzah, H. S. Nagindar Singh
Abstract:
This paper produces a new approach for power quality analysis using a windowing technique based on Continuous S-transform (CST). This half-cycle window technique approach can detect almost correctly for initial detection of disturbances i.e. voltage sags, swells, and transients. Samples in half cycle window has been analyzed based continuous S-transform for entire disturbance waveform. The modified parameter has been produced by MATLAB programming m-file based on continuous s-transform. CST has better time frequency and localization property than traditional and also has ability to detect the disturbance under noisy condition correctly. The excellent time-frequency resolution characteristic of the CST makes it the most an attractive candidate for analysis of power system disturbances signals.
Keywords: Power quality disturbances, initial detection, half cycle windowing, continuous S-transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20511200 The Journey of a Malicious HTTP Request
Authors: M. Mansouri, P. Jaklitsch, E. Teiniker
Abstract:
SQL injection on web applications is a very popular kind of attack. There are mechanisms such as intrusion detection systems in order to detect this attack. These strategies often rely on techniques implemented at high layers of the application but do not consider the low level of system calls. The problem of only considering the high level perspective is that an attacker can circumvent the detection tools using certain techniques such as URL encoding. One technique currently used for detecting low-level attacks on privileged processes is the tracing of system calls. System calls act as a single gate to the Operating System (OS) kernel; they allow catching the critical data at an appropriate level of detail. Our basic assumption is that any type of application, be it a system service, utility program or Web application, “speaks” the language of system calls when having a conversation with the OS kernel. At this level we can see the actual attack while it is happening. We conduct an experiment in order to demonstrate the suitability of system call analysis for detecting SQL injection. We are able to detect the attack. Therefore we conclude that system calls are not only powerful in detecting low-level attacks but that they also enable us to detect highlevel attacks such as SQL injection.
Keywords: Linux system calls, Web attack detection, Interception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20101199 Application of Java-based Pointcuts in Aspect Oriented Programming (AOP) for Data Race Detection
Authors: Sadaf Khalid, Fahim Arif
Abstract:
Wide applicability of concurrent programming practices in developing various software applications leads to different concurrency errors amongst which data race is the most important. Java provides greatest support for concurrent programming by introducing various concurrency packages. Aspect oriented programming (AOP) is modern programming paradigm facilitating the runtime interception of events of interest and can be effectively used to handle the concurrency problems. AspectJ being an aspect oriented extension to java facilitates the application of concepts of AOP for data race detection. Volatile variables are usually considered thread safe, but they can become the possible candidates of data races if non-atomic operations are performed concurrently upon them. Various data race detection algorithms have been proposed in the past but this issue of volatility and atomicity is still unaddressed. The aim of this research is to propose some suggestions for incorporating certain conditions for data race detection in java programs at the volatile fields by taking into account support for atomicity in java concurrency packages and making use of pointcuts. Two simple test programs will demonstrate the results of research. The results are verified on two different Java Development Kits (JDKs) for the purpose of comparison.Keywords: Aspect Bench Compiler (abc), Aspect OrientedProgramming (AOP), AspectJ, Aspects, Concurrency packages, Concurrent programming, Cross-cutting Concerns, Data race, Eclipse, Java, Java Development Kits (JDKs), Pointcuts
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19371198 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots
Authors: G. Santamato, M. Solazzi, A. Frisoli
Abstract:
Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.Keywords: Pantograph models, phase-plots, structural health monitoring, vibration-based condition monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14891197 Image Spam Detection Using Color Features and K-Nearest Neighbor Classification
Authors: T. Kumaresan, S. Sanjushree, C. Palanisamy
Abstract:
Image spam is a kind of email spam where the spam text is embedded with an image. It is a new spamming technique being used by spammers to send their messages to bulk of internet users. Spam email has become a big problem in the lives of internet users, causing time consumption and economic losses. The main objective of this paper is to detect the image spam by using histogram properties of an image. Though there are many techniques to automatically detect and avoid this problem, spammers employing new tricks to bypass those techniques, as a result those techniques are inefficient to detect the spam mails. In this paper we have proposed a new method to detect the image spam. Here the image features are extracted by using RGB histogram, HSV histogram and combination of both RGB and HSV histogram. Based on the optimized image feature set classification is done by using k- Nearest Neighbor(k-NN) algorithm. Experimental result shows that our method has achieved better accuracy. From the result it is known that combination of RGB and HSV histogram with k-NN algorithm gives the best accuracy in spam detection.
Keywords: File Type, HSV Histogram, k-NN, RGB Histogram, Spam Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21511196 Detecting Remote Protein Evolutionary Relationships via String Scoring Method
Authors: Nazar Zaki, Safaai Deris
Abstract:
The amount of the information being churned out by the field of biology has jumped manifold and now requires the extensive use of computer techniques for the management of this information. The predominance of biological information such as protein sequence similarity in the biological information sea is key information for detecting protein evolutionary relationship. Protein sequence similarity typically implies homology, which in turn may imply structural and functional similarities. In this work, we propose, a learning method for detecting remote protein homology. The proposed method uses a transformation that converts protein sequence into fixed-dimensional representative feature vectors. Each feature vector records the sensitivity of a protein sequence to a set of amino acids substrings generated from the protein sequences of interest. These features are then used in conjunction with support vector machines for the detection of the protein remote homology. The proposed method is tested and evaluated on two different benchmark protein datasets and it-s able to deliver improvements over most of the existing homology detection methods.
Keywords: Protein homology detection; support vectormachine; string kernel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13951195 Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran
Authors: M. Ahmadi, M. Kafil, H. Ebrahimi
Abstract:
Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.
Keywords: Broken bar, condition monitoring, diagnostics, empirical mode decomposition, Fourier transform, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8061194 Efficient Detection Using Sequential Probability Ratio Test in Mobile Cognitive Radio Systems
Authors: Yeon-Jea Cho, Sang-Uk Park, Won-Chul Choi, Dong-Jo Park
Abstract:
This paper proposes a smart design strategy for a sequential detector to reliably detect the primary user-s signal, especially in fast fading environments. We study the computation of the log-likelihood ratio for coping with a fast changing received signal and noise sample variances, which are considered random variables. First, we analyze the detectability of the conventional generalized log-likelihood ratio (GLLR) scheme when considering fast changing statistics of unknown parameters caused by fast fading effects. Secondly, we propose an efficient sensing algorithm for performing the sequential probability ratio test in a robust and efficient manner when the channel statistics are unknown. Finally, the proposed scheme is compared to the conventional method with simulation results with respect to the average number of samples required to reach a detection decision.
Keywords: Cognitive radio, fast fading, sequential detection, spectrum sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17461193 Arterial Stiffness Detection Depending on Neural Network Classification of the Multi- Input Parameters
Authors: Firas Salih, Luban Hameed, Afaf Kamil, Armin Bolz
Abstract:
Diagnostic and detection of the arterial stiffness is very important; which gives indication of the associated increased risk of cardiovascular diseases. To make a cheap and easy method for general screening technique to avoid the future cardiovascular complexes , due to the rising of the arterial stiffness ; a proposed algorithm depending on photoplethysmogram to be used. The photoplethysmograph signals would be processed in MATLAB. The signal will be filtered, baseline wandering removed, peaks and valleys detected and normalization of the signals should be achieved .The area under the catacrotic phase of the photoplethysmogram pulse curve is calculated using trapezoidal algorithm ; then will used in cooperation with other parameters such as age, height, blood pressure in neural network for arterial stiffness detection. The Neural network were implemented with sensitivity of 80%, accuracy 85% and specificity of 90% were got from the patients data. It is concluded that neural network can detect the arterial STIFFNESS depending on risk factor parameters.Keywords: Arterial stiffness, area under the catacrotic phase of the photoplethysmograph pulse, neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16591192 The Effects of Immersion on Visual Attention and Detection of Signals Performance for Virtual Reality Training Systems
Authors: Shiau-Feng Lin, Chiuhsiang Joe Lin, Rou-Wen Wang, Wei-Jung Shiang
Abstract:
The Virtual Reality (VR) is becoming increasingly important for business, education, and entertainment, therefore VR technology have been applied for training purposes in the areas of military, safety training and flying simulators. In particular, the superior and high reliability VR training system is very important in immersion. Manipulation training in immersive virtual environments is difficult partly because users must do without the hap contact with real objects they rely on in the real world to orient themselves and their manipulated. In this paper, we create a convincing questionnaire of immersion and an experiment to assess the influence of immersion on performance in VR training system. The Immersion Questionnaire (IQ) included spatial immersion, Psychological immersion, and Sensory immersion. We show that users with a training system complete visual attention and detection of signals. Twenty subjects were allocated to a factorial design consisting of two different VR systems (Desktop VR and Projector VR). The results indicated that different VR representation methods significantly affected the participants- Immersion dimensions.Keywords: Virtual Reality, Training, Immersion, Visual Attention, Visual Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18331191 Development of a Brain Glutamate Microbiosensor
Authors: Kartika S. Hamdan, Zainiharyati M. Zain, Mohamed I. A. Halim, Jafri M. Abdullah, Robert D. O'Neill
Abstract:
This work attempts to improve the permselectivity of poly-ortho-phenylenediamine (PPD) coating for glutamate biosensor applications on Pt microelectrode, using constant potential amperometry and cyclic voltammetry. Percentage permeability of the modified PPD microelectrode was carried out towards hydrogen peroxide (H2O2) and ascorbic acid (AA) whereas permselectivity represents the percentage interference by AA in H2O2 detection. The 50-μm diameter Pt disk microelectrode showed a good permeability value toward H2O2 (95%) and selectivity against AA (0.01%) compared to other sizes of electrode studied here. The electrode was further modified with glutamate oxidase (GluOx) that was immobilized and cross linked with glutaraldehyde (GA, 0.125%), resulting in Pt/PPD/GluOx-GA electrode design. The maximum current density Jmax and apparent Michaelis constant, KM, obtained on Pt/PPD/GluOx-GA electrodes were 48 μA cm-2 and 50 μM, respectively. The linear region slope (LRS) was 0.96 μA cm-2 mM-1. The detection limit (LOD) for glutamate was 3.0 ± 0.6 μM. This study shows a promising glutamate microbiosensor for brain glutamate detection.
Keywords: Brain, Glutamate, Microbiosensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18621190 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.
Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13251189 People Counting in Transport Vehicles
Authors: Sebastien Harasse, Laurent Bonnaud, Michel Desvignes
Abstract:
Counting people from a video stream in a noisy environment is a challenging task. This project aims at developing a counting system for transport vehicles, integrated in a video surveillance product. This article presents a method for the detection and tracking of multiple faces in a video by using a model of first and second order local moments. An iterative process is used to estimate the position and shape of multiple faces in images, and to track them. the trajectories are then processed to count people entering and leaving the vehicle.
Keywords: face detection, tracking, counting, local statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17741188 End Point Detection for Wavelet Based Speech Compression
Authors: Jalal Karam
Abstract:
In real-field applications, the correct determination of voice segments highly improves the overall system accuracy and minimises the total computation time. This paper presents reliable measures of speech compression by detcting the end points of the speech signals prior to compressing them. The two different compession schemes used are the Global threshold and the Level- Dependent threshold techniques. The performance of the proposed method is tested wirh the Signal to Noise Ratios, Peak Signal to Noise Ratios and Normalized Root Mean Square Error parameter measures.
Keywords: Wavelets, End-points Detection, Compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13811187 Neuro-fuzzy Classification System for Wireless-Capsule Endoscopic Images
Authors: Vassilis S. Kodogiannis, John N. Lygouras
Abstract:
In this research study, an intelligent detection system to support medical diagnosis and detection of abnormal lesions by processing endoscopic images is presented. The images used in this study have been obtained using the M2A Swallowable Imaging Capsule - a patented, video color-imaging disposable capsule. Schemes have been developed to extract texture features from the fuzzy texture spectra in the chromatic and achromatic domains for a selected region of interest from each color component histogram of endoscopic images. The implementation of an advanced fuzzy inference neural network which combines fuzzy systems and artificial neural networks and the concept of fusion of multiple classifiers dedicated to specific feature parameters have been also adopted in this paper. The achieved high detection accuracy of the proposed system has provided thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in endoscopy.Keywords: Medical imaging, Computer aided diagnosis, Endoscopy, Neuro-fuzzy networks, Fuzzy integral.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17611186 Enhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection
Authors: Ehsan Amid, Sina Rezaei Aghdam, Hamidreza Amindavar
Abstract:
Steel surface defect detection is essentially one of pattern recognition problems. Support Vector Machines (SVMs) are known as one of the most proper classifiers in this application. In this paper, we introduce a more accurate classification method by using SVMs as our final classifier of the inspection system. In this scheme, multiclass classification task is performed based on the "one-againstone" method and different kernels are utilized for each pair of the classes in multiclass classification of the different defects. In the proposed system, a decision tree is employed in the first stage for two-class classification of the steel surfaces to "defect" and "non-defect", in order to decrease the time complexity. Based on the experimental results, generated from over one thousand images, the proposed multiclass classification scheme is more accurate than the conventional methods and the overall system yields a sufficient performance which can meet the requirements in steel manufacturing.Keywords: Steel Surface Defect Detection, Support Vector Machines, Kernel Methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19211185 Performance Analysis of an Adaptive Threshold Hybrid Double-Dwell System with Antenna Diversity for Acquisition in DS-CDMA Systems
Authors: H. Krouma, M. Barkat, K. Kemih, M. Benslama, Y. Yacine
Abstract:
In this paper, we consider the analysis of the acquisition process for a hybrid double-dwell system with antenna diversity for DS-CDMA (direct sequence-code division multiple access) using an adaptive threshold. Acquisition systems with a fixed threshold value are unable to adapt to fast varying mobile communications environments and may result in a high false alarm rate, and/or low detection probability. Therefore, we propose an adaptively varying threshold scheme through the use of a cellaveraging constant false alarm rate (CA-CFAR) algorithm, which is well known in the field of radar detection. We derive exact expressions for the probabilities of detection and false alarm in Rayleigh fading channels. The mean acquisition time of the system under consideration is also derived. The performance of the system is analyzed and compared to that of a hybrid single dwell system.Keywords: Adaptive threshold, hybrid double-dwell system, CA-CFAR algorithm, DS-CDMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17221184 Community Detection-based Analysis of the Human Interactome Network
Authors: Razvan Bocu, Sabin Tabirca
Abstract:
The study of proteomics reached unexpected levels of interest, as a direct consequence of its discovered influence over some complex biological phenomena, such as problematic diseases like cancer. This paper presents a new technique that allows for an accurate analysis of the human interactome network. It is basically a two-step analysis process that involves, at first, the detection of each protein-s absolute importance through the betweenness centrality computation. Then, the second step determines the functionallyrelated communities of proteins. For this purpose, we use a community detection technique that is based on the edge betweenness calculation. The new technique was thoroughly tested on real biological data and the results prove some interesting properties of those proteins that are involved in the carcinogenesis process. Apart from its experimental usefulness, the novel technique is also computationally effective in terms of execution times. Based on the analysis- results, some topological features of cancer mutated proteins are presented and a possible optimization solution for cancer drugs design is suggested.Keywords: Betweenness centrality, interactome networks, proteinprotein interactions, protein communities, cancer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12971183 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection
Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz
Abstract:
Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.
Keywords: Chitosan, coaxial electrospinning, controlled releasing, indocyanine green, nanoprobe, polyethylene oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7701182 Langmuir–Blodgett Films of Polyaniline for Efficient Detection of Uric Acid
Authors: Kashima Arora, Monika Tomar, Vinay Gupta
Abstract:
Langmuir–Blodgett (LB) films of polyaniline (PANI) grown onto ITO coated glass substrates were utilized for the fabrication of Uric acid biosensor for efficient detection of uric acid by immobilizing Uricase via EDC–NHS coupling. The modified electrodes were characterized by atomic force microscopy (AFM). The response characteristics after immobilization of uricase were studied using cyclic voltammetry and electrochemical impedance spectroscopy techniques. The uricase/PANI/ITO/glass bioelectrode studied by CV and EIS techniques revealed detection of uric acid in a wide range of 0.05 mM to 1.0 mM, covering the physiological range in blood. A low Michaelis–Menten constant (Km) of 0.21 mM indicates the higher affinity of immobilized Uricase towards its analyte (uric acid). The fabricated uric acid biosensor based on PANI LB films exhibits excellent sensitivity of 0.21 mA/mM with a response time of 4 s, good reproducibility, long shelf life (8 weeks) and high selectivity.
Keywords: Uric acid; biosensor, PANI, Langmuir Blodgett films deposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21381181 Automatic Road Network Recognition and Extraction for Urban Planning
Authors: D. B. L. Bong, K.C. Lai, A. Joseph
Abstract:
The uses of road map in daily activities are numerous but it is a hassle to construct and update a road map whenever there are changes. In Universiti Malaysia Sarawak, research on Automatic Road Extraction (ARE) was explored to solve the difficulties in updating road map. The research started with using Satellite Image (SI), or in short, the ARE-SI project. A Hybrid Simple Colour Space Segmentation & Edge Detection (Hybrid SCSS-EDGE) algorithm was developed to extract roads automatically from satellite-taken images. In order to extract the road network accurately, the satellite image must be analyzed prior to the extraction process. The characteristics of these elements are analyzed and consequently the relationships among them are determined. In this study, the road regions are extracted based on colour space elements and edge details of roads. Besides, edge detection method is applied to further filter out the non-road regions. The extracted road regions are validated by using a segmentation method. These results are valuable for building road map and detecting the changes of the existing road database. The proposed Hybrid Simple Colour Space Segmentation and Edge Detection (Hybrid SCSS-EDGE) algorithm can perform the tasks fully automatic, where the user only needs to input a high-resolution satellite image and wait for the result. Moreover, this system can work on complex road network and generate the extraction result in seconds.Keywords: Road Network Recognition, Colour Space, Edge Detection, Urban Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29971180 Performance Evaluation of Purely Mechanical Wireless In-Mould Sensor for Injection Moulding
Authors: Florian Müller, Christian Kukla, Thomas Lucyshyn, Clemens Holzer
Abstract:
In this paper, the influencing parameters of a novel purely mechanical wireless in-mould injection moulding sensor were investigated. The sensor is capable of detecting the melt front at predefined locations inside the mould. The sensor comprises a movable pin which acts as the sensor element generating structure-borne sound triggered by the passing melt front. Due to the sensor design, melt pressure is the driving force. For pressure level measurement during pin movement a pressure transducer located at the same position as the movable pin. By deriving a mathematical model for the mechanical movement, dominant process parameters could be investigated towards their impact on the melt front detection characteristic. It was found that the sensor is not affected by the investigated parameters enabling it for reliable melt front detection. In addition, it could be proved that the novel sensor is in comparable range to conventional melt front detection sensors.
Keywords: Injection Moulding, In-Mould Sensor, Structure-Borne Sound, Wireless Sensor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20761179 Exploiting Global Self Similarity for Head-Shoulder Detection
Authors: Lae-Jeong Park, Jung-Ho Moon
Abstract:
People detection from images has a variety of applications such as video surveillance and driver assistance system, but is still a challenging task and more difficult in crowded environments such as shopping malls in which occlusion of lower parts of human body often occurs. Lack of the full-body information requires more effective features than common features such as HOG. In this paper, new features are introduced that exploits global self-symmetry (GSS) characteristic in head-shoulder patterns. The features encode the similarity or difference of color histograms and oriented gradient histograms between two vertically symmetric blocks. The domain-specific features are rapid to compute from the integral images in Viola-Jones cascade-of-rejecters framework. The proposed features are evaluated with our own head-shoulder dataset that, in part, consists of a well-known INRIA pedestrian dataset. Experimental results show that the GSS features are effective in reduction of false alarmsmarginally and the gradient GSS features are preferred more often than the color GSS ones in the feature selection.
Keywords: Pedestrian detection, cascade of rejecters, feature extraction, self-symmetry, HOG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403