Search results for: random geometry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1118

Search results for: random geometry

668 Analytic on Various Grounding Configurations in Uniform Layer Soil

Authors: Mohd Shahriman B. Mohd Yunus, Mohd Hanif B. Jamaludin, Norain Bt. Bahror

Abstract:

The performance of an embedded grounding system is very important for the safe operation of electrical appliances and human beings. In principle, a safe grounding system has two objectives, which are to dissipate fault current without exceeding any operating and equipment limits and to ensure there is no risk of electric shock to humans in the vicinity of earthed facilities. The case studies in this paper present the calculating grounding resistance for multiple configurations of vertical and horizontally by using a simple and accurate formula. From the analytic calculated results, observed good/empirical relationship between the grounding resistance and length of the embedded grounding configurations. Moreover, the configurations of vertical and horizontal observed effectiveness of grounding resistance and good agreement on the reduction of grounding resistance values especially for vertical configuration.

Keywords: Grounding system, grounding resistance, soil resistivity, electrode geometry, configurations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 435
667 An Axisymmetric Finite Element Method for Compressible Swirling Flow

Authors: Raphael Zanella, Todd A. Oliver, Karl W. Schulz

Abstract:

This work deals with the finite element approximation of axisymmetric compressible flows with swirl velocity. We are interested in problems where the flow, while weakly dependent on the azimuthal coordinate, may have a strong azimuthal velocity component. We describe the approximation of the compressible Navier-Stokes equations with H1-conformal spaces of axisymmetric functions. The weak formulation is implemented in a C++ solver with explicit time marching. The code is first verified with a convergence test on a manufactured solution. The verification is completed by comparing the numerical and analytical solutions in a Poiseuille flow case and a Taylor-Couette flow case. The code is finally applied to the problem of a swirling subsonic air flow in a plasma torch geometry.

Keywords: Axisymmetric problem, compressible Navier- Stokes equations, continuous finite elements, swirling flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 292
666 Chips of Ti-6Al-2Sn-4Zr-6Mo Alloy – A Detailed Geometry Study

Authors: Dmytro Ostroushko, Karel Saksl, Carsten Siemers, Zuzana Rihova

Abstract:

Titanium alloys like Ti-6Al-2Sn-4Zr-6Mo (Ti- 6246) are widely used in aerospace applications. Component manufacturing, however, is difficult and expensive as their machinability is extremely poor. A thorough understanding of the chip formation process is needed to improve related metal cutting operations.In the current study, orthogonal cutting experiments have been performed and theresulting chips were analyzed by optical microscopy and scanning electron microscopy.Chips from aTi- 6246ingot were produced at different cutting speeds and cutting depths. During the experiments, depending of the cutting conditions, continuous or segmented chips were formed. Narrow, highly deformed and grain oriented zones, the so-called shear zone, separated individual segments. Different material properties have been measured in the shear zones and the segments.

Keywords: Titanium alloy, Ti-6246, chip formation, machining, shear zone, microstructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
665 Multidimensional Data Mining by Means of Randomly Travelling Hyper-Ellipsoids

Authors: Pavel Y. Tabakov, Kevin Duffy

Abstract:

The present study presents a new approach to automatic data clustering and classification problems in large and complex databases and, at the same time, derives specific types of explicit rules describing each cluster. The method works well in both sparse and dense multidimensional data spaces. The members of the data space can be of the same nature or represent different classes. A number of N-dimensional ellipsoids are used for enclosing the data clouds. Due to the geometry of an ellipsoid and its free rotation in space the detection of clusters becomes very efficient. The method is based on genetic algorithms that are used for the optimization of location, orientation and geometric characteristics of the hyper-ellipsoids. The proposed approach can serve as a basis for the development of general knowledge systems for discovering hidden knowledge and unexpected patterns and rules in various large databases.

Keywords: Classification, clustering, data minig, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
664 Studies of Interfacial Microstructure and Mechanical Properties on Dissimilar Sheet Metal Combination Joints Using Laser Beam Welding

Authors: K. Kalaiselvan, A. Elango

Abstract:

Laser beam welding of dissimilar sheet metal combinations such as Ti/Al, SS/Al and Cu/Al are increasingly demanded due to high energy densities with less fusion and heat affected zones. A good weld joint strength involves combinations of dissimilar metals and the formation of solid solution in the weld pool. Many metal pairs suffer from significant intermetallic phase formation during welding which greatly reduces their strength. The three different sheet metal mentioned above is critically reviewed and phase diagram for the combinations are given. The aim of this study is to develop an efficient metal combinations and the influence on their interfacial characteristics. For that the following parameters such as weld geometry, residual distortion, micro hardness, microstructure and mechanical properties are analyzed systematically.

Keywords: Laser Beam Welding (LBW), dissimilar metals, Ti/Al, SS/Al and Cu/Al sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2949
663 Optimization of Unweighted Minimum Vertex Cover

Authors: S. Balaji, V. Swaminathan, K. Kannan

Abstract:

The Minimum Vertex Cover (MVC) problem is a classic graph optimization NP - complete problem. In this paper a competent algorithm, called Vertex Support Algorithm (VSA), is designed to find the smallest vertex cover of a graph. The VSA is tested on a large number of random graphs and DIMACS benchmark graphs. Comparative study of this algorithm with the other existing methods has been carried out. Extensive simulation results show that the VSA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.

Keywords: vertex cover, vertex support, approximation algorithms, NP - complete problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442
662 Thermo Mechanical Design and Analysis of PEM Fuel cell Plate

Authors: Saravana Kannan Thangavelu

Abstract:

Fuel and oxidant gas delivery plate, or fuel cell plate, is a key component of a Proton Exchange Membrane (PEM) fuel cell. To manufacture low-cost and high performance fuel cell plates, advanced computer modeling and finite element structure analysis are used as virtual prototyping tools for the optimization of the plates at the early design stage. The present study examines thermal stress analysis of the fuel cell plates that are produced using a patented, low-cost fuel cell plate production technique based on screen-printing. Design optimization is applied to minimize the maximum stress within the plate, subject to strain constraint with both geometry and material parameters as design variables. The study reveals the characteristics of the printed plates, and provides guidelines for the structure and material design of the fuel cell plate.

Keywords: Design optimization, FEA, PEM fuel cell, Thermal stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
661 A Genetic Algorithm Approach for Solving Fuzzy Linear and Quadratic Equations

Authors: M. Hadi Mashinchi, M. Reza Mashinchi, Siti Mariyam H. J. Shamsuddin

Abstract:

In this paper a genetic algorithms approach for solving the linear and quadratic fuzzy equations Ãx̃=B̃ and Ãx̃2 + B̃x̃=C̃ , where Ã, B̃, C̃ and x̃ are fuzzy numbers is proposed by genetic algorithms. Our genetic based method initially starts with a set of random fuzzy solutions. Then in each generation of genetic algorithms, the solution candidates converge more to better fuzzy solution x̃b . In this proposed method the final reached x̃b is not only restricted to fuzzy triangular and it can be fuzzy number.

Keywords: Fuzzy coefficient, fuzzy equation, genetic algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
660 Resistive RAM Based on Hfox and its Temperature Instability Study

Authors: Z. Fang, H.Y. Yu, W.J. Liu, N. Singh, G.Q. Lo

Abstract:

High performance Resistive Random Access Memory (RRAM) based on HfOx has been prepared and its temperature instability has been investigated in this work. With increasing temperature, it is found that: leakage current at high resistance state increases, which can be explained by the higher density of traps inside dielectrics (related to trap-assistant tunneling), leading to a smaller On/Off ratio; set and reset voltages decrease, which may be attributed to the higher oxygen ion mobility, in addition to the reduced potential barrier to create / recover oxygen ions (or oxygen vacancies); temperature impact on the RRAM retention degradation is more serious than electrical bias.

Keywords: RRAM, resistive switching, temperature instability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377
659 On a New Numerical Analysis for the Symmetric Shortest Queue Problem

Authors: Tayeb Lardjane, Rabah Messaci

Abstract:

We consider a network of two M/M/1 parallel queues having the same poisonnian arrival stream with rate λ. Upon his arrival to the system a customer heads to the shortest queue and stays until being served. If the two queues have the same length, an arriving customer chooses one of the two queues with the same probability. Each duration of service in the two queues is an exponential random variable with rate μ and no jockeying is permitted between the two queues. A new numerical method, based on linear programming and convex optimization, is performed for the computation of the steady state solution of the system.

Keywords: Steady state solution, matrix formulation, convex set, shortest queue, linear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
658 Numerical Investigation of Displacement Ventilation Effectiveness

Authors: Ramy H. Mohammed

Abstract:

Displacement ventilation of a room with an occupant is modeled using CFD. The geometry of manikin is accurately represented in CFD model to minimize potential. Indoor zero equation turbulence model is used to simulate all cases and the effect of the thermal radiation from manikin is taken into account. After validation of the code, predicted mean vote, mean age of air, and ventilation effectiveness are used to predict the thermal comfort zones and indoor air quality. The effect of the inlet velocity and temperature on the thermal comfort and indoor air quality is investigated. The results show that the inlet velocity has great effect on the thermal comfort and indoor air quality and low inlet velocity is sufficient to establish comfortable conditions inside the room. In addition, the displacement ventilation system achieves not only thermal comfort in ventilated rooms, but also energy saving of fan power.

Keywords: Displacement ventilation, Energy saving, Thermal comfort, Turbulence model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2567
657 Particle Simulation of Rarefied Gas Flows witha Superimposed Wall Surface Temperature Gradient in Microgeometries

Authors: V. Azadeh Ranjbar

Abstract:

Rarefied gas flows are often occurred in micro electro mechanical systems and classical CFD could not precisely anticipate the flow and thermal behavior due to the high Knudsen number. Therefore, the heat transfer and the fluid dynamics characteristics of rarefied gas flows in both a two-dimensional simple microchannel and geometry similar to single Knudsen compressor have been investigated with a goal of increasing performance of a actual Knudsen compressor by using a particle simulation method. Thermal transpiration and thermal creep, which are rarefied gas dynamic phenomena, that cause movement of the flow from less to higher temperature is generated by using two different longitude temperature gradients (Linear, Step) along the walls of the flow microchannel. In this study the influence of amount of temperature gradient and governing pressure in various Knudsen numbers and length-to-height ratios have been examined.

Keywords: DSMC, Thermal transpiration, Thermal creep, MEMS, Knudsen Compressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1221
656 Strengthening of RC Beams with Large Openings in Shear by CFRP Laminates: 2D Nonlinear FE Analysis

Authors: S.C. Chin, N. Shafiq, M.F. Nuruddin

Abstract:

To date, theoretical studies concerning the Carbon Fiber Reinforced Polymer (CFRP) strengthening of RC beams with openings have been rather limited. In addition, various numerical analyses presented so far have effectively simulated the behaviour of solid beam strengthened by FRP material. In this paper, a two dimensional nonlinear finite element analysis is presented to validate against the laboratory test results of six RC beams. All beams had the same rectangular cross-section geometry and were loaded under four point bending. The crack pattern results of the finite element model show good agreement with the crack pattern of the experimental beams. The load midspan deflection curves of the finite element models exhibited a stiffer result compared to the experimental beams. The possible reason may be due to the perfect bond assumption used between the concrete and steel reinforcement.

Keywords: CFRP, large opening, RC beam, strengthening

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
655 Robust Probabilistic Online Change Detection Algorithm Based On the Continuous Wavelet Transform

Authors: Sergei Yendiyarov, Sergei Petrushenko

Abstract:

In this article we present a change point detection algorithm based on the continuous wavelet transform. At the beginning of the article we describe a necessary transformation of a signal which has to be made for the purpose of change detection. Then case study related to iron ore sinter production which can be solved using our proposed technique is discussed. After that we describe a probabilistic algorithm which can be used to find changes using our transformed signal. It is shown that our algorithm works well with the presence of some noise and abnormal random bursts.

Keywords: Change detection, sinter production, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
654 Increase of Energy Efficiency by Means of Application of Active Bearings

Authors: Alexander Babin, Leonid Savin

Abstract:

In the present paper, increasing of energy efficiency of a thrust hybrid bearing with a central feeding chamber is considered. The mathematical model was developed to determine the pressure distribution and the reaction forces, based on the Reynolds equation and static characteristics’ equations. The boundary problem of pressure distribution calculation was solved using the method of finite differences. For various types of lubricants, geometry and operational characteristics, axial gaps can be determined, where the minimal friction coefficient is provided. The next part of the study considers the application of servovalves in order to maintain the desired position of the rotor. The report features the calculation results and the analysis of the influence of the operational and geometric parameters on the energy efficiency of mechatronic fluid-film bearings.

Keywords: Active bearings, energy efficiency, mathematical model, mechatronics, thrust multipad bearing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189
653 Investigation and Calculation of Seismic Reliability of Structures

Authors: Panam. Zarfam, Mohsen. Javan Pour

Abstract:

Recently, analysis and designing of the structures based on the Reliability theory have been the center of attention. Reason of this attention is the existence of the natural and random structural parameters such as the material specification, external loads, geometric dimensions etc. By means of the Reliability theory, uncertainties resulted from the statistical nature of the structural parameters can be changed into the mathematical equations and the safety and operational considerations can be considered in the designing process. According to this theory, it is possible to study the destruction probability of not only a specific element but also the entire system. Therefore, after being assured of safety of every element, their reciprocal effects on the safety of the entire system can be investigated.

Keywords: Probability, Reliability, Statistics, Uncertainty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
652 Modeling of Bio Scaffolds: Structural and Fluid Transport Characterization

Authors: Sahba Sadir, M. R. A. Kadir, A. Öchsner, M. N. Harun

Abstract:

Scaffolds play a key role in tissue engineering and can be produced in many different ways depending on the applications and the materials used. Most researchers used an experimental trialand- error approach into new biomaterials but computer simulation applied to tissue engineering can offer a more exhaustive approach to test and screen out biomaterials. This paper develops the model of scaffolds and Computational Fluid Dynamics that show the value of computer simulations in determining the influence of the geometrical scaffold parameter porosity, pore size and shape on the permeability of scaffolds, magnitude of velocity, drop pressure, shear stress distribution and level and the proper design of the geometry of the scaffold. This creates a need for more advanced studies that include aspects of dynamic conditions of a micro fluid passing through the scaffold were characterized for tissue engineering applications and differentiation of tissues within scaffolds.

Keywords: Scaffold engineering, Tissue engineering, Cellularstructure, Biomaterial, Computational fluid dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
651 Numerical Simulation and Experiment of a Lifting Body with Leading-Edge Rotating Cylinder

Authors: A. Badarudin, C. S. Oon, S. N. Kazi, N. Nik-Ghazali, Y. J. Lee, W. T. Chong

Abstract:

An experimental and simulation flight test has been carried out to evaluate the longitudinal gliding characteristics of a lifting body with blunted half-cone geometry. The novelty here is the lifting body's pitch control mechanism, which consists of a pair of leading-edge rotating cylinders. Flight simulation uses aerodynamic data from computational fluid dynamics supported by wind-tunnel test. Flight test consists of releasing an aluminum lifting body model from a moving vehicle at the appropriate wind speed while measuring the lifting body's variation of altitude against time of flight. Results show that leading-edge rotating cylinder is able to give small amounts of improvement to the longitudinal stability and pitch control to the lifting body.

Keywords: Lifting body, pitch control, aerodynamic, rotating cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
650 A Closed Form Solution for Hydrodynamic Pressure of Gravity Dams Reservoir with Effect of Viscosity under Dynamic Loading

Authors: B. Navayineya, J. Vaseghi Amiri, M. Alijani Ardeshir

Abstract:

Hydrodynamic pressures acting on upstream of concrete dams during an earthquake are an important factor in designing and assessing the safety of these structures in Earthquake regions. Due to inherent complexities, assessing exact hydrodynamic pressure is only feasible for problems with simple geometry. In this research, the governing equation of concrete gravity dam reservoirs with effect of fluid viscosity in frequency domain is solved and then compared with that in which viscosity is assumed zero. The results show that viscosity influences the reservoir-s natural frequency. In excitation frequencies near the reservoir's natural frequencies, hydrodynamic pressure has a considerable difference in compare to the results of non-viscose fluid.

Keywords: Closed form solution, concrete dams reservoir, viscosity, dynamic loads, hydrodynamic pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
649 Design Methodology through Risk Assessment of Massive Water Retaining Structures

Authors: A. Rouili

Abstract:

In the present paper the results of a numerical study are presented, numerical models were developed to simulate the behaviour of vertical massive dikes. The proposed models were developed according to the geometry, boundary conditions, loading conditions and initial conditions of a physical model taken as reference. The results obtained were compared to the experimental data. As far as the overall behaviour, the displacements and the failure mechanisms of the dikes is concerned, the numerical results were in good agreement with the experimental results, which clearly indicates a good quality of numerical modelling. The validated numerical models were used in a parametric study were the displacements and failure mechanisms were fully investigated. Out of the results obtained, some conclusions and recommendations related to the design of massive dikes are proposed.

Keywords: Water conservation, dikes, risk assessment and numerical modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
648 Osteogenesis by Dextran Coating on and among Fibers of a Polyvinyl Formal Sponge

Authors: M. Yoshikawa, N. Tsuji, T. Yabuuchi, Y Shimomura, H. Kakigi, H. Hayashi, H. Ohgushi

Abstract:

A scaffold is necessary for tooth regeneration because of its three-dimensional geometry. For restoration of defect, it is necessary for the scaffold to be prepared in the shape of the defect. Sponges made from polyvinyl alcohol with formalin cross-linking (PVF sponge) have been used for scaffolds for bone formation in vivo. To induce osteogenesis within the sponge, methods of growing rat bone marrow cells (rBMCs) among the fiber structures in the sponge might be considered. Storage of rBMCs among the fibers in the sponge coated with dextran (10 kDa) was tried. After seeding of rBMCs to PVF sponge immersed in dextran solution at 2 g/dl concentration, osteogenesis was recognized in subcutaneously implanted PVF sponge as a scaffold in vivo. The level of osteocalcin was 25.28±5.71 ng/scaffold and that of Ca was 129.20±19.69 µg/scaffold. These values were significantly higher than those in sponges without dextran coating (p<0.01). Osteogenesis was induced in many spaces in the inner structure of the sponge with dextran coated fibers.

Keywords: Dextran, Polyvinyl formal sponge, Osteogenesis, Scaffold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
647 Development of a Methodology for Processing of Drilling Operations

Authors: Majid Tolouei-Rad, Ankit Shah

Abstract:

Drilling is the most common machining operation and it forms the highest machining cost in many manufacturing activities including automotive engine production. The outcome of this operation depends upon many factors including utilization of proper cutting tool geometry, cutting tool material and the type of coating used to improve hardness and resistance to wear, and also cutting parameters. With the availability of a large array of tool geometries, materials and coatings, is has become a challenging task to select the best tool and cutting parameters that would result in the lowest machining cost or highest profit rate. This paper describes an algorithm developed to help achieve good performances in drilling operations by automatically determination of proper cutting tools and cutting parameters. It also helps determine machining sequences resulting in minimum tool changes that would eventually reduce machining time and cost where multiple tools are used.

Keywords: Cutting tool, drilling, machining, algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3310
646 Intact and ACL-Deficient Knee MODEL Evaluation

Authors: A. Vairis, M. Petousis, B. Kandyla, C. Chrisoulakis

Abstract:

The human knee joint has a three dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. To produce the necessary joint compliance and stability for optimal daily function various menisci and ligaments are present while muscle forces are used to this effect. Therefore, knowledge of the complex mechanical interactions of these load bearing structures is necessary when treatment of relevant diseases is evaluated and assisting devices are designed. Numerical tools such as finite element analysis are suitable for modeling such joints in order to understand their physics. They have been used in the current study to develop an accurate human knee joint and model its mechanical behavior. To evaluate the efficacy of this articulated model, static load cases were used for comparison purposes with previous experimentally verified modeling works drawn from literature.

Keywords: biomechanics, finite element modeling, knee joint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
645 Artificial Neural Networks and Multi-Class Support Vector Machines for Classifying Magnetic Measurements in Tokamak Reactors

Authors: A. Greco, N. Mammone, F.C. Morabito, M.Versaci

Abstract:

This paper is mainly concerned with the application of a novel technique of data interpretation for classifying measurements of plasma columns in Tokamak reactors for nuclear fusion applications. The proposed method exploits several concepts derived from soft computing theory. In particular, Artificial Neural Networks and Multi-Class Support Vector Machines have been exploited to classify magnetic variables useful to determine shape and position of the plasma with a reduced computational complexity. The proposed technique is used to analyze simulated databases of plasma equilibria based on ITER geometry configuration. As well as demonstrating the successful recovery of scalar equilibrium parameters, we show that the technique can yield practical advantages compared with earlier methods.

Keywords: Tokamak, Classification, Artificial Neural Network, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
644 PIL Theory

Authors: A. Peveri

Abstract:

The curvature space-time by the presence of material, this deformation must present a pattern of deformation, not random. Space is uniform, elastic and any modification that occurs in one part, causes a change in another.

This deformation exists, must be a constant value and is independent of the observer, and relates the amount of matter, the force caused by the curvature of space and surface space. This unit of space is defined in this study as PIL and represents a constant area of space, deformable in the direction and sense of the center of mass of the body. The PIL is curved and connected to the center of mass of the Earth, to get to that point, through all matter, thus forming part of any place between particles at atomic and subatomic levels. At these levels the space between each particle is flat, unlike the macro where the space curves.

Keywords: Space flat, Space curved, Unit of space, Deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
643 Classification of Non Stationary Signals Using Ben Wavelet and Artificial Neural Networks

Authors: Mohammed Benbrahim, Khalid Benjelloun, Aomar Ibenbrahim, Adil Daoudi

Abstract:

The automatic classification of non stationary signals is an important practical goal in several domains. An essential classification task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, we present a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "Ben wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.

Keywords: Seismic signals, Ben Wavelet, Dimensionality reduction, Artificial neural networks, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
642 An Automatic Feature Extraction Technique for 2D Punch Shapes

Authors: Awais Ahmad Khan, Emad Abouel Nasr, H. M. A. Hussein, Abdulrahman Al-Ahmari

Abstract:

Sheet-metal parts have been widely applied in electronics, communication and mechanical industries in recent decades; but the advancement in sheet-metal part design and manufacturing is still behind in comparison with the increasing importance of sheet-metal parts in modern industry. This paper presents a methodology for automatic extraction of some common 2D internal sheet metal features. The features used in this study are taken from Unipunch ™ catalogue. The extraction process starts with the data extraction from STEP file using an object oriented approach and with the application of suitable algorithms and rules, all features contained in the catalogue are automatically extracted. Since the extracted features include geometry and engineering information, they will be effective for downstream application such as feature rebuilding and process planning.

Keywords: Feature Extraction, Internal Features, Punch Shapes, Sheet metal, STEP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
641 Design of Smith-like Predictive Controller with Communication Delay Adaptation

Authors: Jasmin Velagic

Abstract:

This paper addresses the design of predictive networked controller with adaptation of a communication delay. The networked control system contains random delays from sensor to controller and from controller to actuator. The proposed predictive controller includes an adaptation loop which decreases the influence of communication delay on the control performance. Also, the predictive controller contains a filter which improves the robustness of the control system. The performance of the proposed adaptive predictive controller is demonstrated by simulation results in comparison with PI controller and predictive controller with constant delay.

Keywords: Predictive control, adaptation, communication delay, communication network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
640 Estimating the Population Mean by Using Stratified Double Extreme Ranked Set Sample

Authors: Mahmoud I. Syam, Kamarulzaman Ibrahim, Amer I. Al-Omari

Abstract:

Stratified double extreme ranked set sampling (SDERSS) method is introduced and considered for estimating the population mean. The SDERSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple set sampling (SSRS). It is shown that the SDERSS estimator is an unbiased of the population mean and more efficient than the estimators using SRS, SRSS and SSRS when the underlying distribution of the variable of interest is symmetric or asymmetric.

Keywords: Double extreme ranked set sampling, Extreme ranked set sampling, Ranked set sampling, Stratified double extreme ranked set sampling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2307
639 Using Gaussian Process in Wind Power Forecasting

Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui

Abstract:

The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.

Keywords: Forecasting, Gaussian process, modeling, wind power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746