Search results for: constant current density
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4163

Search results for: constant current density

3713 An Experimental Investigation of Thermoelectric Air-Cooling Module

Authors: Yu-Wei Chang, Chiao-Hung Cheng, Wen-Fang Wu, Sih-Li Chen

Abstract:

This article experimentally investigates the thermal performance of thermoelectric air-cooling module which comprises a thermoelectric cooler (TEC) and an air-cooling heat sink. The influences of input current and heat load are determined. And performances under each situation are quantified by thermal resistance analysis. Since TEC generates Joule heat, this nature makes construction of thermal resistance network difficult. To simplify the analysis, this article emphasizes on the resistance heat load might meet when passing through the device. Therefore, the thermal resistances in this paper are to divide temperature differences by heat load. According to the result, there exists an optimum input current under every heating power. In this case, the optimum input current is around 6A or 7A. The performance of the heat sink would be improved with TEC under certain heating power and input current, especially at a low heat load. According to the result, the device can even make the heat source cooler than the ambient. However, TEC is not always effective at every heat load and input current. In some situation, the device works worse than the heat sink without TEC. To determine the availability of TEC, this study figures out the effective operating region in which the TEC air-cooling module works better than the heat sink without TEC. The result shows that TEC is more effective at a lower heat load. If heat load is too high, heat sink with TEC will perform worse than without TEC. The limit of this device is 57W. Besides, TEC is not helpful if input current is too high or too low. There is an effective range of input current, and the range becomes narrower when the heat load grows.

Keywords: Thermoelectric cooler, TEC, electronic cooling, heat sink.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3666
3712 Lime-Pozzolan Plasters with Enhanced Thermal Capacity

Authors: Z. Pavlík, A. Trník, M. Pavlíková, M. Keppert, R. Černý

Abstract:

A new type of lightweight plaster with the thermal capacity enhanced by PCM (Phase Change Material) addition is analyzed. The basic physical characteristics, namely the bulk density, matrix density, total open porosity, and pore size distribution are measured at first. For description of mechanical properties, compressive strength measurements are done. The thermal properties are characterized by transient impulse techniques as well as by DSC analysis that enables determination of the specific heat capacity as a function of temperature. The resistivity against the liquid water ingress is described by water absorption coefficient measurement. The experimental results indicate a good capability of the designed plaster to moderate effectively the interior climate of buildings.

Keywords: Lime-pozzolan plaster, PCM addition, enhanced thermal capacity, DSC analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2404
3711 The New Semi-Experimental Method for Simulation of Turbine Flow Meters Rotation in the Transitional Flow

Authors: J. Tonkonogij, A. Pedišius, A. Stankevičius

Abstract:

The new semi-experimental method for simulation of the turbine flow meters rotation in the transitional flow has been developed. The method is based on the experimentally established exponential low of changing of dimensionless relative turbine gas meter rotation frequency and meter inertia time constant. For experimental evaluation of the meter time constant special facility has been developed. The facility ensures instant switching of turbine meter under test from one channel to the other channel with different flow rate and measuring the meter response. The developed method can be used for evaluation and predication of the turbine meters response and dynamic error in the transitional flow with any arbitrary law of flow rate changing. The examples of the method application are presented.

Keywords: Dynamic error, pulsing flow, numerical simulation, response, turbine gas meters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
3710 Self-Organization of Radiation Defects: Temporal Dissipative Structures

Authors: Pavlo Selyshchev

Abstract:

A theoretical approach to radiation damage evolution is developed. Stable temporal behavior taking place in solids under irradiation are examined as phenomena of self-organization in nonequilibrium systems. Experimental effects of temporal self-organization in solids under irradiation are reviewed. Their essential common properties and features are highlighted and analyzed. Dynamical model to describe development of self-oscillation of density of point defects under stationary irradiation is proposed. The emphasis is the nonlinear couplings between rate of annealing and density of defects that determine the kind and parameters of an arising self-oscillation. The field of parameters (defect generation rate and environment temperature) at which self-oscillations develop is found. Bifurcation curve and self-oscillation period near it is obtained.

Keywords: Irradiation, Point Defects, Solids, Temporal Selforganization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
3709 Convective Heat Transfer of Viscoelastic Flow in a Curved Duct

Authors: M. Norouzi, M. H. Kayhani, M. R. H. Nobari, M. Karimi Demneh

Abstract:

In this paper, fully developed flow and heat transfer of viscoelastic materials in curved ducts with square cross section under constant heat flux have been investigated. Here, staggered mesh is used as computational grids and flow and heat transfer parameters have been allocated in this mesh with marker and cell method. Numerical solution of governing equations has being performed with FTCS finite difference method. Furthermore, Criminale-Eriksen- Filbey (CEF) constitutive equation has being used as viscoelastic model. CEF constitutive equation is a suitable model for studying steady shear flow of viscoelastic materials which is able to model both effects of the first and second normal stress differences. Here, it is shown that the first and second normal stresses differences have noticeable and inverse effect on secondary flows intensity and mean Nusselt number which is the main novelty of current research.

Keywords: Viscoelastic, fluid flow, heat convection, CEF model, curved duct, square cross section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
3708 Treatment of Olive Mill Wastewater by Electrocoagulation Processes and Water Resources Management

Authors: Walid K. M. Bani Salameh, Hesham Ahmad, Mohammad Al-Shannag

Abstract:

In Jordan having deficit atmospheric precipitation, an increase in water demand occurs during summer months. Jordan can be regarded with a relatively high potential for wastewater recycling and reuse. The main purpose of this paper was to investigate the removal of total suspended solids (TSS) and chemical oxygen demand (COD) for olive mill wastewater (OMW) by electrocoagulation (EC) process. In the combination of electrocoagulation by using coupled iron–aluminum electrodes, the optimum working pH was found to be around 6. Results indicated that the electrocoagulation process allowed removal of TSS and COD of about 82.5% and 47.5%, respectively at 45 mA/cm2 after 70 minutes by using coupled iron–aluminum electrodes. It was demonstrated that the maximum TSS and COD removals were obtained at some optimum experimental parameters for current density, pH, and reaction time.

Keywords: Olive Mill Wastewater, Electrode, Electrocoagulation (EC), TSS, COD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2693
3707 Elastic Strain-Concentration Factor of Notched Bars under Combined Loading of Static Tension and Pure Bending

Authors: Hitham M. Tlilan

Abstract:

The effect of notch depth on the elastic new strainconcentration factor (SNCF) of rectangular bars with single edge Unotch under combined loading is studied here. The finite element method (FEM) and super position technique are used in the current study. This new SNCF under combined loading of static tension and pure bending has been defined under triaxial stress state. The employed specimens have constant gross thickness of 16.7 mm and net section thickness varied to give net-to-gross thickness ratio ho/Ho from 0.2 to 0.95. The results indicated that the elastic SNCF for combined loading increases with increasing notch depth up to ho/Ho = 0.7 and sharply decreases with increasing notch depth. It is also indicated that the elastic SNCF of combined loading is greater than that of pure bending and less than that of the static tension for 0.2 ≤ ho/Ho ≤ 0.7. However, the elastic SNCF of combined loading is the elastic SNCF for static tension and less than that of pure bending for shallow notches (i.e. 0.8 ≤ ho/Ho ≤ 0.95).

Keywords: Bar, notch, strain, tension, bending

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
3706 Effects of Thread Dimensions of Functionally Graded Dental Implants on Stress Distribution

Authors: Kaman M. O., Celik N.

Abstract:

In this study, stress distributions on dental implants made of functionally graded biomaterials (FGBM) are investigated numerically. The implant body is considered to be subjected to axial compression loads. Numerical problem is assumed to be 2D, and ANSYS commercial software is used for the analysis. The cross section of the implant thread varies as varying the height (H) and the width (t) of the thread. According to thread dimensions of implant and material properties of FGBM, equivalent stress distribution on the implant is determined and presented with contour plots along with the maximum equivalent stress values. As a result, with increasing material gradient parameter (n), the equivalent stress decreases, but the minimum stress distribution increases. Maximum stress values decrease with decreasing implant radius (r). Maximum von Mises stresses increases with decreasing H when t is constant. On the other hand, the stress values are not affected by variation of t in the case of H = constant.

Keywords: Functionally graded biomaterials, dental implant finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3032
3705 Properties of Al2O3 – hBN Composites

Authors: K. Broniszewski, J. Woźniak, K. Czechowski, P. Orłowski, A. Olszyna

Abstract:

Alumina matrix composites with addition of hexagonal boron nitride (hBN), acting as solid lubricant, were produced. Main purpose of solid lubricants is to dispose the necessity of using cooling lubricants in machining process. Hot pressing was used as a consolidating process for Al2O3-x%wt.hBN (x=1/ 2,5/ 5 /7,5 /10) composites. Properties of sinters such as relative density, hardness, Young-s modulus and fracture toughness were examined. Obtained samples characterize by high relative density. Hardness and fracture toughness values allow the use of alumina – hBN composites for machining steels even in hardened condition. However it was observed that high weight content of hBN can negatively influence the mechanical properties of composites.

Keywords: Alumina. Composites, Hexagonal boron nitride, Machining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2629
3704 Study of Hydrothermal Behavior of Thermal Insulating Materials Based On Natural Fibers

Authors: J. Zach, J. Hroudova, J. Brozovsky

Abstract:

Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation.

Keywords: Thermal insulating materials, hemp fibers, sheep wool fibers, thermal conductivity, moisture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507
3703 Study of Proton-9,11Li Elastic Scattering at 60~75 MeV/Nucleon

Authors: Arafa A. Alholaisi, Jamal H. Madani, M. A. Alvi

Abstract:

The radial form of nuclear matter distribution, charge and the shape of nuclei are essential properties of nuclei, and hence, are of great attention for several areas of research in nuclear physics. More than last three decades have witnessed a range of experimental means employing leptonic probes (such as muons, electrons etc.) for exploring nuclear charge distributions, whereas the hadronic probes (for example alpha particles, protons, etc.) have been used to investigate the nuclear matter distributions. In this paper, p-9,11Li elastic scattering differential cross sections in the energy range  to  MeV have been studied by means of Coulomb modified Glauber scattering formalism. By applying the semi-phenomenological Bhagwat-Gambhir-Patil [BGP] nuclear density for loosely bound neutron rich 11Li nucleus, the estimated matter radius is found to be 3.446 fm which is quite large as compared to so known experimental value 3.12 fm. The results of microscopic optical model based calculation by applying Bethe-Brueckner–Hartree–Fock formalism (BHF) have also been compared. It should be noted that in most of phenomenological density model used to reproduce the p-11Li differential elastic scattering cross sections data, the calculated matter radius lies between 2.964 and 3.55 fm. The calculated results with phenomenological BGP model density and with nucleon density calculated in the relativistic mean-field (RMF) reproduces p-9Li and p-11Li experimental data quite nicely as compared to Gaussian- Gaussian or Gaussian-Oscillator densities at all energies under consideration. In the approach described here, no free/adjustable parameter has been employed to reproduce the elastic scattering data as against the well-known optical model based studies that involve at least four to six adjustable parameters to match the experimental data. Calculated reaction cross sections σR for p-11Li at these energies are quite large as compared to estimated values reported by earlier works though so far no experimental studies have been performed to measure it.

Keywords: Bhagwat-Gambhir-Patil density, coulomb modified Glauber model, halo nucleus, optical limit approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
3702 Color and Layout-based Identification of Documents Captured from Handheld Devices

Authors: Ardhendu Behera, Denis Lalanne, Rolf Ingold

Abstract:

This paper proposes a method, combining color and layout features, for identifying documents captured from low-resolution handheld devices. On one hand, the document image color density surface is estimated and represented with an equivalent ellipse and on the other hand, the document shallow layout structure is computed and hierarchically represented. Our identification method first uses the color information in the documents in order to focus the search space on documents having a similar color distribution, and finally selects the document having the most similar layout structure in the remaining of the search space.

Keywords: Document color modeling, document visualsignature, kernel density estimation, document identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
3701 Reduced Inventories, High Reliability and Short Throughput Times by Using CONWIP Production Planning System

Authors: Tomas Duranik, Juraj Ruzbarsky, Markus Stopper

Abstract:

CONWIP (constant work-in-process) as a pull production system have been widely studied by researchers to date. The CONWIP pull production system is an alternative to pure push and pure pull production systems. It lowers and controls inventory levels which make the throughput better, reduces production lead time, delivery reliability and utilization of work. In this article a CONWIP pull production system was simulated. It was simulated push and pull planning system. To compare these systems via a production planning system (PPS) game were adjusted parameters of each production planning system. The main target was to reduce the total WIP and achieve throughput and delivery reliability to minimum values. Data was recorded and evaluated. A future state was made for real production of plastic components and the setup of the two indicators with CONWIP pull production system which can greatly help the company to be more competitive on the market.

Keywords: CONWIP, constant work in process, delivery reliability, hybrid production planning, PPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
3700 Numerical Analyze of Corona Discharge on HVDC Transmission Lines

Authors: H. Nouri, A. Tabbel, N. Douib, H. Aitsaid, Y. Zebboudj

Abstract:

This study and the field test comparisons were carried out on the Algerian Derguna – Setif transmission systems. The transmission line of normal voltage 225 kV is 65 km long, transported and uses twin bundle conductors protected with two shield wires of transposed galvanized steel. An iterative finite-element method is used to solve Poisons equation. Two algorithms are proposed for satisfying the current continuity condition and updating the space-charge density. A new approach to the problem of corona discharge in transmission system has been described in this paper. The effect of varying the configurations and wires number is also investigated. The analysis of this steady is important in the design of HVDC transmission lines. The potential and electric field have been calculating in locations singular points of the system.

Keywords: Corona discharge, Electric field, Finite element method, HVDC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2229
3699 Characterization of 3D-MRP for Analyzing of Brain Balancing Index (BBI) Pattern

Authors: N. Fuad, M. N. Taib, R. Jailani, M. E. Marwan

Abstract:

This paper discusses on power spectral density (PSD) characteristics which are extracted from three-dimensional (3D) electroencephalogram (EEG) models. The EEG signal recording was conducted on 150 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, the values of maximum PSD were extracted as features from the model. These features are analyzed using mean relative power (MRP) and different mean relative power (DMRP) technique to observe the pattern among different brain balancing indexes. The results showed that by implementing these techniques, the pattern of brain balancing indexes can be clearly observed. Some patterns are indicates between index 1 to index 5 for left frontal (LF) and right frontal (RF).

Keywords: Power spectral density, 3D EEG model, brain balancing, mean relative power, different mean relative power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
3698 Optimum Shape and Design of Cooling Towers

Authors: A. M. El Ansary, A. A. El Damatty, A. O. Nassef

Abstract:

The aim of the current study is to develop a numerical tool that is capable of achieving an optimum shape and design of hyperbolic cooling towers based on coupling a non-linear finite element model developed in-house and a genetic algorithm optimization technique. The objective function is set to be the minimum weight of the tower. The geometric modeling of the tower is represented by means of B-spline curves. The finite element method is applied to model the elastic buckling behaviour of a tower subjected to wind pressure and dead load. The study is divided into two main parts. The first part investigates the optimum shape of the tower corresponding to minimum weight assuming constant thickness. The study is extended in the second part by introducing the shell thickness as one of the design variables in order to achieve an optimum shape and design. Design, functionality and practicality constraints are applied.

Keywords: B-splines, Cooling towers, Finite element, Genetic algorithm, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3213
3697 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine

Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph

Abstract:

In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even-dough decreases at these extreme wind speeds but are not infinite. Moreover, we also fund that it is possible to stabilize the power coefficient (stabilizing the output power)above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.

Keywords: Probability, Stochastic, Probability density function, Turbulence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
3696 A Novel Optimal Setting for Directional over Current Relay Coordination using Particle Swarm Optimization

Authors: D. Vijayakumar, R. K. Nema

Abstract:

Over Current Relays (OCRs) and Directional Over Current Relays (DOCRs) are widely used for the radial protection and ring sub transmission protection systems and for distribution systems. All previous work formulates the DOCR coordination problem either as a Non-Linear Programming (NLP) for TDS and Ip or as a Linear Programming (LP) for TDS using recently a social behavior (Particle Swarm Optimization techniques) introduced to the work. In this paper, a Modified Particle Swarm Optimization (MPSO) technique is discussed for the optimal settings of DOCRs in power systems as a Non-Linear Programming problem for finding Ip values of the relays and for finding the TDS setting as a linear programming problem. The calculation of the Time Dial Setting (TDS) and the pickup current (Ip) setting of the relays is the core of the coordination study. PSO technique is considered as realistic and powerful solution schemes to obtain the global or quasi global optimum in optimization problem.

Keywords: Directional over current relays, Optimization techniques, Particle swarm optimization, Power system protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725
3695 Consolidation of Al-2024 Powder by Conventional P/M Route and ECAP – A Comparative Study

Authors: Nishtha Gupta , S.Ramesh Kumar , B.Ravisankar, S.Kumaran

Abstract:

In this study, mechanically alloyed Al 2024 powder is densified by conventional sintering and by equal channel angular pressing (ECAP) with and without back pressure. The powder was encapsulated in an aluminium can for consolidation through ECAP. The properties obtained in the compacts by conventional sintering route and by ECAP are compared. The effect of conventional sintering and ECAP on consolidation behaviour of powder, microstructure, density and hardness is discussed. Room temperature back pressure aided ECAP results in nearly full denser (97% of its theoretical density) compact at room temperature. NanoIndentation technique was used to determine the modulus of the consolidated compacts.

Keywords: Al-2024, Back Pressure, ECAP, Nanoindentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
3694 A Review on Applications of Nanotechnology in Automotive Industry

Authors: Akshata S. Malani, Anagha D. Chaudhari, Rajeshkumar U. Sambhe

Abstract:

Nanotechnology in pristine sense refers to building of structures at atomic and molecular scale. Meticulously nanotechnology encompasses the nanomaterials with at least one dimension size ranging from 1 to 100 nanometres. Unlike the literal meaning of its name, nanotechnology is a massive concept beyond imagination. This paper predominantly deals with relevance of nanotechnology in automotive industries. New generation of automotives looks at nanotechnology as an emerging trend of manufacturing revolution. Intricate shapes can be made out of fairly inexpensive raw materials instead of conventional fabrication process. Though the current era have enough technology to face competition, nanotechnology can give futuristic implications to pick up the modern pace. Nanotechnology intends to bridge the gap between automotives with superior technical performance and their cost fluctuation. Preliminarily, it is an area of great scientific interest and a major shaper of many new technologies. Nanotechnology can be an ideal building block for automotive industries, under constant evolution offering a very wide scope of activity. It possesses huge potential and is still in the embryonic form of research and development.

Keywords: Nanotechnology, nanomaterials, manufacturing, automotive industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5289
3693 Control Strategy of Solar Thermal Cooling System under the Indonesia Climate

Authors: Budihardjo Sarwo Sastrosudiro, Arnas Lubis, Muhammad Idrus Alhamid, Nasruddin Jusuf

Abstract:

Solar thermal cooling system was installed on Mechanical Research Center (MRC) Building that is located in Universitas Indonesia, Depok, Indonesia. It is the first cooling system in Indonesia that utilizes solar energy as energy input combined with natural gas; therefore, the control system must be appropriated with the climates. In order to stabilize the cooling capacity and also to maximize the use of solar energy, the system applies some controllers. Constant flow rate and on/off controller are applied for the hot water, chilled water and cooling water pumps. The hot water circulated by pump when the solar radiation is over than 400W/m2, and the chilled water is continually circulated by pump and its temperature is kept constant 7 °C by absorption chiller. The cooling water is also continually circulated until the outlet temperature of cooling tower below than 27 oC. Furthermore, the three-way valve is used to control the hot water for generate vapor on absorption chiller. The system performance using that control system is shown in this study results.

Keywords: Absorption chiller, control system, solar cooling, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
3692 Effect of Friction Models on Stress Distribution of Sheet Materials during V-Bending Process

Authors: Maziar Ramezani, Zaidi Mohd Ripin

Abstract:

In a metal forming process, the friction between the material and the tools influences the process by modifying the stress distribution of the workpiece. This frictional behaviour is often taken into account by using a constant coefficient of friction in the finite element simulations of sheet metal forming processes. However, friction coefficient varies in time and space with many parameters. The Stribeck friction model is investigated in this study to predict springback behaviour of AA6061-T4 sheets during V-bending process. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The plane-strain bending process is simulated in ABAQUS/Standard. We compared the computed punch load-stroke curves and springback related to the constant coefficient of friction with the defined friction model. The results clearly showed that the new friction model provides better agreement between experiments and results of numerical simulations. The influence of friction models on stress distribution in the workpiece is also studied numerically

Keywords: Friction model, Stress distribution, V-bending.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2705
3691 Analytical Subthreshold Drain Current Model Incorporating Inversion Layer Effective Mobility Model for Pocket Implanted Nano Scale n-MOSFET

Authors: Muhibul Haque Bhuyan, Quazi D. M. Khosru

Abstract:

Carrier scatterings in the inversion channel of MOSFET dominates the carrier mobility and hence drain current. This paper presents an analytical model of the subthreshold drain current incorporating the effective electron mobility model of the pocket implanted nano scale n-MOSFET. The model is developed by assuming two linear pocket profiles at the source and drain edges at the surface and by using the conventional drift-diffusion equation. Effective electron mobility model includes three scattering mechanisms, such as, Coulomb, phonon and surface roughness scatterings as well as ballistic phenomena in the pocket implanted n-MOSFET. The model is simulated for various pocket profile and device parameters as well as for various bias conditions. Simulation results show that the subthreshold drain current data matches the experimental data already published in the literature.

Keywords: Linear Pocket Profile, Pocket Implanted n-MOSFET, Subthreshold Drain Current and Effective Mobility Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2531
3690 CFD Investigation of the Effects of Re-Entrant Combustion Chamber Geometry in a HSDI Diesel Engine

Authors: Raouf Mobasheri, Zhijun Peng

Abstract:

A CFD simulation has applied to explore the effects of combustion chamber geometry on engine performance and pollutant emissions in a HSDI diesel engine. Three ITs (Injection Timing) at 2.65 CA BTDC, 0.65 CA BTDC and 1.35 CA ATDC, all with 30 crank angle pilot separations has firstly considered to identify the optimum IT for achieving the minimum amount of pollutant emissions. In order to investigate the effect of combustion chamber, thirteen different piston bowl configurations have been designed and analyzed. For all the studied cases, compression ratio, squish bowl volume and the amount of injected fuel were kept constant to assure that variation in the engine performance were only caused by geometric parameters. The results showed that by changing the geometric parameters on piston bowl, the amount of emission pollutants can be decreased while the other performance parameters of engine remain constant.

Keywords: HSDI Diesel Engine, Combustion Chamber Geometry, Pilot Injection, Injection Timing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4149
3689 Numerical Simulation of Plasma Actuator Using OpenFOAM

Authors: H. Yazdani, K. Ghorbanian

Abstract:

This paper deals with modeling and simulation of the plasma actuator with OpenFOAM. Plasma actuator is one of the newest devices in flow control techniques which can delay separation by inducing external momentum to the boundary layer of the flow. The effects of the plasma actuators on the external flow are incorporated into Navier-Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. In order to compute this body force vector, the model solves two equations: One for the electric field due to the applied AC voltage at the electrodes and the other for the charge density representing the ionized air. The simulation result is compared to the experimental and typical values which confirms the validity of the modeling.

Keywords: Active flow control, flow field, OpenFOAM, plasma actuator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
3688 Ab Initio Molecular Dynamics Simulations of Furfural at the Liquid-Solid Interface

Authors: Sanwu Wang, Hongli Dang, Wenhua Xue, Darwin Shields, Xin Liu, Friederike C. Jentoft, Daniel E. Resasco

Abstract:

The bonding configuration and the heat of adsorption of a furfural molecule on the Pd(111) surface were determined by ab initio density-functional-theory calculations. The dynamics of pure liquid water, the liquid-solid interface formed by liquid water and the Pd(111) surface, as well as furfural at the water-Pd interface, were investigated by ab initio molecular dynamics simulations at finite temperatures. Calculations and simulations suggest that the bonding configurations at the water-Pd interface promote decarbonylation of furfural.

Keywords: Ab initio molecular dynamics simulations, bio-fuels, density functional theory, liquid-solid interfaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
3687 Investigation about Structural and Optical Properties of Bulk and Thin Film of 1H-CaAlSi by Density Functional Method

Authors: M. Babaeipour, M. Vejdanihemmat

Abstract:

Optical properties of bulk and thin film of 1H-CaAlSi for two directions (1,0,0) and (0,0,1) were studied. The calculations are carried out by Density Functional Theory (DFT) method using full potential. GGA approximation was used to calculate exchange-correlation energy. The calculations are performed by WIEN2k package. The results showed that the absorption edge is shifted backward 0.82eV in the thin film than the bulk for both directions. The static values of the real part of dielectric function for four cases were obtained. The static values of the refractive index for four cases are calculated too. The reflectivity graphs have shown an intensive difference between the reflectivity of the thin film and the bulk in the ultraviolet region.

Keywords: 1H-CaAlSi, absorption, bulk, optical, thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
3686 Power Frequency Magnetic Field Survey in Indoor Power Distribution Substation in Egypt

Authors: Ahmed Hossam_ ElDin, Ahmed Farag, Ibrahim Madi., Hanaa Karawia

Abstract:

In our modern society electricity is vital to our health, safety, comfort and well-being. While our daily use of electricity is often taken for granted, public concern has arisen about potential adverse health effects from electric and magnetic – electromagnetic – fields (EMFs) produced by our use of electricity. This paper aims to compare between the measured magnetic field values and the simulated models for the indoor medium to low voltage (MV/LV) distribution substations. To calculate the magnetic flux density in the substations, interactive software SUBCALC is used which is based on closed form solution of the Biot-Savart law with 3D conductor model. The comparison between the measured values and the simulated models was acceptable. However there were some discrepancies, as expected, may be due to the current variation during measurements.

Keywords: Distribution substation, magnetic field, measurement, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
3685 Utilising Unground Oil Palm Ash in Producing Foamed Concrete and Its Implementation as an Interlocking Mortar-Less Block

Authors: Hanizam Awang, Mohammed Zuhear Al-Mulali

Abstract:

In this study, the possibility of using unground oil palm ash (UOPA) for producing foamed concrete is investigated. The UOPA used in this study is produced by incinerating palm oil biomass at a temperature exceeding 1000ºC. A semi-structural density of 1300kg/m3 was used with filler to binder ratio of 1.5 and preliminary water to binder ratio of 0.45. Cement was replaced by UOPA at replacement levels of 0, 25, 35, 45, 55 and 65% by weight of binder. Properties such as density, compressive strength, drying shrinkage and water absorption were investigated to the age of 90 days. The mix with a 35% of UOPA content was chosen to be used as the base material of a newly designed interlocking, mortar-less block system.

Keywords: Foamed concrete, oil palm ash, strength, interlocking block.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322
3684 Experimental Study on Ultrasonic Shot Peening Forming and Surface Properties of AALY12

Authors: Shi-hong Lu, Chao-xun Liu, Yi-feng Zhu

Abstract:

Ultrasonic shot peening (USP) on AALY12 sheet was studied. Several parameters (arc heights, surface roughness, surface topography and micro hardness) with different USP process parameters were measured. The research proposes that radius of curvature of shot peened sheet increases with time and electric current decreasing, while increases with pin diameter increasing, and radius of curvature reaches a saturation level after a specific processing time and electric current. An empirical model of the relationship between radius of curvature and pin diameter, electric current, time was also obtained. The research shows that the increment of surface and vertical micro hardness of material is more obvious with longer time and higher value of electric current, which can be up to 20% and 28% respectively.

Keywords: USP forming, surface properties, radius of curvature, residual stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875