Search results for: Multivariate Adaptive Regression Splines Pulmonary Function Test
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6083

Search results for: Multivariate Adaptive Regression Splines Pulmonary Function Test

5633 The Principle Probabilities of Space-Distance Resolution for a Monostatic Radar and Realization in Cylindrical Array

Authors: Anatoly D. Pluzhnikov, Elena N. Pribludova, Alexander G. Ryndyk

Abstract:

In conjunction with the problem of the target selection on a clutter background, the analysis of the scanning rate influence on the spatial-temporal signal structure, the generalized multivariate correlation function and the quality of the resolution with the increase pulse repetition frequency is made. The possibility of the object space-distance resolution, which is conditioned by the range-to-angle conversion with an increased scanning rate, is substantiated. The calculations for the real cylindrical array at high scanning rate are presented. The high scanning rate let to get the signal to noise improvement of the order of 10 dB for the space-time signal processing.

Keywords: Antenna pattern, array, signal processing, spatial resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089
5632 Hydrochemical Contamination Profiling and Spatial-Temporal Mapping with the Support of Multivariate and Cluster Statistical Analysis

Authors: S. Barbosa, M. Pinto, J. A. Almeida, E. Carvalho, C. Diamantino

Abstract:

The aim of this work was to test a methodology able to generate spatial-temporal maps that can synthesize simultaneously the trends of distinct hydrochemical indicators in an old radium-uranium tailings dam deposit. Multidimensionality reduction derived from principal component analysis and subsequent data aggregation derived from clustering analysis allow to identify distinct hydrochemical behavioral profiles and generate synthetic evolutionary hydrochemical maps.

Keywords: Contamination plume migration, K-means of PCA scores, groundwater and mine water monitoring, spatial-temporal hydrochemical trends.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
5631 Wetting Front Propagation during Quenching of Aluminum Plate by Water Spray

Authors: M. M. Seraj, M. S. Gadala

Abstract:

This study presents a systematic analysis of wetted region due to cooling of aluminum plate by water spray impingement with respect to different water flow rates, spray nozzle heights, and subcooling. Unlike jet impingement, the wetting is not commenced upon spray impingement and there is a delay in wetness of hot test surface. After initiation, the wetting (black zone) progresses gradually to cover all test plate and provides efficient cooling in nucleate boiling regime. Generally, spray cooling is found function of spray flow rate, spray-to-surface distance and water subcooling. Wetting delay is decreasing by increasing of spray flow rate until spray impact area is not become bigger that test surface. Otherwise, higher spray flow rate is not practically accelerated start of wetting. Very fast wetting due to spray cooling can be obtained by dense spray (high floe rate) discharged from adjacent nozzle to the test surface. Highly subcooling water spray also triggers earlier wetting of hot aluminum plate.

Keywords: Water spray, wetting, aluminum plate, flow rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
5630 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: Short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, Gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606
5629 A Variable Structure MRAC for a Class of MIMO Systems

Authors: Ardeshir Karami Mohammadi

Abstract:

A Variable Structure Model Reference Adaptive Controller using state variables is proposed for a class of multi input-multi output systems. Adaptation law is of variable structure type and switching functions is designed based on stability requirements. Global exponential stability is proved based on Lyapunov criterion. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time.

Keywords: Adaptive control, Model reference, Variablestructure, MIMO system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
5628 A Case Study to Assess the Validity of Function Points

Authors: Neelam Bawane nee' Singhal, C. V. Srikrishna

Abstract:

Many metrics were proposed to evaluate the characteristics of the analysis and design model of a given product which in turn help to assess the quality of the product. Function point metric is a measure of the 'functionality' delivery by the software. This paper presents an analysis of a set of programs of a project developed in Cµ through Function Points metric. Function points are measured for a Data Flow Diagram (DFD) of the case developed at initial stage. Lines of Codes (LOCs) and possible errors are calculated with the help of measured Function Points (FPs). The calculations are performed using suitable established functions. Calculated LOCs and errors are compared with actual LOCs and errors found at the time of analysis & design review, implementation and testing. It has been observed that actual found errors are more than calculated errors. On the basis of analysis and observations, authors conclude that function point provides useful insight and helps to analyze the drawbacks in the development process.

Keywords: Function Points, Data Flow Diagram, Lines ofCodes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3681
5627 Fuzzy Cost Support Vector Regression

Authors: Hadi Sadoghi Yazdi, Tahereh Royani, Mehri Sadoghi Yazdi, Sohrab Effati

Abstract:

In this paper, a new version of support vector regression (SVR) is presented namely Fuzzy Cost SVR (FCSVR). Individual property of the FCSVR is operation over fuzzy data whereas fuzzy cost (fuzzy margin and fuzzy penalty) are maximized. This idea admits to have uncertainty in the penalty and margin terms jointly. Robustness against noise is shown in the experimental results as a property of the proposed method and superiority relative conventional SVR.

Keywords: Support vector regression, Fuzzy input, Fuzzy cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
5626 Statistical Analysis of Interferon-γ for the Effectiveness of an Anti-Tuberculous Treatment

Authors: Shishen Xie, Yingda L. Xie

Abstract:

Tuberculosis (TB) is a potentially serious infectious disease that remains a health concern. The Interferon Gamma Release Assay (IGRA) is a blood test to find out if an individual is tuberculous positive or negative. This study applies statistical analysis to the clinical data of interferon-gamma levels of seventy-three subjects who diagnosed pulmonary TB in an anti-tuberculous treatment. Data analysis is performed to determine if there is a significant decline in interferon-gamma levels for the subjects during a period of six months, and to infer if the anti-tuberculous treatment is effective.

Keywords: Data analysis, interferon gamma release assay, statistical methods, tuberculosis infection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
5625 Using Support Vector Machine for Prediction Dynamic Voltage Collapse in an Actual Power System

Authors: Muhammad Nizam, Azah Mohamed, Majid Al-Dabbagh, Aini Hussain

Abstract:

This paper presents dynamic voltage collapse prediction on an actual power system using support vector machines. Dynamic voltage collapse prediction is first determined based on the PTSI calculated from information in dynamic simulation output. Simulations were carried out on a practical 87 bus test system by considering load increase as the contingency. The data collected from the time domain simulation is then used as input to the SVM in which support vector regression is used as a predictor to determine the dynamic voltage collapse indices of the power system. To reduce training time and improve accuracy of the SVM, the Kernel function type and Kernel parameter are considered. To verify the effectiveness of the proposed SVM method, its performance is compared with the multi layer perceptron neural network (MLPNN). Studies show that the SVM gives faster and more accurate results for dynamic voltage collapse prediction compared with the MLPNN.

Keywords: Dynamic voltage collapse, prediction, artificial neural network, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
5624 A Study of the Effectiveness of the Routing Decision Support Algorithm

Authors: Wayne Goodridge, Alexander Nikov, Ashok Sahai

Abstract:

Multi criteria decision making (MCDM) methods like analytic hierarchy process, ELECTRE and multi-attribute utility theory are critically studied. They have irregularities in terms of the reliability of ranking of the best alternatives. The Routing Decision Support (RDS) algorithm is trying to improve some of their deficiencies. This paper gives a mathematical verification that the RDS algorithm conforms to the test criteria for an effective MCDM method when a linear preference function is considered.

Keywords: Decision support systems, linear preference function, multi-criteria decision-making algorithm, analytic hierarchy process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
5623 Characteristic Function in Estimation of Probability Distribution Moments

Authors: Vladimir S. Timofeev

Abstract:

In this article the problem of distributional moments estimation is considered. The new approach of moments estimation based on usage of the characteristic function is proposed. By statistical simulation technique author shows that new approach has some robust properties. For calculation of the derivatives of characteristic function there is used numerical differentiation. Obtained results confirmed that author’s idea has a certain working efficiency and it can be recommended for any statistical applications.

Keywords: Characteristic function, distributional moments, robustness, outlier, statistical estimation problem, statistical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
5622 Multiscale Syntheses of Knee Collateral Ligament Stresses: Aggregate Mechanics as a Function of Molecular Properties

Authors: Raouf Mbarki, Fadi Al Khatib, Malek Adouni

Abstract:

Knee collateral ligaments play a significant role in restraining excessive frontal motion (varus/valgus rotations). In this investigation, a multiscale frame was developed based on structural hierarchies of the collateral ligaments starting from the bottom (tropocollagen molecule) to up where the fibred reinforced structure established. Experimental data of failure tensile test were considered as the principal driver of the developed model. This model was calibrated statistically using Bayesian calibration due to the high number of unknown parameters. Then the model is scaled up to fit the real structure of the collateral ligaments and simulated under realistic boundary conditions. Predications have been successful in describing the observed transient response of the collateral ligaments during tensile test under pre- and post-damage loading conditions. Collateral ligaments maximum stresses and strengths were observed near to the femoral insertions, a results that is in good agreement with experimental investigations. Also for the first time, damage initiation and propagation were documented with this model as a function of the cross-link density between tropocollagen molecules.

Keywords: Multiscale model, tropocollagen, fibrils, ligaments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 604
5621 Performance Analysis of an Adaptive Threshold Hybrid Double-Dwell System with Antenna Diversity for Acquisition in DS-CDMA Systems

Authors: H. Krouma, M. Barkat, K. Kemih, M. Benslama, Y. Yacine

Abstract:

In this paper, we consider the analysis of the acquisition process for a hybrid double-dwell system with antenna diversity for DS-CDMA (direct sequence-code division multiple access) using an adaptive threshold. Acquisition systems with a fixed threshold value are unable to adapt to fast varying mobile communications environments and may result in a high false alarm rate, and/or low detection probability. Therefore, we propose an adaptively varying threshold scheme through the use of a cellaveraging constant false alarm rate (CA-CFAR) algorithm, which is well known in the field of radar detection. We derive exact expressions for the probabilities of detection and false alarm in Rayleigh fading channels. The mean acquisition time of the system under consideration is also derived. The performance of the system is analyzed and compared to that of a hybrid single dwell system.

Keywords: Adaptive threshold, hybrid double-dwell system, CA-CFAR algorithm, DS-CDMA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
5620 A New Hybrid RMN Image Segmentation Algorithm

Authors: Abdelouahab Moussaoui, Nabila Ferahta, Victor Chen

Abstract:

The development of aid's systems for the medical diagnosis is not easy thing because of presence of inhomogeneities in the MRI, the variability of the data from a sequence to the other as well as of other different source distortions that accentuate this difficulty. A new automatic, contextual, adaptive and robust segmentation procedure by MRI brain tissue classification is described in this article. A first phase consists in estimating the density of probability of the data by the Parzen-Rozenblatt method. The classification procedure is completely automatic and doesn't make any assumptions nor on the clusters number nor on the prototypes of these clusters since these last are detected in an automatic manner by an operator of mathematical morphology called skeleton by influence zones detection (SKIZ). The problem of initialization of the prototypes as well as their number is transformed in an optimization problem; in more the procedure is adaptive since it takes in consideration the contextual information presents in every voxel by an adaptive and robust non parametric model by the Markov fields (MF). The number of bad classifications is reduced by the use of the criteria of MPM minimization (Maximum Posterior Marginal).

Keywords: Clustering, Automatic Classification, SKIZ, MarkovFields, Image segmentation, Maximum Posterior Marginal (MPM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
5619 Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

Different order modulations combined with different coding schemes, allow sending more bits per symbol, thus achieving higher throughputs and better spectral efficiencies. However, it must also be noted that when using a modulation technique such as 64- QAM with less overhead bits, better signal-to-noise ratios (SNRs) are needed to overcome any Inter symbol Interference (ISI) and maintain a certain bit error ratio (BER). The use of adaptive modulation allows wireless technologies to yielding higher throughputs while also covering long distances. The aim of this paper is to implement an Adaptive Modulation and Coding (AMC) features of the WiMAX PHY in MATLAB and to analyze the performance of the system in different channel conditions (AWGN, Rayleigh and Rician fading channel) with channel estimation and blind equalization. Simulation results have demonstrated that the increment in modulation order causes to increment in throughput and BER values. These results derived a trade-off among modulation order, FFT length, throughput, BER value and spectral efficiency. The BER changes gradually for AWGN channel and arbitrarily for Rayleigh and Rician fade channels.

Keywords: AMC, CSI, CMA, OFDM, OFDMA, WiMAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3108
5618 An Incomplete Factorization Preconditioner for LMS Adaptive Filter

Authors: Shazia Javed, Noor Atinah Ahmad

Abstract:

In this paper an efficient incomplete factorization preconditioner is proposed for the Least Mean Squares (LMS) adaptive filter. The proposed preconditioner is approximated from a priori knowledge of the factors of input correlation matrix with an incomplete strategy, motivated by the sparsity patter of the upper triangular factor in the QRD-RLS algorithm. The convergence properties of IPLMS algorithm are comparable with those of transform domain LMS(TDLMS) algorithm. Simulation results show efficiency and robustness of the proposed algorithm with reduced computational complexity.

Keywords: Autocorrelation matrix, Cholesky's factor, eigenvalue spread, Markov input.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
5617 Small Sample Bootstrap Confidence Intervals for Long-Memory Parameter

Authors: Josu Arteche, Jesus Orbe

Abstract:

The log periodogram regression is widely used in empirical applications because of its simplicity, since only a least squares regression is required to estimate the memory parameter, d, its good asymptotic properties and its robustness to misspecification of the short term behavior of the series. However, the asymptotic distribution is a poor approximation of the (unknown) finite sample distribution if the sample size is small. Here the finite sample performance of different nonparametric residual bootstrap procedures is analyzed when applied to construct confidence intervals. In particular, in addition to the basic residual bootstrap, the local and block bootstrap that might adequately replicate the structure that may arise in the errors of the regression are considered when the series shows weak dependence in addition to the long memory component. Bias correcting bootstrap to adjust the bias caused by that structure is also considered. Finally, the performance of the bootstrap in log periodogram regression based confidence intervals is assessed in different type of models and how its performance changes as sample size increases.

Keywords: bootstrap, confidence interval, log periodogram regression, long memory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
5616 CASTE: a Cloud-Based Automatic Software Test Environment

Authors: Fuyang Peng, Bo Deng, Chao Qi

Abstract:

This paper presents the design and implementation of CASTE, a Cloud-based automatic software test environment. We first present the architecture of CASTE, then the main packages and classes of it are described in detail. CASTE is built upon a private Infrastructure as a Service platform. Through concentrated resource management of virtualized testing environment and automatic execution control of test scripts, we get a better solution to the testing resource utilization and test automation problem. Experiments on CASTE give very appealing results.

Keywords: Software testing, test environment, test script, cloud computing, IaaS, test automation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
5615 Environmentally Adaptive Acoustic Echo Suppression for Barge-in Speech Recognition

Authors: Jong Han Joo, Jeong Hun Lee, Young Sun Kim, Jae Young Kang, Seung Ho Choi

Abstract:

In this study, we propose a novel technique for acoustic echo suppression (AES) during speech recognition under barge-in conditions. Conventional AES methods based on spectral subtraction apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. However, the effects of echo path changes should be considered for eliminating the undesired echoes. We describe a new approach that adaptively updates weight parameters in response to abrupt changes in the acoustic environment due to background noises or double-talk. Furthermore, we devised a voice activity detector and an initial time-delay estimator for barge-in speech recognition in communication networks. The initial time delay is estimated using log-spectral distance measure, as well as cross-correlation coefficients. The experimental results show that the developed techniques can be successfully applied in barge-in speech recognition systems.

Keywords: Acoustic echo suppression, barge-in, speech recognition, echo path transfer function, initial delay estimator, voice activity detector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
5614 A Study on Fuzzy Adaptive Control of Enteral Feeding Pump

Authors: Seungwoo Kim, Hyojune Chae, Yongrae Jung, Jongwook Kim

Abstract:

Recent medical studies have investigated the importance of enteral feeding and the use of feeding pumps for recovering patients unable to feed themselves or gain nourishment and nutrients by natural means. The most of enteral feeding system uses a peristaltic tube pump. A peristaltic pump is a form of positive displacement pump in which a flexible tube is progressively squeezed externally to allow the resulting enclosed pillow of fluid to progress along it. The squeezing of the tube requires a precise and robust controller of the geared motor to overcome parametric uncertainty of the pumping system which generates due to a wide variation of friction and slip between tube and roller. So, this paper proposes fuzzy adaptive controller for the robust control of the peristaltic tube pump. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system. Finally, the good control performance, accurate dose rate and robust system stability, of the developed feeding pump is confirmed through experimental and clinic testing.

Keywords: Enteral Feeding Pump, Peristaltic Tube Pump, Fuzzy Adaptive Control, Fuzzy Multi-layered Controller, Look-up Table..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
5613 Subclasses of Bi-Univalent Functions Associated with Hohlov Operator

Authors: Rashidah Omar, Suzeini Abdul Halim, Aini Janteng

Abstract:

The coefficients estimate problem for Taylor-Maclaurin series is still an open problem especially for a function in the subclass of bi-univalent functions. A function f ϵ A is said to be bi-univalent in the open unit disk D if both f and f-1 are univalent in D. The symbol A denotes the class of all analytic functions f in D and it is normalized by the conditions f(0) = f’(0) – 1=0. The class of bi-univalent is denoted by  The subordination concept is used in determining second and third Taylor-Maclaurin coefficients. The upper bound for second and third coefficients is estimated for functions in the subclasses of bi-univalent functions which are subordinated to the function φ. An analytic function f is subordinate to an analytic function g if there is an analytic function w defined on D with w(0) = 0 and |w(z)| < 1 satisfying f(z) = g[w(z)]. In this paper, two subclasses of bi-univalent functions associated with Hohlov operator are introduced. The bound for second and third coefficients of functions in these subclasses is determined using subordination. The findings would generalize the previous related works of several earlier authors.

Keywords: Analytic functions, bi-univalent functions, Hohlov operator, subordination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
5612 EML-Estimation of Multivariate t Copulas with Heuristic Optimization

Authors: Jin Zhang, Wing Lon Ng

Abstract:

In recent years, copulas have become very popular in financial research and actuarial science as they are more flexible in modelling the co-movements and relationships of risk factors as compared to the conventional linear correlation coefficient by Pearson. However, a precise estimation of the copula parameters is vital in order to correctly capture the (possibly nonlinear) dependence structure and joint tail events. In this study, we employ two optimization heuristics, namely Differential Evolution and Threshold Accepting to tackle the parameter estimation of multivariate t distribution models in the EML approach. Since the evolutionary optimizer does not rely on gradient search, the EML approach can be applied to estimation of more complicated copula models such as high-dimensional copulas. Our experimental study shows that the proposed method provides more robust and more accurate estimates as compared to the IFM approach.

Keywords: Copula Models, Student t Copula, Parameter Inference, Differential Evolution, Threshold Accepting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
5611 Adaptive Helmholtz Resonator in a Hydraulic System

Authors: Lari Kela

Abstract:

An adaptive Helmholtz resonator was designed and adapted to hydraulics. The resonator was controlled by open- and closed-loop controls so that 20 dB attenuation of the peak-to-peak value of the pulsating pressure was maintained. The closed-loop control was noted to be better, albeit it was slower because of its low pressure and temperature variation, which caused variation in the effective bulk modulus of the hydraulic system. Low-pressure hydraulics contains air, which affects the stiffness of the hydraulics, and temperature variation changes the viscosity of the oil. Thus, an open-loop control loses its efficiency if a condition such as temperature or the amount of air changes after calibration. The instability of the low-pressure hydraulic system reduced the operational frequency range of the Helmholtz resonator when compared with the results of an analytical model. Different dampers for hydraulics are presented. Then analytical models of a hydraulic pipe and a hydraulic pipe with a Helmholtz resonator are presented. The analytical models are based on the wave equation of sound pressure. Finally, control methods and the results of experiments are presented.

Keywords: adaptive, damper, hydraulics, pressure, pulsating

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4354
5610 Adaptive Conjoint Analysis of Professionals’ Job Preferences

Authors: N. Scheidegger, A. Mueller

Abstract:

Job preferences are a well-developed research field. Many studies analyze the preferences using simple ratings with a sample of university graduates. The current study analyzes the preferences with a mixed method approach of a qualitative preliminary study and adaptive conjoint-analysis. Preconditions of accepting job offers are clarified for professionals in the industrial sector. It could be shown that, e.g. wages above the average are critical and that career opportunities must be seen broader than merely a focus on formal personnel development programs. The results suggest that, to be effective with their recruitment efforts, employers must take into account key desirable job attributes of their target group.

Keywords: Conjoint analysis, employer attractiveness, job preferences, personnel marketing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 982
5609 Relaxing Convergence Constraints in Local Priority Hysteresis Switching Logic

Authors: Mubarak Alhajri

Abstract:

This paper addresses certain inherent limitations of local priority hysteresis switching logic. Our main result establishes that under persistent excitation assumption, it is possible to relax constraints requiring strict positivity of local priority and hysteresis switching constants. Relaxing these constraints allows the adaptive system to reach optimality which implies the performance improvement. The unconstrained local priority hysteresis switching logic is examined and conditions for global convergence are derived.

Keywords: Adaptive control, convergence, hysteresis constant, hysteresis switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898
5608 A Modified Run Length Coding Technique for Test Data Compression Based on Multi-Level Selective Huffman Coding

Authors: C. Kalamani, K. Paramasivam

Abstract:

Test data compression is an efficient method for reducing the test application cost. The problem of reducing test data has been addressed by researchers in three different aspects: Test Data Compression, Built-in-Self-Test (BIST) and Test set compaction. The latter two methods are capable of enhancing fault coverage with cost of hardware overhead. The drawback of the conventional methods is that they are capable of reducing the test storage and test power but when test data have redundant length of runs, no additional compression method is followed. This paper presents a modified Run Length Coding (RLC) technique with Multilevel Selective Huffman Coding (MLSHC) technique to reduce test data volume, test pattern delivery time and power dissipation in scan test applications where redundant length of runs is encountered then the preceding run symbol is replaced with tiny codeword. Experimental results show that the presented method not only improves the test data compression but also reduces the overall test data volume compared to recent schemes. Experiments for the six largest ISCAS-98 benchmarks show that our method outperforms most known techniques.

Keywords: Modified run length coding, multilevel selective Huffman coding, built-in-self-test modified selective Huffman coding, automatic test equipment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
5607 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas

Authors: Ahmet Kayabasi, Ali Akdagli

Abstract:

In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.

Keywords: A-shaped compact microstrip antenna, Artificial Neural Network (ANN), adaptive Neuro-Fuzzy Inference System (ANFIS), Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
5606 Model to Support Synchronous and Asynchronous in the Learning Process with An Adaptive Hypermedia System

Authors: Francisca Grimón, Marylin Giugni, Josep Monguet F., Joaquín Fernández, Luis León G.

Abstract:

In blended learning environments, the Internet can be combined with other technologies. The aim of this research was to design, introduce and validate a model to support synchronous and asynchronous activities by managing content domains in an Adaptive Hypermedia System (AHS). The application is based on information recovery techniques, clustering algorithms and adaptation rules to adjust the user's model to contents and objects of study. This system was applied to blended learning in higher education. The research strategy used was the case study method. Empirical studies were carried out on courses at two universities to validate the model. The results of this research show that the model had a positive effect on the learning process. The students indicated that the synchronous and asynchronous scenario is a good option, as it involves a combination of work with the lecturer and the AHS. In addition, they gave positive ratings to the system and stated that the contents were adapted to each user profile.

Keywords: Blended Learning, System Adaptive, Model, Clustering Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
5605 Test Data Compression Using a Hybrid of Bitmask Dictionary and 2n Pattern Runlength Coding Methods

Authors: C. Kalamani, K. Paramasivam

Abstract:

In VLSI, testing plays an important role. Major problem in testing are test data volume and test power. The important solution to reduce test data volume and test time is test data compression. The Proposed technique combines the bit maskdictionary and 2n pattern run length-coding method and provides a substantial improvement in the compression efficiency without introducing any additional decompression penalty. This method has been implemented using Mat lab and HDL Language to reduce test data volume and memory requirements. This method is applied on various benchmark test sets and compared the results with other existing methods. The proposed technique can achieve a compression ratio up to 86%.

Keywords: Bit Mask dictionary, 2n pattern run length code, system-on-chip, SOC, test data compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
5604 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data

Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone

Abstract:

This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease dataset, the study successfully identified key factors, and the results were consistent with previous studies.

Keywords: Lyme disease, Poisson generalized linear model, Ridge regression, Lasso Regression, elastic net regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139