
Abstract—In this paper, a new version of support vector 

regression (SVR) is presented namely Fuzzy Cost SVR (FCSVR). 

Individual property of the FCSVR is operation over fuzzy data 

whereas fuzzy cost (fuzzy margin and fuzzy penalty) are maximized. 

This idea admits to have uncertainty in the penalty and margin terms 

jointly. Robustness against noise is shown in the experimental results 

as a property of the proposed method and superiority relative 

conventional SVR. 

Keywords—Support vector regression; Fuzzy input; Fuzzy cost. 

I. INTRODUCTION

HE standard support vector machine works over crisp 

training samples. Chun-fu Lin [1, and 2] proposed fuzzy 

support vector machine (FSVM) by considering the noise 

in the training samples. They used the membership function to 

express the membership value of a sample to positive or 

negative class, but with crisp training data. So it remains a 

conventional support vector machine from view point of fuzzy 

theory. Importance degree of training data are modeled in the 

FSVM by insertion of membership value i in penalty term of 

cost function to form of )(
2

1

1

2
l

i

iiCW . It is noted 

that the error term i  is scaled by i . The fuzzy membership 

values are used to weight the soft penalty term in the cost 

function of SVM. The weighted soft penalty term reflects the 

relative fidelity of the training samples during training. 

Important sample with large membership value will have more 

 emphasis in the FSVM training procedure and more effect 

over determination of hyperplanes. 

Hong into [3] presents support vector fuzzy regression 

machines. This paper introduces the use of SVM for 

multivariate fuzzy linear and nonlinear regression models. 

Presented model in [3] for regression includes fuzzy input and 

output yx ~,~ to form of 
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Then a SVM model is used for calculation of crisp 

w (weights). This model includes conventional fuzzy 

regression with new constraints. Upper and lower bound of 

fuzzy input and output are used for generation of constraints. 

But effect of fuzzy variables (input and output) over cost of 

SVR has not been considered. Assuredly, uncertainty in input 

data infects over margin and penalty maximization in the SVR 

which has not been studied in the previous works.   

In [4] Ji studied support vector machine with fuzzy chance 

constrains to following form 
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They showed that 0~aPos  with triangular fuzzy 

number ),,(~
321 rrra  and for any given level 

)10( is equivalent to: 0)1( 21 rr .

Thereupon, constraints of (2) are simplified.  

In our previous work [5], we apply probabilistic constraints 

for reducing of noisy samples in maximization of margin. A 

Constraint is to form of
iii

T

i ubxwdPr where 

iu is independent random variable with known distribution 

functions and 10 i is value of effect of ith samples in 

fixation of the optimal hyperplane. 

Liu in [6] presented total margin-based adaptive fuzzy 

support vector machines (TAF-SVM). TAF-SVM is a type of 

FSVM [1, and 2] which also corrects the skew of the optimal 

separating hyperplane due to the very imbalanced data sets by 

using different cost algorithm. This work is performed with 

dividing training data into two categories with different 

importance and result in dual problem is different boundary 

for Lagrange multipliers.  

In [1], linear and quadratic functions are presented for i in 

the FSVM which two main targets are followed, increasing 

margin and decreasing misclassification error. In [7] authors 

present two new methods for calculation of membership 

function of i based on geometry distribution of the training 

samples. Those samples are near to optimal hyperplane, have 

similar geometry property. The main idea of FSVM [1] is that 

if the input is detected as an outlier or noisy sample, 

membership function decreases so total error term decrease. In 

[8] new method for i  of FSVM is presented which follows 

in the same idea that one input is assigned a low membership 

of the class if it is detected as an outlier. However, method of 
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[8] treats each input as an input of the opposite class with 

higher membership and it makes full use the data and achieves 

better generalization ability. Also in two different works [9, 

and 10], authors try to determine membership function in 

multi-category data classification.  

After studying of related works, we categorize those to 

following form, 

I) Standard FSVM and its variants, which change 

membership function i .

II) SVMs with special constraints for better operation 

against noisy samples. 

III) SVM as a method for finding optimal parameters 

of regression model.  

Main idea in this work is presentation of full fuzzy support 

vector machine. We cannot believe fuzzy input or fuzzy 

penalty exist alone. If we assume that input signal is a fuzzy 

number then with this assumption fuzzyfication permeates into 

output part of SVM include margin and penalty terms. In this 

paper a new fuzzy cost and fuzzy input signal is considered 

and this work is organized as follows.  

The SVM and SVR are discussed in Section 2 with details. 

Section 3 devotes to explain the proposed method namely 

fuzzy cost SVR (FCSVR). Experimental results are discussed 

in Section 4 and final section include to conclusions and future 

work.

II. SUPPORT VECTOR MACHINE AND REGRESSION

We first discuss Support Vector Machine and Regression, 

prior to introducing our approach. The support vector machine 

(SVM) is a supervised learning method that generates input-

output mapping functions from a set of labeled training data. 

The mapping function can be either a classification function, 

i.e., the category of the input data, or a regression function. 

Initially developed for solving classification problems, support 

vector techniques can be successfully applied to regression. 

The general regression learning problem is set as follow: 

Suppose we are given training data 

RXyXyXyX ll ,,,,, 2211
, where X denotes the 

space of the input patterns (e.g. DRX ). In -SV regression , 

our goal is to find a function f(x) that has at most  deviation 

from the actually obtained targets iy for all the training data. 

The regressor must not only fit the given data well, but also 

make minimal errors in predicting the values at any other 

arbitrary point in 
DR . Nonlinear regression is accomplished 

by fitting a linear regressor in a higher dimensional feature 

space. A nonlinear transformation  is used to transform data 

points from the input space of dimension D into a feature 

space having a higher dimension L. The nonlinear mapping is 

denoted by : LD RR .

This problem can be written as a convex optimization 

problem: 
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where C > 0 is a constant,
*, ii are slack variables for soft 

margin SVM, that allow to accept some deviation larger than 

that is precision. It turns out that in most cases the 

optimization problem (3) can be solved more easily in its dual 

formulation. 
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where
*, ii  are Lagrange coefficients and matrix K is

termed as a kernel matrix and its elements are given by 

MjiXXXXK j

T

iji ,...,2,1,,,  . 

By solving (4) we can find Lagrange coefficients and by 

replacing them, we have 

)(
1

*

i

l

i

ii XW ,

Thus we can find hyperplane function as 

bXXKxf
l

i

jiii

1

*
,)()( (5)

III. THE PROPOSED FUZZY COST SUPPORT VECTOR 

REGRESSION (FCSVR)

In this section, we discuss the proposed algorithm for 

support vector regression, termed as fuzzy cost support vector 

regression (FCSVR). Consider the fuzzy sample 

set ),
~

),...(,
~

(),,
~

( 2211 ll yXyXyXS , where 

)~,...~,~(
~

21 di xxxX  is a fuzzy input vector and yi is desired 

output. Fuzzy input can be having different form of 

membership functions. Here we will consider the following 

linear membership function related to each fuzzy sample: 
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i
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i
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dXx

dXxX
d

xdX

Xx

x

0

1

(6) 

where id is tolerance of ith input vector 

and .,...,1,,1,0 liRxdi
                               

The support vector machine for fuzzy linear examples is to 

solve the below fuzzy quadratic programming: 
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In (7), fuzzy input lead to fuzzy 

cost
l

i

iiCWZ
1

*2
)(

2

1 . For entering of fuzzy 

concept in Z, we use following algorithm includes finding 

upper and lower cost function (Z) and its fuzzification.  

Step I) Boundary calculation of cost function 

Range of fuzzy samples is iii dXX , so; Z is obtained in 

bounds with solution of two classical convex quadratic 

programming (QP) problems to following form ((8) for lower 

bound and (9) for upper bound).  
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By solving (8) and (9), obtained values of Z are Z1and Z2. In 

the next step, cost function of Z is fuzzified for studying of all 

states of input signal in iii dXX , .

Step II) Fuzzyfication of cost function 

Lower and upper bound of Z are,  

lZZZMin 21 ,    (10) 

                             

uZZZMax 21,           (11) 

                                                                                          

Where uZ is upper bound and 
lZ  is lower bound of the object 

function of (8) and (9), respectively, and other optimum values 

are varying between two values where inputs are varying 

between iii dXX , . Now we can consider following 

linear membership function to determine optimal grade for Z.  
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And each of rows of classic model shall now be represented 

by a fuzzy set.  

Step III) Finding of decision space 
The membership function of the fuzzy set “decision” of fuzzy 

model is as following form:  
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Where .0i

T dW                                                                                           

Maximizing the minimum of x  is optimal solution of this 

model. 

xxxxxMin

Maximum

clcclcg

**

11 ,,,,,,
(15) 

By using -cut method, we arrive to following constraint 

programming  
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x

x

xtosubject

Maximize

ci

ci

g

*

10

               

   (16) 

   And with replacing from above and supposing that
i

T dW is 

against zero we have 

                                       

                                                               

                                                                                          

With solving this problem, we find optimized W, b and 

maximum .

IV. EXPERIMENTAL RESULTS 

This section demonstrates the effectiveness of our proposed 

models for linear function approximation. The experimental 

results pertaining to our proposed models are compared to 

conventional support vector regression model. In this work, 

we study effect of measurement noise over the proposed 

method in estimation of desired function. We use Matlab for 

implementation and testing our method. Results are obtained 

from average of 400 times execution of program. Before doing 

experiments, some definitions are mentioned.  

Triangular or trapezoidal form of fuzzy numbers is used for 

simulation of uncertain data in the operation of regression. 

They fall in duration
iii dXX , . If X

~
is a fuzzy number then 

alpha-cut of X
~

is showed by 
X

xX ~:
~

 that is a closed 

interval and it is denoted to UL XXX ,
~

 where 1,0 .

A LR-type fuzzy number X
~

with its membership 

function )(~ x
X

:

2
2

21

1
1

~ 1)(

mxfor
mx

R

mxmfor

mxfor
xm

L

x
X

This is called an LR-type TFN (Trapezoidal Fuzzy Number) 

where 1m , 2m are boundaries which in Fig 1.a are 2, 6 

respectively. , are slopes of right and left side of 

trapezoid. We show two kinds of TFN in the following figure.

(a)

            
(b) 

Fig. 1: a) Two common samples of TFN, b) LR-type triangular fuzzy 

number

In general case, fuzzy number X
~

is a number in 

duration
iii dXX ,  with defined uncertainty degree. Noise 

may affect over parameters of fuzzy numbers or effect of 

noise can be modeled to following form over LR-type fuzzy 

numbers, 

2
2
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1
1

~

ˆ
ˆ

ˆ

ˆˆ1

ˆ
ˆ

ˆ

)(

mxfor
mx

R

mxmfor

mxfor
xm

L

x
nX

Where 1m̂ , 2m̂ , ˆ , ˆ  are noisy parameters of LR-type fuzzy 

number which has been corrupted with uniform noise. Of 

course accurate study of noise effects and method of 

contamination is a new works in field of fuzzy numbers. 

Signal to Noise Ratio (SNR) is defined  where 

is main value of parameters and  is domain of noise. Also 

error is defined to form of 

N

i

ii yy
N

0

2)ˆ(
1

where iŷ  is 

obtained output using SVR or FCSVR method and iy  is 

desired output and N is number of training samples. 
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(17) 
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Example: with given samples are shown in the following 

figure, we want to estimate linear equation to form of 

. Of course for checking results, we know given 

data are generated from  and noise is added 

to   and we model noise to form of added noise into 

parameters of fuzzy numbers.  

Fig. 2: Noisy captured data in signal to noise ratio equal 13.9dB. 

Obtained results using standard SVR and FCSVR are shown 

in Table 1. Optimum value of input tolerance ( id , mentioned 

in (17)) is obtained using exhaustive search and shown in 

second column of table. Maximum value of membership 

degree is in the final column of table. Error indicates 

superiority of the proposed FCSVR relative standard SVR. 

, are estimated parameters by SVR and ,

 are estimated parameters by FCSVR. Also error of 

SVR ( ) and error of FCSVR ( ) are shown in Fig 

3.
TABLE I

RESULT OF ESTIMATION OF  FROM CAPTURED NOISY 

SAMPLES (YN) (AS SHOWN IN FIG 2) IN DIFFERENT SNR OVER 400 RUNS

   

SNR* id

26.02 0.08 3.82 3.68 4.10 4.01 0.04 0.0005 0.18 

20 0.14 3.92 3.75 4.20 4.00 0.17 0.0006 0.19 

16.47 0.2 4.00 3.83 4.29 3.96 0.35 0.0024 0.20 

13.97 0.28 4.11 3.96 4.39 3.86 0.66 0.0112 0.23 

12.76 0.3 4.10 3.97 4.46 3.87 1.03 0.02 0.22 

12.04 0.34 4.19 4.05 4.50 3.82 1.49 0.0409 0.22 

11.37 0.4 4.21 4.10 4.55 3.72 1.54 0.0438 0.24 

10.45 0.42 4.33 4.18 4.58 3.80 2.38 0.0784 0.21 

9.11 0.48 4.15 4.07 4.70 3.67 2.90 0.0819 0.23 

*SNR per db 

Fig. 3: Comparison of the proposed FCSVR and standard SVR     

Fig 4 demonstrates optimum tolerance ( id ) in different 

SNRs. In low noise condition or low SNR, for having low 

error needs to decrease of id . It means decreasing of certainty 

degree ( id ) must be performed if it is sensed signal has been 

contaminated with noise. So, if SNR decreases for having 

lower error, id must increase. But main problem understands 

of level of noise existing in signal. In the future work we 

follow it for completion regression system.  

Founded maximum membership ( ) in (17) shows relation 

of with SNR. With increasing noise level, increases but 

10-15% for 50% decreasing in SNR but for medium to high 

value of SNR. Increasing in means fuzzy values are selected 

in narrower range.  In the other words, according (17) 

constraints xxx cicig

*
,, are satisfied in 

higher certainty. For xg  with higher means, 

optimum Z in (9) goes towards lZ or cost function is spotted 

with higher degree of certainty. As we know, Z includes 

margin of SVR and penalty term, so decreasing uncertainty in 

margin is concluded in medium up to high level of SNR and 

simultaneous, penalty term have higher certainty.  From 

xx cici

*
,  we find in this condition, constraints 

move toward standard SVR.  

Abstractly, in high value of SNR, regression model moves 

toward SVR with high value of uncertainty because of 

uncertainty in modeling of input data. This lemma is correct 

only in medium and high range of SNR (more than 13dB) 

according to Fig 5. But we cannot present any subject for low 

value of SNR now.

Fig. 4: Input tolerance (di) versus SNR
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Fig. 5: Obtained versus SNR

Fig 6 shows function estimation using SVR and FCSVR in 

two different (medium and high value) SNR. Robustness of 

FCSVR against noise is noticeable relative to SVR.  

Fig. 6: Estimation of Y=3.73X+4 with two different SNR, left figure) 

SNR=30dB- right figure) SNR=14dB 

V. CONCLUSION AND FUTURE WORKS

Noisy samples are caused decreasing performance in the 

support vector regression method. Fuzzy margin with fuzzy 

penalty concept was introduced in this paper. This idea could 

help into decreasing of noise effect. Several experiments were 

performed and compared with standard SVR. Results indicate 

to superiority of the proposed method relative conventional 

SVR.
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