Search results for: Dynamic Stall
1507 Improving the Convergence of the Backpropagation Algorithm Using Local Adaptive Techniques
Authors: Z. Zainuddin, N. Mahat, Y. Abu Hassan
Abstract:
Since the presentation of the backpropagation algorithm, a vast variety of improvements of the technique for training a feed forward neural networks have been proposed. This article focuses on two classes of acceleration techniques, one is known as Local Adaptive Techniques that are based on weightspecific only, such as the temporal behavior of the partial derivative of the current weight. The other, known as Dynamic Adaptation Methods, which dynamically adapts the momentum factors, α, and learning rate, η, with respect to the iteration number or gradient. Some of most popular learning algorithms are described. These techniques have been implemented and tested on several problems and measured in terms of gradient and error function evaluation, and percentage of success. Numerical evidence shows that these techniques improve the convergence of the Backpropagation algorithm.
Keywords: Backpropagation, Dynamic Adaptation Methods, Local Adaptive Techniques, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21731506 Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor
Authors: Edison E. Haro, Akindele G. Odeshi, Jerzy A. Szpunar
Abstract:
Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts.
Keywords: Hybrid bio-composites, organic nano-fillers, dynamic shocking loading, ballistic impacts, energy absorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7591505 Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter
Authors: H. Bouadi, M. Tadjine
Abstract:
In this paper; we are interested in dynamic modelling of quadrotor while taking into account the high-order nonholonomic constraints as well as the various physical phenomena, which can influence the dynamics of a flying structure. These permit us to introduce a new state-space representation and new control scheme. We present after the development and the synthesis of a stabilizing control laws design based on sliding mode in order to perform best tracking results. It ensures locally asymptotic stability and desired tracking trajectories. Nonlinear observer is then synthesized in order to estimate the unmeasured states and the effects of the external disturbances such as wind and noise. Finally simulation results are also provided in order to illustrate the performances of the proposed controllers.
Keywords: Dynamic modelling, nonholonomic constraints, sliding mode, nonlinear observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29611504 Computational Analysis of Cavity Effect over Aircraft Wing
Authors: P. Booma Devi, Dilip A. Shah
Abstract:
This paper seeks the potentials of studying aerodynamic characteristics of inward cavities called dimples, as an alternative to the classical vortex generators. Increasing stalling angle is a greater challenge in wing design. But our examination is primarily focused on increasing lift. In this paper, enhancement of lift is mainly done by introduction of dimple or cavity in a wing. In general, aircraft performance can be enhanced by increasing aerodynamic efficiency that is lift to drag ratio of an aircraft wing. Efficiency improvement can be achieved by improving the maximum lift co-efficient or by reducing the drag co-efficient. At the time of landing aircraft, high angle of attack may lead to stalling of aircraft. To avoid this kind of situation, increase in the stalling angle is warranted. Hence, improved stalling characteristic is the best way to ease landing complexity. Computational analysis is done for the wing segment made of NACA 0012. Simulation is carried out for 30 m/s free stream velocity over plain airfoil and different types of cavities. The wing is modeled in CATIA V5R20 and analyses are carried out using ANSYS CFX. Triangle and square shapes are used as cavities for analysis. Simulations revealed that cavity placed on wing segment shows an increase of maximum lift co-efficient when compared to normal wing configuration. Flow separation is delayed at downstream of the wing by the presence of cavities up to a particular angle of attack.Keywords: Lift, square and rectangle dimples, enhancement of stall angle, cavity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18741503 Effect of Wavy Leading-Edges on Wings in Different Planetary Atmospheres
Authors: Vatasta Koul, Ayush Gupta, Vaibhav Sharma, Rajesh Yadav
Abstract:
Today we are unmarking the secrets of the universe by exploring different stars and planets and most of the space exploration is done by unmanned space robots. In addition to our planet Earth, there are pieces of evidence that show other astronomical objects in our solar system such as Venus, Mars, Saturn’s moon Titan and Uranus support the flight of fixed wing air vehicles. In this paper, we take forward the concept of presence of large rounded tubercles along the leading edge of a wing and use it as a passive flow control device that will help in improving its aerodynamic performance and maneuverability. Furthermore, in this research, aerodynamic measurements and performance analysis of wavy leading tubercles on the fixed wings at 5-degree angle of attack are carried out after determination of the flow conditions on the selected planetary bodies. Wavelength and amplitude for the sinusoidal modifications on the leading edge are analyzed and simulations are carried out for three-dimensional NACA 0012 airfoil maintaining unity AR (Aspect Ratio). Tubercles have consistently demonstrated the ability to delay and decrease the severity of stall as per the studies were done in the Earth’s atmosphere. Implementing the same design on the leading edges of Micro-Air Vehicles (MAVs) and UAVs could make these aircrafts more stable over a greater range of angles of attack in different planetary environments of our solar system.
Keywords: Amplitude, NACA0012, tubercles, unmanned space robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6601502 Temperature Field Study of Brake Disc in a Belt Conveyor Brake
Authors: Hou Youfu, Wang Daoming, Meng Qingrui
Abstract:
To reveal the temperature field distribution of disc brake in downward belt conveyor, mathematical models of heat transfer for disc brake were established combined with heat transfer theory. Then, the simulation process was stated in detail and the temperature field of disc brake under conditions of dynamic speed and dynamic braking torque was numerically simulated by using ANSYS software. Finally the distribution and variation laws of temperature field in the braking process were analyzed. Results indicate that the maximum surface temperature occurs at a time before the brake end and there exist large temperature gradients in both radial and axial directions, while it is relatively small in the circumferential direction.Keywords: Downward belt conveyor, Disc brake, Temperature field, Numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19541501 Fluid Structure Interaction Induced by Liquid Slosh in Partly Filled Road Tankers
Authors: Guorong Yan, Subhash Rakheja
Abstract:
The liquid cargo contained in a partly-filled road tank vehicle is prone to dynamic slosh movement when subjected to external disturbances. The slosh behavior has been identified as a significant factor impairing the safety of liquid cargo transportation. The laboratory experiments have been conducted for analyzing fluid slosh in partly filled tanks. The experiment results measured under forced harmonic excitations reveal the three-dimensional nature of the fluid motion and coupling between the lateral and longitudinal fluid slosh at resonance. Several spectral components are observed for the transient slosh forces, which can be associated with the excitation, resonance, and beat frequencies. The peak slosh forces and moments in the vicinity of resonance are significantly larger than those of the equivalent rigid mass. Due to the nature of coupling between sloshing fluid and vehicle body, the issue of the dynamic fluid-structure interaction is essential in the analysis of tank-vehicle dynamics. A dynamic pitch plane model of a Tridem truck incorporated the fluid slosh dynamics is developed to analyze the fluid-vehicle interaction under the straight-line braking maneuvers. The results show that the vehicle responses are highly associated with the characteristics of fluid slosh force and moment.Keywords: Braking performance, fluid induced vibration, fluidslosh, fluid structure interaction, tank trucks, vehicle dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30321500 Detecting the Nonlinearity in Time Series from Continuous Dynamic Systems Based on Delay Vector Variance Method
Authors: Shumin Hou, Yourong Li, Sanxing Zhao
Abstract:
Much time series data is generally from continuous dynamic system. Firstly, this paper studies the detection of the nonlinearity of time series from continuous dynamics systems by applying the Phase-randomized surrogate algorithm. Then, the Delay Vector Variance (DVV) method is introduced into nonlinearity test. The results show that under the different sampling conditions, the opposite detection of nonlinearity is obtained via using traditional test statistics methods, which include the third-order autocovariance and the asymmetry due to time reversal. Whereas the DVV method can perform well on determining nonlinear of Lorenz signal. It indicates that the proposed method can describe the continuous dynamics signal effectively.
Keywords: Nonlinearity, Time series, continuous dynamics system, DVV method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16271499 A System of Automatic Speech Recognition based on the Technique of Temporal Retiming
Authors: Samir Abdelhamid, Noureddine Bouguechal
Abstract:
We report in this paper the procedure of a system of automatic speech recognition based on techniques of the dynamic programming. The technique of temporal retiming is a technique used to synchronize between two forms to compare. We will see how this technique is adapted to the field of the automatic speech recognition. We will expose, in a first place, the theory of the function of retiming which is used to compare and to adjust an unknown form with a whole of forms of reference constituting the vocabulary of the application. Then we will give, in the second place, the various algorithms necessary to their implementation on machine. The algorithms which we will present were tested on part of the corpus of words in Arab language Arabdic-10 [4] and gave whole satisfaction. These algorithms are effective insofar as we apply them to the small ones or average vocabularies.Keywords: Continuous speech recognition, temporal retiming, phonetic decoding, algorithms, vocal signal, dynamic programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13491498 Response of Buildings with Soil-Structure Interaction with Varying Soil Types
Authors: Shreya Thusoo, Karan Modi, Rajesh Kumar, Hitesh Madahar
Abstract:
Over the years, it has been extensively established that the practice of assuming a structure being fixed at base, leads to gross errors in evaluation of its overall response due to dynamic loadings and overestimations in design. The extent of these errors depends on a number of variables; soil type being one of the major factor. This paper studies the effect of Soil Structure Interaction (SSI) on multistorey buildings with varying under-laying soil types after proper validation of the effect of SSI. Analysis for soft, stiff and very stiff base soils has been carried out, using a powerful Finite Element Method (FEM) software package ANSYS v14.5. Results lead to some very important conclusions regarding time period, deflection and acceleration responses.
Keywords: Dynamic response, multi-storey building, Soil-Structure Interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41671497 Development of EPID-based Real time Dose Verification for Dynamic IMRT
Authors: Todsaporn Fuangrod, Daryl J. O'Connor, Boyd MC McCurdy, Peter B. Greer
Abstract:
An electronic portal image device (EPID) has become a method of patient-specific IMRT dose verification for radiotherapy. Research studies have focused on pre and post-treatment verification, however, there are currently no interventional procedures using EPID dosimetry that measure the dose in real time as a mechanism to ensure that overdoses do not occur and underdoses are detected as soon as is practically possible. As a result, an EPID-based real time dose verification system for dynamic IMRT was developed and was implemented with MATLAB/Simulink. The EPID image acquisition was set to continuous acquisition mode at 1.4 images per second. The system defined the time constraint gap, or execution gap at the image acquisition time, so that every calculation must be completed before the next image capture is completed. In addition, the <=-evaluation method was used for dose comparison, with two types of comparison processes; individual image and cumulative dose comparison monitored. The outputs of the system are the <=-map, the percent of <=<1, and mean-<= versus time, all in real time. Two strategies were used to test the system, including an error detection test and a clinical data test. The system can monitor the actual dose delivery compared with the treatment plan data or previous treatment dose delivery that means a radiation therapist is able to switch off the machine when the error is detected.Keywords: real-time dose verification, EPID dosimetry, simulation, dynamic IMRT
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21921496 Design, Development and Evaluation of a Portable Recording System to Capture Dynamic Presentations Using the Teacher´s Tablet PC
Authors: Enrique Barra, Abel Carril, Aldo Gordillo, Joaquín Salvachúa, Juan Quemada
Abstract:
Computers and multimedia equipment have improved a lot in the last years. They have reduced their cost and size while at the same time increased their capabilities. These improvements allowed us to design and implement a portable recording system that also integrates the teacher´s tablet PC to capture what he/she writes on the slides and all that happens in it. This paper explains this system in detail and the validation of the recordings that we did after using it to record all the lectures the “Communications Software” course in our university. The results show that pupils used the recordings for different purposes and consider them useful for a variety of things, especially after missing a lecture.
Keywords: Recording System, capture dynamic presentations, lecture recording.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19271495 Secured Mutual Authentication Protocol for Radio Frequency Identification Systems
Authors: C. Kalamani, S. Sowmiya, S. Dheivambigai, G. Harihara Sudhan
Abstract:
Radio Frequency Identification (RFID) is a blooming technology which uses radio frequency to track the objects. This technology transmits signals between tag and reader to fetch information from the tag with a unique serial identity. Generally, the drawbacks of RFID technology are high cost, high consumption of power and weak authentication systems between a reader and a tag. The proposed protocol utilizes less dynamic power using reversible truncated multipliers which are implemented in RFID tag-reader with mutual authentication protocol system to reduce both leakage and dynamic power consumption. The proposed system was simulated using Xilinx and Cadence tools.Keywords: Mutual authentication, protocol, reversible gates, RFID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6821494 XPM Response of Multiple Quantum Well chirped DFB-SOA All Optical Flip-Flop Switching
Authors: Masoud Jabbari, Mohammad Kazem Moravvej-Farshi, Rahim Ghayour, Abbas Zarifkar
Abstract:
In this paper, based on the coupled-mode and carrier rate equations, derivation of a dynamic model and numerically analysis of a MQW chirped DFB-SOA all-optical flip-flop is done precisely. We have analyzed the effects of strains of QW and MQW and cross phase modulation (XPM) on the dynamic response, and rise and fall times of the DFB-SOA all optical flip flop. We have shown that strained MQW active region in under an optimized condition into a DFB-SOA with chirped grating can improve the switching ON speed limitation in such a of the device, significantly while the fall time is increased. The values of the rise times for such an all optical flip-flop, are obtained in an optimized condition, areas tr=255ps.
Keywords: All-Optical Flip-Flop (AO-FF), Distributed feedback semiconductor optical amplifier (DFB-SOA), Optical Bistability, Multi quantum well (MQW)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15651493 Analysis of Chatter in Ball End Milling by Wavelet Transform
Authors: S. Tangjitsitcharoen
Abstract:
The chatter is one of the major limitations of the productivity in the ball end milling process. It affects the surface roughness, the dimensional accuracy and the tool life. The aim of this research is to propose the new system to detect the chatter during the ball end milling process by using the wavelet transform. The proposed method is implemented on the 5-axis CNC machining center and the new three parameters are introduced from three dynamic cutting forces, which are calculated by taking the ratio of the average variances of dynamic cutting forces to the absolute variances of themselves. It had been proved that the chatter can be easier to detect during the in-process cutting by using the new parameters which are proposed in this research. The experimentally obtained results showed that the wavelet transform can provide the reliable results to detect the chatter under various cutting conditions.
Keywords: Ball end milling, wavelet transform, fast fourier transform, chatter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23771492 Study Interaction between Tin Dioxide Nanowhiskers and Ethanol Molecules in Gas Phase: Monte Carlo(MC) and Langevin Dynamics (LD) Simulation
Authors: L. Mahdavian, M. Raouf
Abstract:
Three dimensional nanostructure materials have attracted the attention of many researches because the possibility to apply them for near future devices in sensors, catalysis and energy related. Tin dioxide is the most used material for gas sensing because its three-dimensional nanostructures and properties are related to the large surface exposed to gas adsorption. We propose the use of branch SnO2 nanowhiskers in interaction with ethanol. All Sn atoms are symmetric. The total energy, potential energy and Kinetic energy calculated for interaction between SnO2 and ethanol in different distances and temperatures. The calculations achieved by methods of Langevin Dynamic and Mont Carlo simulation. The total energy increased with addition ethanol molecules and temperature so interactions between them are endothermic.
Keywords: Tin dioxide, nanowhisker, Ethanol, Langevin Dynamic and Mont Carlo Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11701491 Factors Influencing B2c eCommerce Diffusion
Authors: R. Mangiaracina, A. Perego, F. Campari
Abstract:
Despite the fact that B2c eCommerce has become important in numerous economies, its adoption varies from country to country. This paper aims to identify the factors affecting (enabling or inhibiting) B2c eCommerce and to determine their quantitative impact on the diffusion of online sales across countries. A dynamic panel model analyzing the relationship between 13 factors (Macroeconomic, Demographic, Socio-Cultural, Infrastructural and Offer related) stemming from a complete literature analysis and the B2c eCommerce value in 45 countries over 9 years has been developed. Having a positive correlation coefficient, GDP, mobile penetration, Internet user penetration and credit card penetration resulted as enabling drivers of the B2c eCommerce value across countries, whereas, having a negative correlation coefficient,equal distribution of income and the development of traditional retailing network act as inhibiting factors.Keywords: B2c eCommerce diffusion, influencing factors, dynamic panel model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35681490 Iterative Learning Control of Two Coupled Nonlinear Spherical Tanks
Authors: A. R. Tavakolpour-Saleh, A. R. Setoodeh, E. Ansari
Abstract:
This paper presents modeling and control of a highly nonlinear system including, non-interacting two spherical tanks using iterative learning control (ILC). Consequently, the objective of the paper is to control the liquid levels in the nonlinear tanks. First, a proportional-integral-derivative (PID) controller is applied to the plant model as a suitable benchmark for comparison. Then, dynamic responses of the control system corresponding to different step inputs are investigated. It is found that the conventional PID control is not able to fulfill the design criteria such as desired time constant. Consequently, an iterative learning controller is proposed to accurately control the coupled nonlinear tanks system. The simulation results clearly demonstrate the superiority of the presented ILC approach over the conventional PID controller to cope with the nonlinearities presented in the dynamic system.Keywords: Iterative learning control, spherical tanks, nonlinear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12501489 Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis
Authors: J. Ritonja, B. Grcar
Abstract:
For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations’ descriptions and the parameters’ determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators’ dynamic behaviour analysis and synchronous generator’s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator’s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator’s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results.
Keywords: Eigenvalue analysis, mathematical model, power system stability, synchronous generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15901488 Assessing the Antimicrobial Activity of Chitosan Nanoparticles by Fluorescence-Labeling
Authors: Laidson P. Gomes, Cristina T. Andrade, Eduardo M. Del Aguila, Cameron Alexander, Vânia M. F. Paschoalin
Abstract:
Chitosan is a natural polysaccharide prepared by the N-deacetylation of chitin. In this study, the physicochemical and antibacterial properties of chitosan nanoparticles, produced by ultrasound irradiation, were evaluated. The physicochemical properties of the nanoparticles were determined by dynamic light scattering and zeta potential analysis. Chitosan nanoparticles inhibited the growth of E. coli. The minimum inhibitory concentration (MIC) values were lower than 0.5 mg/mL, and the minimum bactericidal concentration (MBC) values were similar or higher than MIC values. Confocal laser scanning micrographs (CLSM) were used to observe the interaction between E. coli suspensions mixed with FITC-labeled chitosan polymers and nanoparticles.
Keywords: Chitosan nanoparticles, dynamic light scattering, zeta potential, confocal microscopy, antibacterial activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10791487 Enhanced Ant Colony Based Algorithm for Routing in Mobile Ad Hoc Network
Authors: Cauvery N. K., K. V. Viswanatha
Abstract:
Mobile Ad hoc network consists of a set of mobile nodes. It is a dynamic network which does not have fixed topology. This network does not have any infrastructure or central administration, hence it is called infrastructure-less network. The change in topology makes the route from source to destination as dynamic fixed and changes with respect to time. The nature of network requires the algorithm to perform route discovery, maintain route and detect failure along the path between two nodes [1]. This paper presents the enhancements of ARA [2] to improve the performance of routing algorithm. ARA [2] finds route between nodes in mobile ad-hoc network. The algorithm is on-demand source initiated routing algorithm. This is based on the principles of swarm intelligence. The algorithm is adaptive, scalable and favors load balancing. The improvements suggested in this paper are handling of loss ants and resource reservation.Keywords: Ad hoc networks, On-demand routing, Swarmintelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18361486 Dynamic Features Selection for Heart Disease Classification
Authors: Walid MOUDANI
Abstract:
The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the Coronary Heart Disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts- knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.Keywords: Multi-Classifier Decisions Tree, Features Reduction, Dynamic Programming, Rough Sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25351485 The Nonlinear Dynamic Elasto-Plastic Analysis for Evaluating the Controlling Effectiveness and Failure Mechanism of the MSCSS
Authors: Toi Limazie, Xun'an Zhang, Xianjie Wang
Abstract:
This paper focuses on the Mega-Sub Controlled Structure Systems (MSCSS) performances and characteristics regarding the new control principle contained in MSCSS subjected to strong earthquake excitations. The adopted control scheme consists of modulated sub-structures where the control action is achieved by viscous dampers and sub-structure own configuration. The elastic-plastic time history analysis under severe earthquake excitation is analyzed base on the Finite Element Analysis Method (FEAM), and some comparison results are also given in this paper. The result shows that the MSCSS systems can remarkably reduce vibrations effects more than the mega-sub structure (MSS). The study illustrates that the improved MSCSS presents good seismic resistance ability even at 1.2g and can absorb seismic energy in the structure, thus imply that structural members cross section can be reduce and achieve to good economic characteristics. Furthermore, the elasto-plastic analysis demonstrates that the MSCSS is accurate enough regarding international building evaluation and design codes. This paper also shows that the elasto-plastic dynamic analysis method is a reasonable and reliable analysis method for structures subjected to strong earthquake excitations and that the computed results are more precise.Keywords: controlling effectiveness, Elasto-plastic dynamic analysis, Mega-Sub Controlled Structure, Plastic hinge pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18371484 Highly Optimized Novel High Speed Low Power Barrel Shifter at 22nm Hi K Metal Gate Strained Si Technology Node
Authors: Shobha Sharma, Amita Dev
Abstract:
This research paper presents highly optimized barrel shifter at 22nm Hi K metal gate strained Si technology node. This barrel shifter is having a unique combination of static and dynamic body bias which gives lowest power delay product. This power delay product is compared with the same circuit at same technology node with static forward biasing at ‘supply/2’ and also with normal reverse substrate biasing and still found to be the lowest. The power delay product of this barrel sifter is .39362X10-17J and is lowered by approximately 78% to reference proposed barrel shifter at 32nm bulk CMOS technology. Power delay product of barrel shifter at 22nm Hi K Metal gate technology with normal reverse substrate bias is 2.97186933X10-17J and can be compared with this design’s PDP of .39362X10-17J. This design uses both static and dynamic substrate biasing and also has approximately 96% lower power delay product compared to only forward body biased at half of supply voltage. The NMOS model used are predictive technology models of Arizona state university and the simulations to be carried out using HSPICE simulator.Keywords: Dynamic body biasing, highly optimized barrel shifter, PDP, Static body biasing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18841483 Dynamic Data Partition Algorithm for a Parallel H.264 Encoder
Authors: Juntae Kim, Jaeyoung Park, Kyoungkun Lee, Jong Tae Kim
Abstract:
The H.264/AVC standard is a highly efficient video codec providing high-quality videos at low bit-rates. As employing advanced techniques, the computational complexity has been increased. The complexity brings about the major problem in the implementation of a real-time encoder and decoder. Parallelism is the one of approaches which can be implemented by multi-core system. We analyze macroblock-level parallelism which ensures the same bit rate with high concurrency of processors. In order to reduce the encoding time, dynamic data partition based on macroblock region is proposed. The data partition has the advantages in load balancing and data communication overhead. Using the data partition, the encoder obtains more than 3.59x speed-up on a four-processor system. This work can be applied to other multimedia processing applications.Keywords: H.264/AVC, video coding, thread-level parallelism, OpenMP, multimedia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17961482 Comparison and Improvement of the Existing Cone Penetration Test Results: Shear Wave Velocity Correlations for Hungarian Soils
Authors: Ákos Wolf, Richard P. Ray
Abstract:
Due to the introduction of Eurocode 8, the structural design for seismic and dynamic effects has become more significant in Hungary. This has emphasized the need for more effort to describe the behavior of structures under these conditions. Soil conditions have a significant effect on the response of structures by modifying the stiffness and damping of the soil-structural system and by modifying the seismic action as it reaches the ground surface. Shear modulus (G) and shear wave velocity (vs), which are often measured in the field, are the fundamental dynamic soil properties for foundation vibration problems, liquefaction potential and earthquake site response analysis. There are several laboratory and in-situ measurement techniques to evaluate dynamic soil properties, but unfortunately, they are often too expensive for general design practice. However, a significant number of correlations have been proposed to determine shear wave velocity or shear modulus from Cone Penetration Tests (CPT), which are used more and more in geotechnical design practice in Hungary. This allows the designer to analyze and compare CPT and seismic test result in order to select the best correlation equations for Hungarian soils and to improve the recommendations for the Hungarian geologic conditions. Based on a literature review, as well as research experience in Hungary, the influence of various parameters on the accuracy of results will be shown. This study can serve as a basis for selecting and modifying correlation equations for Hungarian soils. Test data are taken from seven locations in Hungary with similar geologic conditions. The shear wave velocity values were measured by seismic CPT. Several factors are analyzed including soil type, behavior index, measurement depth, geologic age etc. for their effect on the accuracy of predictions. The final results show an improved prediction method for Hungarian soils
Keywords: CPT correlation, dynamic soil properties, seismic CPT, shear wave velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11701481 Optimal Policy for a Deteriorating Inventory Model with Finite Replenishment Rate and with Price Dependant Demand Rate and Cycle Length Dependant Price
Authors: Hamed Sabahno
Abstract:
In this paper, an inventory model with finite and constant replenishment rate, price dependant demand rate, time value of money and inflation, finite time horizon, lead time and exponential deterioration rate and with the objective of maximizing the present worth of the total system profit is developed. Using a dynamic programming based solution algorithm, the optimal sequence of the cycles can be found and also different optimal selling prices, optimal order quantities and optimal maximum inventories can be obtained for the cycles with unequal lengths, which have never been done before for this model. Also, a numerical example is used to show accuracy of the solution procedure.Keywords: Deteriorating items, Dynamic programming, Finitereplenishment rate, Inventory control, Operation Research.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14041480 Nonlinear Time-History Analysis of 3-Dimensional Semi-rigid Steel Frames
Authors: Phu-Cuong Nguyen, Seung-Eock Kim
Abstract:
This paper presents nonlinear elastic dynamic analysis of 3-D semi-rigid steel frames including geometric and connection nonlinearities. The geometric nonlinearity is considered by using stability functions and updating geometric stiffness matrix. The nonlinear behavior of the steel beam-to-column connection is considered by using a zero-length independent connection element comprising of six translational and rotational springs. The nonlinear dynamic equilibrium equations are solved by the Newmark numerical integration method. The nonlinear time-history analysis results are compared with those of previous studies and commercial SAP2000 software to verify the accuracy and efficiency of the proposed procedure.Keywords: Geometric nonlinearity, nonlinear time-historyanalysis, semi-rigid connection, stability functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39561479 Numerical Modeling of Steel-Composite Hybrid Tubes Subject to Static and Dynamic Loading
Authors: Y. S. Tai, M. Y. Huang, H. T. Hu
Abstract:
The commercial finite element program LS-DYNA was employed to evaluate the response and energy absorbing capacity of cylindrical metal tubes that are externally wrapped with composite. The effects of composite wall thickness, loading conditions and fiber ply orientation were examined. The results demonstrate that a wrapped composite can be utilized effectively to enhance the crushing characteristics and energy absorbing capacity of the tubes. Increasing the thickness of the composite increases the mean force and the specific energy absorption under both static and dynamic crushing. The ply pattern affects the energy absorption capacity and the failure mode of the metal tube and the composite material property is also significant in determining energy absorption efficiency.
Keywords: fiber-reinforced metal tubes, energy absorption, axial crushing, impact loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25251478 Comparative Dynamic Performance of Load Frequency Control of Nonlinear Interconnected Hydro-Thermal System Using Intelligent Techniques
Authors: Banaja Mohanty, Prakash Kumar Hota
Abstract:
This paper demonstrates dynamic performance evaluation of load frequency control (LFC) with different intelligent techniques. All non-linearities and physical constraints have been considered in simulation studies such as governor dead band (GDB), generation rate constraint (GRC) and boiler dynamics. The conventional integral time absolute error has been considered as objective function. The design problem is formulated as an optimisation problem and particle swarm optimisation (PSO), bacterial foraging optimisation algorithm (BFOA) and differential evolution (DE) are employed to search optimal controller parameters. The superiority of the proposed approach has been shown by comparing the results with published fuzzy logic control (FLC) for the same interconnected power system. The comparison is done using various performance measures like overshoot, undershoot, settling time and standard error criteria of frequency and tie-line power deviation following a step load perturbation (SLP). It is noticed that, the dynamic performance of proposed controller is better than FLC. Further, robustness analysis is carried out by varying the time constants of speed governor, turbine, tie-line power in the range of +40% to -40% to demonstrate the robustness of the proposed DE optimized PID controller.Keywords: Automatic generation control, governor dead band, generation rate constraint, differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1061