Search results for: Aquatic training
605 Fuzzy Control of a Three Phase ThyristorizedInduction Motor
Authors: Abolfazl Jalilvand, Mohammad Reza Feyzi, Sohrab Khanmohammad, Mohammad Bagher Bana Sharifian, Ali Sajjadi
Abstract:
Nowadays the control of stator voltage at a constant frequency is one of the traditional and low expense methods in order to control the speed of induction motors near its nominal speed. The torque of induction motor is a nonlinear function of the firing angle, phase angle and speed. In this paper the speed control of induction motor regarding various load torque and under different conditions will be investigated based on a fuzzy controller with inverse training.
Keywords: Three phase induction motor, AC converter, speedcontrol, fuzzy control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797604 Hierarchical Clustering Analysis with SOM Networks
Authors: Diego Ordonez, Carlos Dafonte, Minia Manteiga, Bernardino Arcayy
Abstract:
This work presents a neural network model for the clustering analysis of data based on Self Organizing Maps (SOM). The model evolves during the training stage towards a hierarchical structure according to the input requirements. The hierarchical structure symbolizes a specialization tool that provides refinements of the classification process. The structure behaves like a single map with different resolutions depending on the region to analyze. The benefits and performance of the algorithm are discussed in application to the Iris dataset, a classical example for pattern recognition.Keywords: Neural networks, Self-organizing feature maps, Hierarchicalsystems, Pattern clustering methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947603 How to Use E-Learning to Increase Job Satisfaction in Large Commercial Bank in Bangkok
Authors: Teerada Apibunyopas, Nithinant Thammakoranonta
Abstract:
Many organizations bring e-Learning to use as a tool in their training and human development department. It is getting more popular because it is easy to access to get knowledge all the time and also it provides a rich content, which can develop the employees’ skill efficiently. This study is focused on the factors that affect using e-Learning efficiently, so it will make job satisfaction increasing. The questionnaires were sent to employees in large commercial banks, which use e-Learning located in Bangkok, the results from multiple linear regression analysis showed that employee’s characteristics, characteristics of e-Learning, learning and growth have influence on job satisfaction.
Keywords: e-Learning, Job Satisfaction, Learning and growth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386602 Stability of Electrical Motor Supplied by a Five Level Inverter
Authors: Kelaiaia Mounia Samira, Labar Hocine, Bounaya Kamel, Kelaiaia Samia
Abstract:
The development of the power electronics has allowed increasing the precision and reliability of the electrical trainings, thanks to the adjustable inverters, as the Pulse Wide Modulation (PWM) five level inverters, which is the object of study in this article.The authors treat the relation between the law order adopted for a given system and the oscillations of the electrical and mechanical parameters of which the tolerance depends on the process with which they are integrated (paper factory, lifting of the heavy loads, etc.).Thus the best choice of the regulation indexes allows us to achieve stability and safety training without investment (management of existing equipment).Keywords: multi level inverter, PWM, Harmonics, oscillation, control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658601 MEAL Project: Modifying Eating Attitudes and Actions through Learning
Authors: E. Oliver, A. Cebolla, A. Dominguez, A. Gonzalez-Segura, E. de la Cruz, S. Albertini, L. Ferrini, K. Kronika, T. Nilsen, R. Baños
Abstract:
The main objective of MEAL is to develop a pedagogical tool aimed to help teachers and nutritionists (students and professionals) to acquire, train, promote and deliver to children basic nutritional education and healthy eating behaviours competencies. MEAL is focused on eating behaviours and not only in nutritional literacy, and will use new technologies like Information and Communication Technologies (ICTs) and serious games (SG) platforms to consolidate the nutritional competences and habits.Keywords: Nutritional Education, Pedagogical ICT Platform, Serious Games, Teachers and Nutritionists, Training Course.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2275600 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System
Authors: Cheima Ben Soltane, Ittansa Yonas Kelbesa
Abstract:
Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.Keywords: Feature Extraction, Speaker Modeling, Feature Matching, Mel Frequency Cepstrum Coefficient (MFCC), Gaussian mixture model (GMM), Vector Quantization (VQ), Linde-Buzo-Gray (LBG), Expectation Maximization (EM), pre-processing, Voice Activity Detection (VAD), Short Time Energy (STE), Background Noise Statistical Modeling, Closed-Set Tex-Independent Speaker Identification System (CISI).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886599 Developing Learning in Organizations with Innovation Pedagogy Methods
Authors: T. Konst
Abstract:
Most jobs include training and communication tasks, but often the people in these jobs lack pedagogical competences to plan, implement and assess learning. This paper aims to discuss how a learning approach called innovation pedagogy developed in higher education can be utilized for learning development in various organizations. The methods presented how to implement innovation pedagogy such as process consultation and train the trainer model can provide added value to develop pedagogical knowhow in organizations and thus support their internal learning and development.
Keywords: Innovation pedagogy, learning, organizational development, process consultation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256598 Comparison between LQR and ANN Active Anti-Roll Control of a Single Unit Heavy Vehicle
Authors: Babesse Saad, Ameddah Djameleddine
Abstract:
In this paper, a learning algorithm using neuronal networks to improve the roll stability and prevent the rollover in a single unit heavy vehicle is proposed. First, LQR control to keep balanced normalized rollovers, between front and rear axles, below the unity, then a data collected from this controller is used as a training basis of a neuronal regulator. The ANN controller is thereafter applied for the nonlinear side force model, and gives satisfactory results than the LQR one.Keywords: Rollover, single unit heavy vehicle, neural networks, nonlinear side force.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1043597 On Cultivating Interdisciplinary Business Interpreting Talents Based On Market Demand
Authors: Haiyan Wang
Abstract:
Business interpreting talents are in badly need for local economic development, but currently there are problems of traditional business interpreting training mode in China. In view of the good opportunity for college business interpreters provided by international trading center development in Qingdao China and with the aim of being in line with market demand and enhancing business interpreters' employment competitive advantage, this paper aims to explore how to cultivate interdisciplinary business interpreting talents based on market demand.
Keywords: Interdisciplinary talents, business interpreting, market demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986596 Investigating the Performance of Minimax Search and Aggregate Mahalanobis Distance Function in Evolving an Ayo/Awale Player
Authors: Randle O. A., Olugbara, O. O., Lall M.
Abstract:
In this paper we describe a hybrid technique of Minimax search and aggregate Mahalanobis distance function synthesis to evolve Awale game player. The hybrid technique helps to suggest a move in a short amount of time without looking into endgame database. However, the effectiveness of the technique is heavily dependent on the training dataset of the Awale strategies utilized. The evolved player was tested against Awale shareware program and the result is appealing.
Keywords: Minimax Search, Mahalanobis Distance, Strategic Game, Awale
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654595 Assessment Methods for Surgical Skill
Authors: Siti Nor Zawani Ahmmad, Eileen Su Lee Ming, Yeong Che Fai, Fauzan Khairi bin Che Harun
Abstract:
The increasingly sophisticated technologies have now been able to provide assistance for surgeons to improve surgical performance through various training programs. Equally important to learning skills is the assessment method as it determines the learning and technical proficiency of a trainee. A consistent and rigorous assessment system will ensure that trainees acquire the specific level of competency prior to certification. This paper reviews the methods currently in use for assessment of surgical skill and some modern techniques using computer-based measurements and virtual reality systems for more quantitative measurementsKeywords: assessment, surgical skill, checklist, global rating, virtual reality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430594 Efficacy of Selected Mobility Exercises and Participation in Special Games on Psychomotor Abilities, Functional Abilities and Game Performance among Intellectually Disabled Children of Under 14 Age
Authors: J. Samuel Jesudoss
Abstract:
The purpose of the study was to find out the efficacy of selected mobility exercises and participation in special games on psychomotor abilities, functional abilities and skill performance among intellectually disabled children of age group under 14. Thirty male students who were studying in Balar Kalvi Nilayam and YMCA College Special School, Chennai, acted as subjects for the study. They were only mild and moderate in intellectual disability. These students did not undergo any special training or coaching programme apart from their regular routine physical activity classes as a part of the curriculum in the school. They were attached at random, based on age in which 30 belonged to under 14 age group, which was divided into three equal group of ten for each experimental treatment. 10 students (Treatment group I) underwent calisthenics and special games participation, 10 students (Treatment group II) underwent aquatics and special games participation, 10 students (Treatment group III) underwent yoga and special games participation. The subjects were tested on selected criterion variables prior (pre test) and after twelve weeks of training (post test). The pre and post test data collected from three groups on functional abilities(self care, learning, capacity for independent living), psychomotor variables(static balance, eye hand coordination, simple reaction time test) and skill performance (bocce skill, badminton skill, table tennis skill) were statistically examined for significant difference, by applying the analysis ANACOVA. Whenever an 'F' ratio for adjusted test was found to be significant for adjusted post test means, Scheffe-s test was followed as a post-hoc test to determine which of the paired mean differences was significant. The result of the study showed that among under 14 age groups there was a significant improvement on selected criterion variables such as, Balance, Coordination, self-care and learning and also in Bocce, Badminton & Table Tennis skill performance, due to mobility exercises and participation in special games. However there were no significant differences among the groups.Keywords: Functional ability, intellectually disabled, Mobility exercises, Psychomotor ability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973593 The Usefulness of Logical Structure in Flexible Document Categorization
Authors: Jebari Chaker, Ounalli Habib
Abstract:
This paper presents a new approach for automatic document categorization. Exploiting the logical structure of the document, our approach assigns a HTML document to one or more categories (thesis, paper, call for papers, email, ...). Using a set of training documents, our approach generates a set of rules used to categorize new documents. The approach flexibility is carried out with rule weight association representing your importance in the discrimination between possible categories. This weight is dynamically modified at each new document categorization. The experimentation of the proposed approach provides satisfactory results.Keywords: categorization rule, document categorization, flexible categorization, logical structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246592 The Multi-Layered Perceptrons Neural Networks for the Prediction of Daily Solar Radiation
Authors: Radouane Iqdour, Abdelouhab Zeroual
Abstract:
The Multi-Layered Perceptron (MLP) Neural networks have been very successful in a number of signal processing applications. In this work we have studied the possibilities and the met difficulties in the application of the MLP neural networks for the prediction of daily solar radiation data. We have used the Polack-Ribière algorithm for training the neural networks. A comparison, in term of the statistical indicators, with a linear model most used in literature, is also performed, and the obtained results show that the neural networks are more efficient and gave the best results.Keywords: Daily solar radiation, Prediction, MLP neural networks, linear model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328591 Learning and Evaluating Possibilistic Decision Trees using Information Affinity
Authors: Ilyes Jenhani, Salem Benferhat, Zied Elouedi
Abstract:
This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks.Keywords: Data mining from uncertain data, Decision Trees, Possibility Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515590 Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method
Abstract:
The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate.Keywords: Adsorption, Breakthrough curve, Clay, Fixed bed column, Rhodamine B, Regeneration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675589 Improving Classification in Bayesian Networks using Structural Learning
Authors: Hong Choon Ong
Abstract:
Naïve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Naïve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Naïve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent.Keywords: Bayesian Network, Classification, Naïve Bayes, Structural Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599588 Decomposition Method for Neural Multiclass Classification Problem
Authors: H. El Ayech, A. Trabelsi
Abstract:
In this article we are going to discuss the improvement of the multi classes- classification problem using multi layer Perceptron. The considered approach consists in breaking down the n-class problem into two-classes- subproblems. The training of each two-class subproblem is made independently; as for the phase of test, we are going to confront a vector that we want to classify to all two classes- models, the elected class will be the strongest one that won-t lose any competition with the other classes. Rates of recognition gotten with the multi class-s approach by two-class-s decomposition are clearly better that those gotten by the simple multi class-s approach.Keywords: Artificial neural network, letter-recognition, Multi class Classification, Multi Layer Perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572587 Support Vector Fuzzy Based Neural Networks For Exchange Rate Modeling
Authors: Prof. Chokri SLIM
Abstract:
A Novel fuzzy neural network combining with support vector learning mechanism called support-vector-based fuzzy neural networks (SVBFNN) is proposed. The SVBFNN combine the capability of minimizing the empirical risk (training error) and expected risk (testing error) of support vector learning in high dimensional data spaces and the efficient human-like reasoning of FNN.
Keywords: Neural network, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16687586 Genetic Algorithm with Fuzzy Genotype Values and Its Application to Neuroevolution
Authors: Hidehiko Okada
Abstract:
The author proposes an extension of genetic algorithm (GA) for solving fuzzy-valued optimization problems. In the proposed GA, values in the genotypes are not real numbers but fuzzy numbers. Evolutionary processes in GA are extended so that GA can handle genotype instances with fuzzy numbers. The proposed method is applied to evolving neural networks with fuzzy weights and biases. Experimental results showed that fuzzy neural networks evolved by the fuzzy GA could model hidden target fuzzy functions well despite the fact that no training data was explicitly provided.
Keywords: Evolutionary algorithm, genetic algorithm, fuzzy number, neural network, neuroevolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302585 Management of Multimedia Contents for Distributed e-Learning System
Authors: Kazunari Meguro, Daisuke Yamamoto, Shinichi Motomura, Toshihiko Sasama, Takao Kawamura, Kazunori Sugahara
Abstract:
We have developed a distributed asynchronous Web based training system. In order to improve the scalability and robustness of this system, all contents and functions are realized on mobile agents. These agents are distributed to computers, and they can use a Peer to Peer network that modified Content-Addressable Network. In the proposed system, only text data can be included in a exercise. To make our proposed system more useful, the mechanism that it not only adapts to multimedia data but also it doesn-t influence the user-s learning even if the size of exercise becomes large is necessary.Keywords: e-Learning, multimedia, Mobile Agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489584 Educational Path for Pedagogical Skills: A Football School Experience
Authors: A. Giani
Abstract:
The current pedagogical culture recognizes an educational scope within the sports practices. It is widely accepted, in the pedagogical culture, that thanks to the acquisition and development of motor skills, it is also possible to exercise abilities that concern the way of facing and managing the difficulties of everyday life. Sport is a peculiar educational environment: the children have the opportunity to discover the possibilities of their body, to correlate with their peers, and to learn how to manage the rules and the relationship with authorities, such as coaches. Educational aspects of the sport concern both non-formal and formal educational environments. Coaches play a critical role in an agonistic sphere: exactly like the competencies developed by the children, coaches have to work on their skills to properly set up the educational scene. Facing these new educational tasks - which are not new per se, but new because they are brought back to awareness - a few questions arise: does the coach have adequate preparation? Is the training of the coach in this specific area appropriate? This contribution aims to explore the issue in depth by focusing on the reality of the Football School. Starting from a possible sense of pedagogical inadequacy detected during a series of meetings with several football clubs in Piedmont (Italy), there have been highlighted some important educational needs within the professional training of sports coaches. It is indeed necessary for the coach to know the processes underlying the educational relationship in order to better understand the centrality of the assessment during the educational intervention and to be able to manage the asymmetry in the coach-athlete relationship. In order to provide a response to these pedagogical needs, a formative plan has been designed to allow both an in-depth study of educational issues and a correct self-evaluation of certain pedagogical skills’ control levels, led by the coach. This plan has been based on particular practices, the Educational Practices of Pre-test (EPP), a specific version of community practices designed for the extracurricular activities. The above-mentioned practices realized through the use of texts meant as pre-tests, promoted a reflection within the group of coaches: they set up real and plausible sports experiences - in particular football, triggering a reflection about the relationship’s object, spaces, and methods. The characteristic aspect of pre-tests is that it is impossible to anticipate the reflection as it is necessarily connected to the personal experience and sensitivity, requiring a strong interest and involvement by participants: situations must be considered by the coaches as possible settings in which they could be found on the field.
Keywords: Relational needs, responsibility, self-evaluation, values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423583 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: Metagenomics, phenotype prediction, deep learning, embeddings, multiple instance learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910582 Stability of Electrical Drives Supplied by a Three Level Inverter
Authors: M. S. Kelaiaia, H. Labar, S. Kelaiaia, T. Mesbah
Abstract:
The development of the power electronics has allowed increasing the precision and reliability of the electrical devices, thanks to the adjustable inverters, as the Pulse Wide Modulation (PWM) applied to the three level inverters, which is the object of this study. The authors treat the relation between the law order adopted for a given system and the oscillations of the electrical and mechanical parameters of which the tolerance depends on the process with which they are integrated (paper factory, lifting of the heavy loads, etc.).Thus, the best choice of the regulation indexes allows us to achieve stability and safety training without investment (management of existing equipment). The optimal behavior of any electric device can be achieved by the minimization of the stored electrical and mechanical energy.Keywords: Multi level inverter, PWM, Harmonics, oscillation, control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373581 Accent Identification by Clustering and Scoring Formants
Authors: Dejan Stantic, Jun Jo
Abstract:
There have been significant improvements in automatic voice recognition technology. However, existing systems still face difficulties, particularly when used by non-native speakers with accents. In this paper we address a problem of identifying the English accented speech of speakers from different backgrounds. Once an accent is identified the speech recognition software can utilise training set from appropriate accent and therefore improve the efficiency and accuracy of the speech recognition system. We introduced the Q factor, which is defined by the sum of relationships between frequencies of the formants. Four different accents were considered and experimented for this research. A scoring method was introduced in order to effectively analyse accents. The proposed concept indicates that the accent could be identified by analysing their formants.Keywords: Accent Identification, Formants, Q Factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089580 Enhancing the Quality of Learning by Using an Innovative Approach for Teaching Energy in Secondary Schools
Authors: Adriana Alexandru, Ovidiu Bica, Eleonora Tudora, Cristina Simona Alecu, Cristina-Adriana Alexandru, Ioan Covalcic
Abstract:
This paper presents the results of the authors in designing, experimenting, assessing and transferring an innovative approach to energy education in secondary schools, aimed to enhance the quality of learning in terms of didactic curricula and pedagogic methods. The training is online delivered to youngsters via e-Books and portals specially designed for this purpose or by learning by doing via interactive games. An online educational methodology is available teachers.
Keywords: Education, eLearning, Energy Efficiency, InternetMethodology, Renewable Energy Sources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665579 Regional Medical Imaging System
Authors: Michal Javornik, Otto Dostal, Karel Slavicek
Abstract:
The purpose of this article is to introduce an advanced system for the support of processing of medical image information, and the terminology related to this system, which can be an important element to a faster transition to a fully digitalized hospital. The core of the system is a set of DICOM compliant applications running over a dedicated computer network. The whole integrated system creates a collaborative platform supporting daily routines in the radiology community, developing communication channels, supporting the exchange of information and special consultations among various medical institutions as well as supporting medical training for practicing radiologists and medical students. It gives the users outside of hospitals the tools to work in almost the same conditions as in the radiology departments.Keywords: DICOM, Integration, Medical Education, MedicalImaging
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976578 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks
Authors: Yuichi Masukake, Yoshihisa Ishida
Abstract:
In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482577 Real-Time Identification of Media in a Laboratory-Scaled Penetrating Process
Authors: Sheng-Hong Pong, Herng-Yu Huang, Yi-Ju Lee, Shih-Hsuan Chiu
Abstract:
In this paper, a neural network technique is applied to real-time classifying media while a projectile is penetrating through them. A laboratory-scaled penetrating setup was built for the experiment. Features used as the network inputs were extracted from the acceleration of penetrator. 6000 set of features from a single penetration with known media and status were used to train the neural network. The trained system was tested on 30 different penetration experiments. The system produced an accuracy of 100% on the training data set. And, their precision could be 99% for the test data from 30 tests.Keywords: back-propagation, identification, neural network, penetration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1277576 Robust Cerebellar Model Articulation Controller Design for Flight Control Systems
Authors: Y. J. Huang, T. C. Kuo, B. W. Hong, B. C. Wu
Abstract:
This paper presents a robust proportionalderivative (PD) based cerebellar model articulation controller (CMAC) for vertical take-off and landing flight control systems. Successful on-line training and recalling process of CMAC accompanying the PD controller is developed. The advantage of the proposed method is mainly the robust tracking performance against aerodynamic parametric variation and external wind gust. The effectiveness of the proposed algorithm is validated through the application of a vertical takeoff and landing aircraft control system.Keywords: vertical takeoff and landing, cerebellar modelarticulation controller, proportional-derivative control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633