Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Seawater
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Study of the Behavior of an Organic Coating Applied on Algerian Oil Tanker in Seawater

Authors: N. Hammouda, K. Belmokre

Abstract:

Paints are the most widely used methods of protection against atmospheric corrosion of metals. The aim of this work was to determine the protective performance of epoxy coating against sea water before and after damage. Investigations are conducted using stationary and non-stationary electrochemical tools such as electrochemical impedance spectroscopy has allowed us to characterize the protective qualities of these films. The application of the EIS on our damaged in-situ painting shows the existence of several capacitive loops which is an indicator of the failure of our tested paint. Microscopic analysis (micrograph) helped bring essential elements in understanding the degradation of our paint condition and immersion training corrosion products.

Keywords: Epoxy Paints, Electrochemical Impedance Spectroscopy, Corrosion Mechanisms, sea water.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1100068

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874

References:


[1] D. Aylor, Sewater. In Corrosion Tests and Standards: Application and Interpretation. Philadelphia: ASTM, P. 307, 1995.
[2] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamental and Applications, Wiley, New York, USA, 1980.
[3] J.R. McDonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems, Wiley, New York, USA, 1987.
[4] F. Mansfeld, J. B. Lumsden, S. L. Jeanjaquet, S. Tsaï, Evaluation of surface pretreatment methods for application of organic coatings, Corrosion Control by Organic Coatings, H. Leidheiser, Jr. - Editor NACE 1981, pp. 227-237.
[5] X .R. Novoa, M. Izquierdo, P. Merino and L. Espada, Mater. Sci.Forum 44 & 45, 223 (1989).
[6] J. M. R. Genin, D. Rezel, Ph. Bauer, A. Olowe, A. Beral, Electrochem. Methods in Corrosion Research, 8, p.477-490 (1986).
[7] N. Azzouz, Thèse, LCTS, univ. Franche, compté, France (1992).
[8] W. Strunz, Dielectric relaxation in banier coatings, volume 39, issue 1, 2000, daudes 49-60.
[9] M. Keddam, O. R.Mattos, H. Takenouti, Electrochem. Soc. 1981, 128,257.
[10] C. Gabrielli, Identification of electrochemical process by frequency response analysis, Solartron Schlumberger, 1984.
[11] conversation privée avec M. keddam, directeur du laboratoire de physique des liquides et électrochimie, U.P.R.15 du C.N.R.S, Paris- Jussieu, décembre 2001.
[12] K. Belmokre, F. Kermiche, J. Pagetti, Bull. Soc. Chim. Belg. 1997, 106, 177.
[13] E. P. M. Van Westing, G. M. Ferrari, J. H. Dewit, Corros.Sci. 1994, 36, 957.
[14] M. Tzolov, N. Tzenov, D. Dimova-Malinovska, M. Kalitzova, C. Pizzuto, G. Vitali, G. Zollo and I. Ivanov, “Vibrational Properties and Structure of Undoped and Al-Doped ZnO Films Deposited by RF Magnetron Sputtering,” Thin Solid Films, Vol. 379, No. 1-2, 2000, pp.28-36.
[15] C. Cachet, et al., “EIS Investigation of Zinc Dissolution in Aerated Sulphate Medium. Part II: Zinc Coatings,” Electrochimica Acta, Vol. 47, No. 21, 2002, pp. 3409- 3422.
[16] D. L. A. De Faria, S. V. Silva, et al., “Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides,” Journal of Raman Spectroscopy, Vol. 28, No. 11, November 1997, pp. 873-878.
[17] P. Kalenda, “Effects of Particle Sizes and Shapes of Zinc Metal on the Properties of Anticorrosive Coatings,” Progress in Organic Coatings, Vol. 46, No. 4, 1993, pp. 324-332.