Search results for: CHAID Decision Tree Algorithm
217 Building Information Modelling for Construction Delay Management
Authors: Essa Alenazi, Zulfikar Adamu
Abstract:
The Kingdom of Saudi Arabia (KSA) is not an exception in relying on the growth of its construction industry to support rapid population growth. However, its need for infrastructure development is constrained by low productivity levels and cost overruns caused by factors such as delays to project completion. Delays in delivering a construction project are a global issue and while theories such as Optimism Bias have been used to explain such delays, in KSA, client-related causes of delays are also significant. The objective of this paper is to develop a framework-based approach to explore how the country’s construction industry can manage and reduce delays in construction projects through building information modelling (BIM) in order to mitigate the cost consequences of such delays. It comprehensively and systematically reviewed the global literature on the subject and identified gaps, critical delay factors and the specific benefits that BIM can deliver for the delay management. A case study comprising of nine hospital projects that have experienced delay and cost overruns was also carried out. Five critical delay factors related to the clients were identified as candidates that can be mitigated through BIM’s benefits. These factors are: Ineffective planning and scheduling of the project; changes during construction by the client; delay in progress payment; slowness in decision making by the client; and poor communication between clients and other stakeholders. In addition, data from the case study projects strongly suggest that optimism bias is present in many of the hospital projects. Further validation via key stakeholder interviews and documentations are planned.
Keywords: BIM, client perspective, delay management, optimism bias, public sector projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472216 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: Adaptive sampling, batch bulk methyl methacrylate polymerization, large margin nearest neighbor regression, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403215 A Robust Reception of IEEE 802.15.4a IR-TH UWB in Dense Multipath and Gaussian Noise
Authors: Farah Haroon, Haroon Rasheed, Kazi M Ahmed
Abstract:
IEEE 802.15.4a impulse radio-time hopping ultra wide band (IR-TH UWB) physical layer, due to small duty cycle and very short pulse widths is robust against multipath propagation. However, scattering and reflections with the large number of obstacles in indoor channel environments, give rise to dense multipath fading. It imposes serious problem to optimum Rake receiver architectures, for which very large number of fingers are needed. Presence of strong noise also affects the reception of fine pulses having extremely low power spectral density. A robust SRake receiver for IEEE 802.15.4a IRTH UWB in dense multipath and additive white Gaussian noise (AWGN) is proposed to efficiently recover the weak signals with much reduced complexity. It adaptively increases the signal to noise (SNR) by decreasing noise through a recursive least square (RLS) algorithm. For simulation, dense multipath environment of IEEE 802.15.4a industrial non line of sight (NLOS) is employed. The power delay profile (PDF) and the cumulative distribution function (CDF) for the respective channel environment are found. Moreover, the error performance of the proposed architecture is evaluated in comparison with conventional SRake and AWGN correlation receivers. The simulation results indicate a substantial performance improvement with very less number of Rake fingers.Keywords: Adaptive noise cancellation, dense multipath propoagation, IEEE 802.15.4a, IR-TH UWB, industrial NLOS environment, SRake receiver
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831214 Citizen Participation in Informal Settlements; Potentials & Obstacles - The Case of Iran, Shiraz, Saadi Community
Authors: Hamid Mohammadi Makerani
Abstract:
In recent years, “Bottom-up Planning Approach" has been widely accepted and expanded from planning theorists. Citizen participation becomes more important in decision-making in informal settlements. Many of previous projects and strategies due to ignorance of citizen participation, have been failed facing with informal settlements and in some cases lead physical expansion of these neighbourhoods. According to recent experiences, the new participatory approach was in somehow successful. This paper focuses on local experiences in Iran. A considerable amount of people live in informal settlements in Iran. With the previous methods, the government could not solve the problems of these settlements. It is time to examine new methods such as empowerment of the local citizens and involve them to solve the current physical, social, and economic problems. The paper aims to address the previous and new strategies facing with informal settlements, the conditions under which citizens could be involved in planning process, limits and potentials of this process, the main actors and issues and finally motivations that are able to promote citizen participation. Documentary studies, observation, interview and questionnaire have been used to achieve the above mentioned objectives. Nearly 80 percent of responder in Saadi Community are ready to participate in regularising their neighbourhoods, if pre-conditions of citizen involvement are being provided. These pre-conditions include kind of problem and its severity, the importance of issue, existence of a short-term solution, etc. Moreover, confirmation of dweller-s ownership can promote the citizen engagement in participatory projects.
Keywords: Bottom-up Planning, Citizen Participation, Informal Settlements, Local Resources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2505213 Reduction of False Positives in Head-Shoulder Detection Based on Multi-Part Color Segmentation
Authors: Lae-Jeong Park
Abstract:
The paper presents a method that utilizes figure-ground color segmentation to extract effective global feature in terms of false positive reduction in the head-shoulder detection. Conventional detectors that rely on local features such as HOG due to real-time operation suffer from false positives. Color cue in an input image provides salient information on a global characteristic which is necessary to alleviate the false positives of the local feature based detectors. An effective approach that uses figure-ground color segmentation has been presented in an effort to reduce the false positives in object detection. In this paper, an extended version of the approach is presented that adopts separate multipart foregrounds instead of a single prior foreground and performs the figure-ground color segmentation with each of the foregrounds. The multipart foregrounds include the parts of the head-shoulder shape and additional auxiliary foregrounds being optimized by a search algorithm. A classifier is constructed with the feature that consists of a set of the multiple resulting segmentations. Experimental results show that the presented method can discriminate more false positive than the single prior shape-based classifier as well as detectors with the local features. The improvement is possible because the presented approach can reduce the false positives that have the same colors in the head and shoulder foregrounds.
Keywords: Pedestrian detection, color segmentation, false positives, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1149212 Effect of Dynamic Stall, Finite Aspect Ratio and Streamtube Expansion on VAWT Performance Prediction using the BE-M Model
Authors: M. Raciti Castelli, A. Fedrigo, E. Benini
Abstract:
A multiple-option analytical model for the evaluation of the energy performance and distribution of aerodynamic forces acting on a vertical-axis Darrieus wind turbine depending on both rotor architecture and operating conditions is presented. For this purpose, a numerical algorithm, capable of generating the desired rotor conformation depending on design geometric parameters, is coupled to a Single/Double-Disk Multiple-Streamtube Blade Element – Momentum code. Both single and double-disk configurations are analyzed and model predictions are compared to literature experimental data in order to test the capability of the code for predicting rotor performance. Effective airfoil characteristics based on local blade Reynolds number are obtained through interpolation of literature low-Reynolds airfoil databases. Some corrections are introduced inside the original model with the aim of simulating also the effects of blade dynamic stall, rotor streamtube expansion and blade finite aspect ratio, for which a new empirical relationship to better fit the experimental data is proposed. In order to predict also open field rotor operation, a freestream wind shear profile is implemented, reproducing the effect of atmospheric boundary layer.
Keywords: Wind turbine, BE-M, dynamic stall, streamtube expansion, airfoil finite aspect ratio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25107211 Low-Cost Monitoring System for Hydroponic Urban Vertical Farms
Authors: Francesco Ruscio, Paolo Paoletti, Jens Thomas, Paul Myers, Sebastiano Fichera
Abstract:
This paper presents the development of a low-cost monitoring system for a hydroponic urban vertical farm, enabling its automation and a quantitative assessment of the farm performance. Urban farming has seen increasing interest in the last decade thanks to the development of energy efficient and affordable LED lights; however, the optimal configuration of such systems (i.e. amount of nutrients, light-on time, ambient temperature etc.) is mostly based on the farmers’ experience and empirical guidelines. Moreover, even if simple, the maintenance of such systems is labor intensive as it requires water to be topped-up periodically, mixing of the nutrients etc. To unlock the full potential of urban farming, a quantitative understanding of the role that each variable plays in the growth of the plants is needed, together with a higher degree of automation. The low-cost monitoring system proposed in this paper is a step toward filling this knowledge and technological gap, as it enables collection of sensor data related to water and air temperature, water level, humidity, pressure, light intensity, pH and electric conductivity without requiring any human intervention. More sensors and actuators can also easily be added thanks to the modular design of the proposed platform. Data can be accessed remotely via a simple web interface. The proposed platform can be used both for quantitatively optimizing the setup of the farms and for automating some of the most labor-intensive maintenance activities. Moreover, such monitoring system can also potentially be used for high-level decision making, once enough data are collected.
Keywords: Automation, hydroponics, internet of things, monitoring system, urban farming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855210 Multi-Line Flexible Alternating Current Transmission System (FACTS) Controller for Transient Stability Analysis of a Multi-Machine Power System Network
Authors: A.V.Naresh Babu, S.Sivanagaraju
Abstract:
A considerable progress has been achieved in transient stability analysis (TSA) with various FACTS controllers. But, all these controllers are associated with single transmission line. This paper is intended to discuss a new approach i.e. a multi-line FACTS controller which is interline power flow controller (IPFC) for TSA of a multi-machine power system network. A mathematical model of IPFC, termed as power injection model (PIM) presented and this model is incorporated in Newton-Raphson (NR) power flow algorithm. Then, the reduced admittance matrix of a multi-machine power system network for a three phase fault without and with IPFC is obtained which is required to draw the machine swing curves. A general approach based on L-index has also been discussed to find the best location of IPFC to reduce the proximity to instability of a power system. Numerical results are carried out on two test systems namely, 6-bus and 11-bus systems. A program in MATLAB has been written to plot the variation of generator rotor angle and speed difference curves without and with IPFC for TSA and also a simple approach has been presented to evaluate critical clearing time for test systems. The results obtained without and with IPFC are compared and discussed.Keywords: Flexible alternating current transmission system (FACTS), first swing stability, interline power flow controller (IPFC), power injection model (PIM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199209 Respirator System For Total Liquid Ventilation
Authors: Miguel A. Gómez , Enrique Hilario , Francisco J. Alvarez , Elena Gastiasoro , Antonia Alvarez, Juan L. Larrabe
Abstract:
Total liquid ventilation can support gas exchange in animal models of lung injury. Clinical application awaits further technical improvements and performance verification. Our aim was to develop a liquid ventilator, able to deliver accurate tidal volumes, and a computerized system for measuring lung mechanics. The computer-assisted, piston-driven respirator controlled ventilatory parameters that were displayed and modified on a real-time basis. Pressure and temperature transducers along with a lineal displacement controller provided the necessary signals to calculate lung mechanics. Ten newborn lambs (<6 days old) with respiratory failure induced by lung lavage, were monitored using the system. Electromechanical, hydraulic and data acquisition/analysis components of the ventilator were developed and tested in animals with respiratory failure. All pulmonary signals were collected synchronized in time, displayed in real-time, and archived on digital media. The total mean error (due to transducers, A/D conversion, amplifiers, etc.) was less than 5% compared to calibrated signals. Improvements in gas exchange and lung mechanics were observed during liquid ventilation, without impairment of cardiovascular profiles. The total liquid ventilator maintained accurate control of tidal volumes and the sequencing of inspiration/expiration. The computerized system demonstrated its ability to monitor in vivo lung mechanics, providing valuable data for early decision-making.
Keywords: immature lamb, perfluorocarbon, pressure-limited, total liquid ventilation, ventilator; volume-controlled
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538208 Work System Design in Productivity for Small and Medium Enterprises: A Systematic Literature Review
Authors: S. Halofaki, D. R. Seenivasagam, P. Bijay, K. Singh, R. Ananthanarayanan
Abstract:
This comprehensive literature review delves into the effects and applications of work system design on the performance of Small and Medium-sized Enterprises (SMEs). The review process involved three independent reviewers who screened 514 articles through a four-step procedure: removing duplicates, assessing keyword relevance, evaluating abstract content, and thoroughly reviewing full-text articles. Various criteria such as relevance to the research topic, publication type, study type, language, publication date, and methodological quality were employed to exclude certain publications. A portion of articles that met the predefined inclusion criteria were included as a result of this systematic literature review. These selected publications underwent data extraction and analysis to compile insights regarding the influence of work system design on SME performance. Additionally, the quality of the included studies was assessed, and the level of confidence in the body of evidence was established. The findings of this review shed light on how work system design impacts SME performance, emphasizing important implications and applications. Furthermore, the review offers suggestions for further research in this critical area and summarizes the current state of knowledge in the field. Understanding the intricate connections between work system design and SME success can enhance operational efficiency, employee engagement, and overall competitiveness for SMEs. This comprehensive examination of the literature contributes significantly to both academic research and practical decision-making for SMEs.
Keywords: Literature review, productivity, small and medium-sized enterprises, SMEs, work system design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 116207 A Novel Hopfield Neural Network for Perfect Calculation of Magnetic Resonance Spectroscopy
Authors: Hazem M. El-Bakry
Abstract:
In this paper, an automatic determination algorithm for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations is presented. In such method, the problem of NMR spectrum determination is transformed into the determination of the parameters of a mathematical model of the NMR signal. To calculate these parameters efficiently, a new model called modified Hopfield neural network is designed. The main achievement of this paper over the work in literature [30] is that the speed of the modified Hopfield neural network is accelerated. This is done by applying cross correlation in the frequency domain between the input values and the input weights. The modified Hopfield neural network can accomplish complex dignals perfectly with out any additinal computation steps. This is a valuable advantage as NMR signals are complex-valued. In addition, a technique called “modified sequential extension of section (MSES)" that takes into account the damping rate of the NMR signal is developed to be faster than that presented in [30]. Simulation results show that the calculation precision of the spectrum improves when MSES is used along with the neural network. Furthermore, MSES is found to reduce the local minimum problem in Hopfield neural networks. Moreover, the performance of the proposed method is evaluated and there is no effect on the performance of calculations when using the modified Hopfield neural networks.
Keywords: Hopfield Neural Networks, Cross Correlation, Nuclear Magnetic Resonance, Magnetic Resonance Spectroscopy, Fast Fourier Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1847206 Prediction of the Epileptic Events 'Epileptic Seizures' by Neural Networks and Expert Systems
Authors: Kifah Tout, Nisrine Sinno, Mohamad Mikati
Abstract:
Many studies have focused on the nonlinear analysis of electroencephalography (EEG) mainly for the characterization of epileptic brain states. It is assumed that at least two states of the epileptic brain are possible: the interictal state characterized by a normal apparently random, steady-state EEG ongoing activity; and the ictal state that is characterized by paroxysmal occurrence of synchronous oscillations and is generally called in neurology, a seizure. The spatial and temporal dynamics of the epileptogenic process is still not clear completely especially the most challenging aspects of epileptology which is the anticipation of the seizure. Despite all the efforts we still don-t know how and when and why the seizure occurs. However actual studies bring strong evidence that the interictal-ictal state transition is not an abrupt phenomena. Findings also indicate that it is possible to detect a preseizure phase. Our approach is to use the neural network tool to detect interictal states and to predict from those states the upcoming seizure ( ictal state). Analysis of the EEG signal based on neural networks is used for the classification of EEG as either seizure or non-seizure. By applying prediction methods it will be possible to predict the upcoming seizure from non-seizure EEG. We will study the patients admitted to the epilepsy monitoring unit for the purpose of recording their seizures. Preictal, ictal, and post ictal EEG recordings are available on such patients for analysis The system will be induced by taking a body of samples then validate it using another. Distinct from the two first ones a third body of samples is taken to test the network for the achievement of optimum prediction. Several methods will be tried 'Backpropagation ANN' and 'RBF'.Keywords: Artificial neural network (ANN), automatic prediction, epileptic seizures analysis, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542205 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties
Authors: G. Martino, F. Silva, E. Marchal
Abstract:
The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.Keywords: Clusterization and classification algorithms, integrated planning, optimization, mathematical modeling, penalty minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 648204 Information Retrieval: Improving Question Answering Systems by Query Reformulation and Answer Validation
Authors: Mohammad Reza Kangavari, Samira Ghandchi, Manak Golpour
Abstract:
Question answering (QA) aims at retrieving precise information from a large collection of documents. Most of the Question Answering systems composed of three main modules: question processing, document processing and answer processing. Question processing module plays an important role in QA systems to reformulate questions. Moreover answer processing module is an emerging topic in QA systems, where these systems are often required to rank and validate candidate answers. These techniques aiming at finding short and precise answers are often based on the semantic relations and co-occurrence keywords. This paper discussed about a new model for question answering which improved two main modules, question processing and answer processing which both affect on the evaluation of the system operations. There are two important components which are the bases of the question processing. First component is question classification that specifies types of question and answer. Second one is reformulation which converts the user's question into an understandable question by QA system in a specific domain. The objective of an Answer Validation task is thus to judge the correctness of an answer returned by a QA system, according to the text snippet given to support it. For validating answers we apply candidate answer filtering, candidate answer ranking and also it has a final validation section by user voting. Also this paper described new architecture of question and answer processing modules with modeling, implementing and evaluating the system. The system differs from most question answering systems in its answer validation model. This module makes it more suitable to find exact answer. Results show that, from total 50 asked questions, evaluation of the model, show 92% improving the decision of the system.
Keywords: Answer processing, answer validation, classification, question answering, query reformulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849203 The Emergence of Smart Growth in Developed and Developing Countries and Its Possible Application in Kabul City, Afghanistan
Authors: Bashir Ahmad Amiri, Nsenda Lukumwena
Abstract:
The global trend indicates that more and more people live and will continue to live in urban areas. Today cities are expanding both in physical size and number due to the rapid population growth along with sprawl development, which caused the cities to expand beyond the growth boundary and exerting intense pressure on environmental resources specially farmlands to accommodate new housing and urban facilities. Also noticeable is the increase in urban decay along with the increase of slum dwellers present another challenge that most cities in developed and developing countries have to deal with. Today urban practitioners, researchers, planners, and decision-makers are seeking for alternative development and growth management policies to house the rising urban population and also cure the urban decay and slum issues turn to Smart Growth to achieve their goals. Many cities across the globe have adopted smart growth as an alternative growth management tool to deal with patterns and forms of development and to cure the rising urban and environmental problems. The method used in this study is a literature analysis method through reviewing various resources to highlight the potential benefits of Smart Growth in both developed and developing countries and analyze, to what extent it can be a strategic alternative for Afghanistan’s cities, especially the capital city. Hence a comparative analysis is carried on three countries, namely the USA, China, and India to identify the potential benefits of smart growth likely to serve as an achievable broad base for recommendations in different urban contexts.
Keywords: Growth management, housing, Kabul city, smart growth, urban-expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953202 A Propagator Method like Algorithm for Estimation of Multiple Real-Valued Sinusoidal Signal Frequencies
Authors: Sambit Prasad Kar, P.Palanisamy
Abstract:
In this paper a novel method for multiple one dimensional real valued sinusoidal signal frequency estimation in the presence of additive Gaussian noise is postulated. A computationally simple frequency estimation method with efficient statistical performance is attractive in many array signal processing applications. The prime focus of this paper is to combine the subspace-based technique and a simple peak search approach. This paper presents a variant of the Propagator Method (PM), where a collaborative approach of SUMWE and Propagator method is applied in order to estimate the multiple real valued sine wave frequencies. A new data model is proposed, which gives the dimension of the signal subspace is equal to the number of frequencies present in the observation. But, the signal subspace dimension is twice the number of frequencies in the conventional MUSIC method for estimating frequencies of real-valued sinusoidal signal. The statistical analysis of the proposed method is studied, and the explicit expression of asymptotic (large-sample) mean-squared-error (MSE) or variance of the estimation error is derived. The performance of the method is demonstrated, and the theoretical analysis is substantiated through numerical examples. The proposed method can achieve sustainable high estimation accuracy and frequency resolution at a lower SNR, which is verified by simulation by comparing with conventional MUSIC, ESPRIT and Propagator Method.
Keywords: Frequency estimation, peak search, subspace-based method without eigen decomposition, quadratic convex function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736201 Optimal Efficiency Control of Pulse Width Modulation - Inverter Fed Motor Pump Drive Using Neural Network
Authors: O. S. Ebrahim, M. A. Badr, A. S. Elgendy, K. O. Shawky, P. K. Jain
Abstract:
This paper demonstrates an improved Loss Model Control (LMC) for a 3-phase induction motor (IM) driving pump load. Compared with other power loss reduction algorithms for IM, the presented one has the advantages of fast and smooth flux adaptation, high accuracy, and versatile implementation. The performance of LMC depends mainly on the accuracy of modeling the motor drive and losses. A loss-model for IM drive that considers the surplus power loss caused by inverter voltage harmonics using closed-form equations and also includes the magnetic saturation has been developed. Further, an Artificial Neural Network (ANN) controller is synthesized and trained offline to determine the optimal flux level that achieves maximum drive efficiency. The drive’s voltage and speed control loops are connecting via the stator frequency to avoid the possibility of excessive magnetization. Besides, the resistance change due to temperature is considered by a first-order thermal model. The obtained thermal information enhances motor protection and control. These together have the potential of making the proposed algorithm reliable. Simulation and experimental studies are performed on 5.5 kW test motor using the proposed control method. The test results are provided and compared with the fixed flux operation to validate the effectiveness.
Keywords: Artificial neural network, ANN, efficiency optimization, induction motor, IM, Pulse Width Modulated, PWM, harmonic losses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 362200 Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things
Authors: Hossein Jafari, Xiangfang Li, Lijun Qian, Alexander Aved, Timothy Kroecker
Abstract:
Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.Keywords: CUSUM, evidence theory, KL divergence, quickest change detection, time series data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995199 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer
Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved
Abstract:
Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.
Keywords: Computer-aided system, detection, image segmentation, morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 549198 Performance Analysis of Reconstruction Algorithms in Diffuse Optical Tomography
Authors: K. Uma Maheswari, S. Sathiyamoorthy, G. Lakshmi
Abstract:
Diffuse Optical Tomography (DOT) is a non-invasive imaging modality used in clinical diagnosis for earlier detection of carcinoma cells in brain tissue. It is a form of optical tomography which produces gives the reconstructed image of a human soft tissue with by using near-infra-red light. It comprises of two steps called forward model and inverse model. The forward model provides the light propagation in a biological medium. The inverse model uses the scattered light to collect the optical parameters of human tissue. DOT suffers from severe ill-posedness due to its incomplete measurement data. So the accurate analysis of this modality is very complicated. To overcome this problem, optical properties of the soft tissue such as absorption coefficient, scattering coefficient, optical flux are processed by the standard regularization technique called Levenberg - Marquardt regularization. The reconstruction algorithms such as Split Bregman and Gradient projection for sparse reconstruction (GPSR) methods are used to reconstruct the image of a human soft tissue for tumour detection. Among these algorithms, Split Bregman method provides better performance than GPSR algorithm. The parameters such as signal to noise ratio (SNR), contrast to noise ratio (CNR), relative error (RE) and CPU time for reconstructing images are analyzed to get a better performance.
Keywords: Diffuse optical tomography, ill-posedness, Levenberg Marquardt method, Split Bregman, the Gradient projection for sparse reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622197 Enhancing Warehousing Operations in Cold Supply Chain through the Use of IoT and LiFi Technologies
Authors: S. El-Gamal, P. Hossam, A. Abd El Aziz, R. Mahmoud, A. Hassan, D. Hilal, E. Ayman, H. Haytham, O. Khamis
Abstract:
Several concerns fall upon the supply chain especially in cold supply chains. These concerns are mainly in the distribution and storage phases. This research focuses on the storage area, which contains several activities such as the picking activity that faces a lot of obstacles and challenges. The implementation of IoT solutions enables businesses to monitor the temperature of food items, which is perhaps the most critical parameter in cold chains. Therefore, the research at hand proposes a practical solution that would help in eliminating the problems related to ineffective picking for products especially fish and seafood products by using IoT technology, most notably LiFi technology; thus, guaranteeing sufficient picking, reducing waste, and consequently lowering costs. A prototype was specially designed and examined. This research is a single case study research. Two methods of data collection were used; observation and semi-structured interviews. Semi-structured interviews were conducted with managers and a decision maker at one of the biggest retail stores Carrefour, Alexandria, Egypt to validate the problem and the proposed practical solution using IoT and LiFi technology. A total of three interviews were conducted. As a result, a SWOT analysis was achieved in order to highlight all the strengths and weaknesses of using the recommended LiFi solution in the picking process. According to the investigations, it was found that, the use of IoT and LiFi technology is cost effective, efficient, and reduces human errors, minimizes the percentage of product waste and thus saves money and cost. Therefore, increasing customer satisfaction and profits could be achieved.
Keywords: Cold supply chain, IoT, LiFi, warehousing operation, picking process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 494196 Motivating Factors and Prospects for Rural Community Involvement in Entrepreneurship: Evidence from Mantanani Island, Sabah, Malaysia
Authors: F. Fabeil Noor, Roslinah Mahmud, Janice L. H. Nga, Rasid Mail
Abstract:
In Malaysia, particularly in Sabah, the government has been promoting entrepreneurship among rural people to encourage them to earn their living by making good use of the diverse natural resources and local cultures of Sabah. Nevertheless, despite the government’s aim to encourage more local community in rural area to involve in entrepreneurship, the involvement of community in entrepreneurial activity is still low. It is crucial to identify the factors stimulate (or prevent) the involvement of rural community in Sabah in entrepreneurial activity. Therefore, this study tries to investigate the personal and contextual factors that may have impact on decision to start a business among the local community in Mantanani Island. In addition, this study also aims to identify the perceived benefits they receive from entrepreneurial activity. A structured face-to-face interview was conducted with 61 local communities in Mantanani Island. Data analysis revealed that passion, personal skills and self-confidence are the significant internal factors to entrepreneurial activity, whereas access to finance, labour and infrastructure are the significant external factors that are found to influence entrepreneurship. In terms of perceived rewards they received from taking up small business, it was found that respondents are predominantly agreed that entrepreneurship offers financial benefit than non-financial. In addition, this study also offers several suggestions for entrepreneurship development in Mantanani Island and it is hoped that this study may help the related agency to develop effective support policies in order to encourage more people in rural area to involve in entrepreneurship.
Keywords: Entrepreneurship, motivation, perceived rewards, rural community.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276195 COVID_ICU_BERT: A Fine-tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes
Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo
Abstract:
Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as physiological vital signs, images and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful to influence the judgement of clinical sentiment in ICU clinical notes. This paper presents two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of a clinical transformer model that can reliably predict clinical sentiment for notes of COVID patients in ICU. We train the model on clinical notes for COVID-19 patients, ones not previously seen by Bio_ClinicalBERT or Bio_Discharge_Summary_BERT. The model which was based on Bio_ClinicalBERT achieves higher predictive accuracy than the one based on Bio_Discharge_Summary_BERT (Acc 93.33%, AUC 0.98, and Precision 0.96). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and Precision 0.92).
Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 284194 Evaluation of the Mechanical Behavior of a Retaining Wall Structure on a Weathered Soil through Probabilistic Methods
Authors: P. V. S. Mascarenhas, B. C. P. Albuquerque, D. J. F. Campos, L. L. Almeida, V. R. Domingues, L. C. S. M. Ozelim
Abstract:
Retaining slope structures are increasingly considered in geotechnical engineering projects due to extensive urban cities growth. These kinds of engineering constructions may present instabilities over the time and may require reinforcement or even rebuilding of the structure. In this context, statistical analysis is an important tool for decision making regarding retaining structures. This study approaches the failure probability of the construction of a retaining wall over the debris of an old and collapsed one. The new solution’s extension length will be of approximately 350 m and will be located over the margins of the Lake Paranoá, Brasilia, in the capital of Brazil. The building process must also account for the utilization of the ruins as a caisson. A series of in situ and laboratory experiments defined local soil strength parameters. A Standard Penetration Test (SPT) defined the in situ soil stratigraphy. Also, the parameters obtained were verified using soil data from a collection of masters and doctoral works from the University of Brasília, which is similar to the local soil. Initial studies show that the concrete wall is the proper solution for this case, taking into account the technical, economic and deterministic analysis. On the other hand, in order to better analyze the statistical significance of the factor-of-safety factors obtained, a Monte Carlo analysis was performed for the concrete wall and two more initial solutions. A comparison between the statistical and risk results generated for the different solutions indicated that a Gabion solution would better fit the financial and technical feasibility of the project.
Keywords: Economical analysis, probability of failure, retaining walls, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028193 Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks
Authors: Atiqul Islam, Shamim Akhter, Tumnun E. Mursalin
Abstract:
Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.Keywords: Computer vision, image acquisition device, machine vision, multi-layer neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3305192 An Integrated Design Evaluation and Assembly Sequence Planning Model using a Particle Swarm Optimization Approach
Authors: Feng-Yi Huang, Yuan-Jye Tseng
Abstract:
In the traditional concept of product life cycle management, the activities of design, manufacturing, and assembly are performed in a sequential way. The drawback is that the considerations in design may contradict the considerations in manufacturing and assembly. The different designs of components can lead to different assembly sequences. Therefore, in some cases, a good design may result in a high cost in the downstream assembly activities. In this research, an integrated design evaluation and assembly sequence planning model is presented. Given a product requirement, there may be several design alternative cases to design the components for the same product. If a different design case is selected, the assembly sequence for constructing the product can be different. In this paper, first, the designed components are represented by using graph based models. The graph based models are transformed to assembly precedence constraints and assembly costs. A particle swarm optimization (PSO) approach is presented by encoding a particle using a position matrix defined by the design cases and the assembly sequences. The PSO algorithm simultaneously performs design evaluation and assembly sequence planning with an objective of minimizing the total assembly costs. As a result, the design cases and the assembly sequences can both be optimized. The main contribution lies in the new concept of integrated design evaluation and assembly sequence planning model and the new PSO solution method. The test results show that the presented method is feasible and efficient for solving the integrated design evaluation and assembly planning problem. In this paper, an example product is tested and illustrated.
Keywords: assembly sequence planning, design evaluation, design for assembly, particle swarm optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1829191 Intelligent Assistive Methods for Diagnosis of Rheumatoid Arthritis Using Histogram Smoothing and Feature Extraction of Bone Images
Authors: SP. Chokkalingam, K. Komathy
Abstract:
Advances in the field of image processing envision a new era of evaluation techniques and application of procedures in various different fields. One such field being considered is the biomedical field for prognosis as well as diagnosis of diseases. This plethora of methods though provides a wide range of options to select from, it also proves confusion in selecting the apt process and also in finding which one is more suitable. Our objective is to use a series of techniques on bone scans, so as to detect the occurrence of rheumatoid arthritis (RA) as accurately as possible. Amongst other techniques existing in the field our proposed system tends to be more effective as it depends on new methodologies that have been proved to be better and more consistent than others. Computer aided diagnosis will provide more accurate and infallible rate of consistency that will help to improve the efficiency of the system. The image first undergoes histogram smoothing and specification, morphing operation, boundary detection by edge following algorithm and finally image subtraction to determine the presence of rheumatoid arthritis in a more efficient and effective way. Using preprocessing noises are removed from images and using segmentation, region of interest is found and Histogram smoothing is applied for a specific portion of the images. Gray level co-occurrence matrix (GLCM) features like Mean, Median, Energy, Correlation, Bone Mineral Density (BMD) and etc. After finding all the features it stores in the database. This dataset is trained with inflamed and noninflamed values and with the help of neural network all the new images are checked properly for their status and Rough set is implemented for further reduction.
Keywords: Computer Aided Diagnosis, Edge Detection, Histogram Smoothing, Rheumatoid Arthritis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484190 A Novel Approach to Allocate Channels Dynamically in Wireless Mesh Networks
Authors: Y. Harold Robinson, M. Rajaram
Abstract:
Wireless mesh networking is rapidly gaining in popularity with a variety of users: from municipalities to enterprises, from telecom service providers to public safety and military organizations. This increasing popularity is based on two basic facts: ease of deployment and increase in network capacity expressed in bandwidth per footage; WMNs do not rely on any fixed infrastructure. Many efforts have been used to maximizing throughput of the network in a multi-channel multi-radio wireless mesh network. Current approaches are purely based on either static or dynamic channel allocation approaches. In this paper, we use a hybrid multichannel multi radio wireless mesh networking architecture, where static and dynamic interfaces are built in the nodes. Dynamic Adaptive Channel Allocation protocol (DACA), it considers optimization for both throughput and delay in the channel allocation. The assignment of the channel has been allocated to be codependent with the routing problem in the wireless mesh network and that should be based on passage flow on every link. Temporal and spatial relationship rises to re compute the channel assignment every time when the pattern changes in mesh network, channel assignment algorithms assign channels in network. In this paper a computing path which captures the available path bandwidth is the proposed information and the proficient routing protocol based on the new path which provides both static and dynamic links. The consistency property guarantees that each node makes an appropriate packet forwarding decision and balancing the control usage of the network, so that a data packet will traverse through the right path.
Keywords: Wireless mesh network, spatial time division multiple access, hybrid topology, timeslot allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841189 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines
Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri
Abstract:
This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.Keywords: Wind turbines, aeroelasticity, repetitive control, periodic systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302188 Productivity Effect of Urea Deep Placement Technology: An Empirical Analysis from Irrigation Rice Farmers in the Northern Region of Ghana
Authors: Shaibu Baanni Azumah, Ignatius Tindjina, Stella Obanyi, Tara N. Wood
Abstract:
This study examined the effect of Urea Deep Placement (UDP) technology on the output of irrigated rice farmers in the northern region of Ghana. Multi-stage sampling technique was used to select 142 rice farmers from the Golinga and Bontanga irrigation schemes, around Tamale. A treatment effect model was estimated at two stages; firstly, to determine the factors that influenced farmers’ decision to adopt the UDP technology and secondly, to determine the effect of the adoption of the UDP technology on the output of rice farmers. The significant variables that influenced rice farmers’ adoption of the UPD technology were sex of the farmer, land ownership, off-farm activity, extension service, farmer group participation and training. The results also revealed that farm size and the adoption of UDP technology significantly influenced the output of rice farmers in the northern region of Ghana. In addition to the potential of the technology to improve yields, it also presents an employment opportunity for women and youth, who are engaged in the deep placement of Urea Super Granules (USG), as well as in the transplantation of rice. It is recommended that the government of Ghana work closely with the IFDC to embed the UDP technology in the national agricultural programmes and policies. The study also recommends an effective collaboration between the government, through the Ministry of Food and Agriculture (MoFA) and the International Fertilizer Development Center (IFDC) to train agricultural extension agents on UDP technology in the rice producing areas of the country.
Keywords: Northern Ghana, output, irrigation rice farmers, treatment effect model, urea deep placement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130