Search results for: engine power effects
5444 Assessment of Reliability and Quality Measures in Power Systems
Authors: Badr M. Alshammari, Mohamed A. El-Kady
Abstract:
The paper presents new results of a recent industry supported research and development study in which an efficient framework for evaluating practical and meaningful power system reliability and quality indices was applied. The system-wide integrated performance indices are capable of addressing and revealing areas of deficiencies and bottlenecks as well as redundancies in the composite generation-transmission-demand structure of large-scale power grids. The technique utilizes a linear programming formulation, which simulates practical operating actions and offers a general and comprehensive framework to assess the harmony and compatibility of generation, transmission and demand in a power system. Practical applications to a reduced system model as well as a portion of the Saudi power grid are also presented in the paper for demonstration purposes.Keywords: Power systems, Linear programming, Quality assessment, Reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15555443 Noise Optimization Techniques for 1V 1GHz CMOS Low-Noise Amplifiers Design
Authors: M. Zamin Khan, Yanjie Wang, R. Raut
Abstract:
A 1V, 1GHz low noise amplifier (LNA) has been designed and simulated using Spectre simulator in a standard TSMC 0.18um CMOS technology.With low power and noise optimization techniques, the amplifier provides a gain of 24 dB, a noise figure of only 1.2 dB, power dissipation of 14 mW from a 1 V power supply.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24565442 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability
Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang
Abstract:
Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18195441 Design of Multiplier-free State-Space Digital Filters
Authors: Tamal Bose, Zhurun Zhang, Miloje Radenkovic, Ojas Chauhan
Abstract:
In this paper, a novel approach is presented for designing multiplier-free state-space digital filters. The multiplier-free design is obtained by finding power-of-2 coefficients and also quantizing the state variables to power-of-2 numbers. Expressions for the noise variance are derived for the quantized state vector and the output of the filter. A “structuretransformation matrix" is incorporated in these expressions. It is shown that quantization effects can be minimized by properly designing the structure-transformation matrix. Simulation results are very promising and illustrate the design algorithm.Keywords: Digital filters, minimum noise, multiplier-free, quantization, state-space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15325440 Performance of Derna Steam Power Plant at Varying Super-Heater Operating Conditions Based on Exergy
Authors: Idris Elfeituri
Abstract:
In the current study, energy and exergy analysis of a 65 MW steam power plant was carried out. This study investigated the effect of variations of overall conductance of the super heater on the performance of an existing steam power plant located in Derna, Libya. The performance of the power plant was estimated by a mathematical modelling which considers the off-design operating conditions of each component. A fully interactive computer program based on the mass, energy and exergy balance equations has been developed. The maximum exergy destruction has been found in the steam generation unit. A 50% reduction in the design value of overall conductance of the super heater has been achieved, which accordingly decreases the amount of the net electrical power that would be generated by at least 13 MW, as well as the overall plant exergy efficiency by at least 6.4%, and at the same time that would cause an increase of the total exergy destruction by at least 14 MW. The achieved results showed that the super heater design and operating conditions play an important role on the thermodynamics performance and the fuel utilization of the power plant. Moreover, these considerations are very useful in the process of the decision that should be taken at the occasions of deciding whether to replace or renovate the super heater of the power plant.
Keywords: Exergy, super-heater, fouling, steam power plant, off-design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11265439 Real-Coded Genetic Algorithm for Robust Power System Stabilizer Design
Authors: Sidhartha Panda, C. Ardil
Abstract:
Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, real-coded genetic algorithm (RCGA) optimization technique is applied to design robust power system stabilizer for both singlemachine infinite-bus (SMIB) and multi-machine power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.
Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20615438 A Scalable Media Job Framework for an Open Source Search Engine
Authors: Pooja Mishra, Chris Pollett
Abstract:
This paper explores efficient ways to implement various media-updating features like news aggregation, video conversion, and bulk email handling. All of these jobs share the property that they are periodic in nature, and they all benefit from being handled in a distributed fashion. The data for these jobs also often comes from a social or collaborative source. We isolate the class of periodic, one round map reduce jobs as a useful setting to describe and handle media updating tasks. As such tasks are simpler than general map reduce jobs, programming them in a general map reduce platform could easily become tedious. This paper presents a MediaUpdater module of the Yioop Open Source Search Engine Web Portal designed to handle such jobs via an extension of a PHP class. We describe how to implement various media-updating tasks in our system as well as experiments carried out using these implementations on an Amazon Web Services cluster.Keywords: Distributed jobs framework, news aggregation, video conversion, email.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10305437 Highly Efficient Low Power Consumption Tracking Solar Cells for White LED-Based Lighting System
Authors: Theerawut Jinayim, Somchai Arunrungrasmi, Tanes Tanitteerapan, Narong Mungkung
Abstract:
Although White LED lighting systems powered by solar cells have presented for many years, they are not widely used in today application because of their cost and low energy conversion efficiency. The proposed system use the dc power generated by fixed solar cells module to energize White LED light sources that are operated by directly connected White LED with current limitation resistors, resulting in much more power consumption. This paper presents the use of white LED as a general lighting application powered by tracking solar cells module and using pulse to apply the electrical power to the White LED. These systems resulted in high efficiency power conversion, low power consumption, and long light of the white LED.Keywords: Efficiency, lighting, light-emitting diode, pulse, Solar, white LED.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23875436 Effect of Implementation of Nonlinear Sequence Transformations on Power Series Expansion for a Class of Non-Linear Abel Equations
Authors: Javad Abdalkhani
Abstract:
Convergence of power series solutions for a class of non-linear Abel type equations, including an equation that arises in nonlinear cooling of semi-infinite rods, is very slow inside their small radius of convergence. Beyond that the corresponding power series are wildly divergent. Implementation of nonlinear sequence transformation allow effortless evaluation of these power series on very large intervals..Keywords: Nonlinear transformation, Abel Volterra Equations, Mathematica
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13055435 Concept, Modules and Objectives of the Syllabus Course: Small Power Plants and Renewable Energy Sources
Authors: Rade M. Ciric, Nikola L. J. Rajakovic
Abstract:
This paper presents a curriculum of the subject small power plants and renewable energy sources, dealing with the concept of distributed generation, renewable energy sources, hydropower, wind farms, geothermal power plants, cogeneration plants, biogas plants of agriculture and animal origin, solar power and fuel cells. The course is taught the manner of connecting small power plants to the grid, the impact of small generators on the distribution system, as well as economic, environmental and legal aspects of operation of distributed generators.Keywords: Distributed generation, renewable energy sources, techno-economic analysis, energy policy, curriculum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13985434 Characterization Non-Deterministic of Optical Channels
Authors: V. A. C. Vale, E. T. L. Cöuras Ford
Abstract:
The use of optical technologies in the telecommunications has been increasing due to its ability to transmit large amounts of data over long distances. However, as in all systems of data transmission, optical communication channels suffer from undesirable and non-deterministic effects, being essential to know the same. Thus, this research allows the assessment of these effects, as well as their characterization and beneficial uses of these effects.Keywords: Optical communication, optical fiber, non-deterministic effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14465433 The Analogue of a Property of Pisot Numbers in Fields of Formal Power Series
Authors: Wiem Gadri
Abstract:
This study delves into the intriguing properties of Pisot and Salem numbers within the framework of formal Laurent series over finite fields, a domain where these numbers’ spectral characteristics, Λm(β) and lm(β), have yet to be fully explored. Utilizing a methodological approach that combines algebraic number theory with the analysis of power series, we extend the foundational work of Erdos, Joo, and Komornik to this setting. Our research uncovers bounds for lm(β), revealing how these depend on the degree of the minimal polynomial of β and thus offering a characterization of Pisot and Salem formal power series. The findings significantly contribute to our understanding of these numbers, highlighting their distribution and properties in the context of formal power series. This investigation not only bridges number theory with formal power series analysis but also sets the stage for further interdisciplinary research in these areas.
Keywords: Pisot numbers, Salem numbers, Formal power series, Minimal polynomial degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475432 Efficiency Improvement of Wireless Power Transmission for Bio-Implanted Devices
Authors: Saad Mutashar, M. A. Hannan, S. A. Samad, A. Hussain
Abstract:
This paper deals with the modified wireless power transmission system for biomedical implanted devices. The system consists of efficient class-E power amplifier and inductive power links based on spiral circular transmitter and receiver coils. The model of the class-E power amplifier operated with 13.56 MHz is designed, discussed and analyzed in which it is achieved 87.2% of efficiency. The inductive coupling method is used to achieve link efficiency up to 73% depending on the electronic remote system resistance. The improved system powered with 3.3 DC supply and the voltage across the transmitter side is 40 V whereas, cross the receiver side is 12 V which is rectified to meet the implanted micro-system circuit requirements. The system designed and simulated by NI MULTISIM 11.02.
Keywords: Wireless Transmission, inductive coupling, implanted devices, class-E power amplifier, coils design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31485431 Comparison of the Amount of Resources and Expansion Support Policy of Photovoltaic Power Generation: A Case on Hokkaido and Aichi Prefecture, Japan
Authors: Hiroaki Sumi, Kiichiro Hayashi
Abstract:
Now, the use of renewable energy power generation has been advanced. In this paper, we compared the usable amount of resource for photovoltaic power generation which was estimated using the NEDO formula and the expansion support policy of photovoltaic power generation which was researched using Internet in the municipality level in Hokkaido and Aichi Prefecture, Japan. This paper will contribute to grasp the current situation especially about the policy. As a result, there were municipalities which seemed to be no consideration of fitting the amount of resources. We think it would need to consider the suitability between the resources and policies.Keywords: Photovoltaic power generation, expansion support policy, amount of resources, Japan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12735430 Numerical Study on Parametrical Design of Long Shrouded Contra-Rotating Propulsion System in Hovering
Authors: Chao. Huo, Roger. Barènes, Jérémie. Gressier, Gilles.Grondin
Abstract:
The parametrical study of Shrouded Contra-rotating Rotor was done in this paper based on 2D axisymmetric simulations. The calculations were made with an actuator disk as double rotor model. It objects to explore and quantify the effects of different shroud geometry parameters mainly using the performance of power loading (PL), which could evaluate the whole propulsion system capability as 5 Newtontotal thrust generationfor hover demand. The numerical results show that:The increase of nozzle radius is desired but limited by the flow separation, its optimal design is around 1.15 times rotor radius, the viscosity effects greatly constraint the influence of nozzle shape, the divergent angle around 10.5° performs best for chosen nozzle length;The parameters of inlet such as leading edge curvature, radius and internal shape do not affect thrust great but play an important role in pressure distribution which could produce most part of shroud thrust, they should be chosen according to the reduction of adverse pressure gradients to reduce the risk of boundary separation.Keywords: Axisymmetric simulation, parametrical design, power loading, Shrouded Contra-Rotating Rotor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18725429 Review, Analysis and Simulation of Advanced Technology Solutions of Selected Components in Power Electronics Systems (PES) of More Electric Aircraft
Authors: Lucjan Setlak, Emil Ruda
Abstract:
The subject of this paper is to review, comparative analysis and simulation of selected components of power electronic systems (PES), consistent with the concept of a more electric aircraft (MEA). Comparative analysis and simulation in software environment MATLAB / Simulink were carried out on the base of a group of representatives of civil aircraft (B-787, A-380) and military (F-22 Raptor, F-35) in the context of multi-pulse converters used in them (6- and 12-pulse, and 18- and 24-pulse), which are key components of high-tech electronics on-board power systems of autonomous power systems (ASE) of modern aircraft (airplanes of the future).Keywords: Converters, electrical machinery, more electric aircraft, MEA, power electronics systems, PES.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28485428 A Comparison of Shunt Active Power Filter Control Methods under Non-Sinusoidal and Unbalanced Voltage Conditions
Authors: H. Abaali, M. T. Lamchich, M. Raoufi
Abstract:
There are a variety of reference current identification methods, for the shunt active power filter (SAPF), such as the instantaneous active and reactive power, the instantaneous active and reactive current and the synchronous detection method are evaluated and compared under ideal, non sinusoidal and unbalanced voltage conditions. The SAPF performances, for the investigated identification methods, are tested for a non linear load. The simulation results, using Matlab Power System Blockset Toolbox from a complete structure, are presented and discussed.
Keywords: Shunt active power filter, Current perturbation, Non sinusoidal and unbalanced voltage conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25445427 Analysis of the Shielding Effectiveness of Several Magnetic Shields
Authors: Diako Azizi, Hosein Heydari, Ahmad Gholami
Abstract:
Today with the rapid growth of telecommunications equipment, electronic and developing more and more networks of power, influence of electromagnetic waves on one another has become hot topic discussions. So in this article, this issue and appropriate mechanisms for EMC operations have been presented. First, a source of alternating current (50 Hz) and a clear victim in a certain distance from the source is placed. With this simple model, the effects of electromagnetic radiation from the source to the victim will be investigated and several methods to reduce these effects have been presented. Therefore passive and active shields have been used. In some steps, shielding effectiveness of proposed shields will be compared. . It should be noted that simulations have been done by the finite element method (FEM).
Keywords: Electrical field, field distribution, finite element method, shielding effectiveness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17525426 Wind Farm Modeling for Steady State and Dynamic Analysis
Authors: G.Kabashi, K.Kadriu, A.Gashi, S.Kabashi, G, Pula, V.Komoni
Abstract:
This paper focuses on PSS/E modeling of wind farms of Doubly-fed Induction Generator (DFIG) type and their impact on issues of power system operation. Since Wind Turbine Generators (WTG) don-t have the same characteristics as synchronous generators, the appropriate modeling of wind farms is essential for transmission system operators to analyze the best options of transmission grid reinforcements as well as to evaluate the wind power impact on reliability and security of supply. With the high excepted penetration of wind power into the power system a simultaneous loss of Wind Farm generation will put at risk power system security and reliability. Therefore, the main wind grid code requirements concern the fault ride through capability and frequency operation range of wind turbines. In case of grid faults wind turbines have to supply a definite reactive power depending on the instantaneous voltage and to return quickly to normal operation.Keywords: Power System transients, PSS/E dynamic simulationDouble-fed Induction Generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46245425 Estimation of Real Power Transfer Allocation Using Intelligent Systems
Authors: H. Shareef, A. Mohamed, S. A. Khalid, Aziah Khamis
Abstract:
This paper presents application artificial intelligent (AI) techniques, namely artificial neural network (ANN), adaptive neuro fuzzy interface system (ANFIS), to estimate the real power transfer between generators and loads. Since these AI techniques adopt supervised learning, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of both AI methods compared to that of the MNE method. The mean squared error of the estimate of ANN and ANFIS power transfer allocation methods are 1.19E-05 and 2.97E-05, respectively. Furthermore, when compared to MNE method, ANN and ANFIS methods computes generator contribution to loads within 20.99 and 39.37msec respectively whereas the MNE method took 360msec for the calculation of same real power transfer allocation.
Keywords: Artificial intelligence, Power tracing, Artificial neural network, ANFIS, Power system deregulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25835424 Advanced Hybrid Particle Swarm Optimization for Congestion and Power Loss Reduction in Distribution Networks with High Distributed Generation Penetration through Network Reconfiguration
Authors: C. Iraklis, G. Evmiridis, A. Iraklis
Abstract:
Renewable energy sources and distributed power generation units already have an important role in electrical power generation. A mixture of different technologies penetrating the electrical grid, adds complexity in the management of distribution networks. High penetration of distributed power generation units creates node over-voltages, huge power losses, unreliable power management, reverse power flow and congestion. This paper presents an optimization algorithm capable of reducing congestion and power losses, both described as a function of weighted sum. Two factors that describe congestion are being proposed. An upgraded selective particle swarm optimization algorithm (SPSO) is used as a solution tool focusing on the technique of network reconfiguration. The upgraded SPSO algorithm is achieved with the addition of a heuristic algorithm specializing in reduction of power losses, with several scenarios being tested. Results show significant improvement in minimization of losses and congestion while achieving very small calculation times.
Keywords: Congestion, distribution networks, loss reduction, particle swarm optimization, smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7485423 Power Quality Improvement Using UPQC Integrated with Distributed Generation Network
Authors: B. Gopal, Pannala Krishna Murthy, G. N. Sreenivas
Abstract:
The increasing demand of electric power is giving an emphasis on the need for the maximum utilization of renewable energy sources. On the other hand maintaining power quality to satisfaction of utility is an essential requirement. In this paper the design aspects of a Unified Power Quality Conditioner integrated with photovoltaic system in a distributed generation is presented. The proposed system consist of series inverter, shunt inverter are connected back to back on the dc side and share a common dc-link capacitor with Distributed Generation through a boost converter. The primary task of UPQC is to minimize grid voltage and load current disturbances along with reactive and harmonic power compensation. In addition to primary tasks of UPQC, other functionalities such as compensation of voltage interruption and active power transfer to the load and grid in both islanding and interconnected mode have been addressed. The simulation model is design in MATLAB/ Simulation environment and the results are in good agreement with the published work.Keywords: Distributed Generation(DG), Interconnected mode, Islanding mode, Maximum power point tracking (MPPT), Power Quality (PQ), Unified power quality conditioner (UPQC), Photovoltaic array (PV).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23805422 Evaluation of Power Consumption of Spanke Optical Packet Switch
Authors: V. Eramo, E. Miucci, A. Cianfrani, A. Germoni, M. Listanti
Abstract:
The power consumption of an Optical Packet Switch equipped with SOA technology based Spanke switching fabric is evaluated. Sophisticated analytical models are introduced to evaluate the power consumption versus the offered traffic, the main switch parameters, and the used device characteristics. The impact of Amplifier Spontaneous Emission (ASE) noise generated by a transmission system on the power consumption is investigated. As a matter of example for 32×32 switches supporting 64 wavelengths and offered traffic equal to 0,8, the average energy consumption per bit is 5, 07 · 10-2 nJ/bit and increases if ASE noise introduced by the transmission systems is increased.Keywords: Spanke, Amplifier Spontaneous Emission Noise, Power Consumption, Optical Packet Switch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14085421 Production, Characterisation and Assessment of Biomixture Fuels for Compression Ignition Engine Application
Authors: K. Masera, A. K. Hossain
Abstract:
Hardly any neat biodiesel satisfies the European EN14214 standard for compression ignition engine application. To satisfy the EN14214 standard, various additives are doped into biodiesel; however, biodiesel additives might cause other problems such as increase in the particular emission and increased specific fuel consumption. In addition, the additives could be expensive. Considering the increasing level of greenhouse gas GHG emissions and fossil fuel depletion, it is forecasted that the use of biodiesel will be higher in the near future. Hence, the negative aspects of the biodiesel additives will likely to gain much more importance and need to be replaced with better solutions. This study aims to satisfy the European standard EN14214 by blending the biodiesels derived from sustainable feedstocks. Waste Cooking Oil (WCO) and Animal Fat Oil (AFO) are two sustainable feedstocks in the EU (including the UK) for producing biodiesels. In the first stage of the study, these oils were transesterified separately and neat biodiesels (W100 & A100) were produced. Secondly, the biodiesels were blended together in various ratios: 80% WCO biodiesel and 20% AFO biodiesel (W80A20), 60% WCO biodiesel and 40% AFO biodiesel (W60A40), 50% WCO biodiesel and 50% AFO biodiesel (W50A50), 30% WCO biodiesel and 70% AFO biodiesel (W30A70), 10% WCO biodiesel and 90% AFO biodiesel (W10A90). The prepared samples were analysed using Thermo Scientific Trace 1300 Gas Chromatograph and ISQ LT Mass Spectrometer (GC-MS). The GS-MS analysis gave Fatty Acid Methyl Ester (FAME) breakdowns of the fuel samples. It was found that total saturation degree of the samples was linearly increasing (from 15% for W100 to 54% for A100) as the percentage of the AFO biodiesel was increased. Furthermore, it was found that WCO biodiesel was mainly (82%) composed of polyunsaturated FAMEs. Cetane numbers, iodine numbers, calorific values, lower heating values and the densities (at 15 oC) of the samples were estimated by using the mass percentages data of the FAMEs. Besides, kinematic viscosities (at 40 °C and 20 °C), densities (at 15 °C), heating values and flash point temperatures of the biomixture samples were measured in the lab. It was found that estimated and measured characterisation results were comparable. The current study concluded that biomixture fuel samples W60A40 and W50A50 were perfectly satisfying the European EN 14214 norms without any need of additives. Investigation on engine performance, exhaust emission and combustion characteristics will be conducted to assess the full feasibility of the proposed biomixture fuels.
Keywords: Biodiesel, blending, characterisation, CI Engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8045420 Strategies to Achieve Deep Decarbonization in Power Generation: A Review
Authors: Abdullah Alotaiq
Abstract:
The transition to low-carbon power generation is essential for mitigating climate change and achieving sustainability. This process, however, entails considerable costs, and understanding the factors influencing these costs is critical. This is necessary to cater to the increasing demand for low-carbon electricity across heating, industry, and transportation sectors. A crucial aspect of this transition is identifying cost-effective and feasible paths for decarbonization, which is integral to global climate mitigation efforts. It is concluded that hybrid solutions, combining different low-carbon technologies, are optimal for minimizing costs and enhancing flexibility. These solutions also address the challenges associated with phasing out existing fossil fuel-based power plants and broadening the spectrum of low-carbon power generation options.
Keywords: Review, power generation, energy transition, decarbonization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765419 Efficiency Enhancement of Photovoltaic Panels Using an Optimised Air Cooled Heat Sink
Authors: Wisam K. Hussam, Ali Alfeeli, Gergory J. Sheard
Abstract:
Solar panels that use photovoltaic (PV) cells are popular for converting solar radiation into electricity. One of the major problems impacting the performance of PV panels is the overheating caused by excessive solar radiation and high ambient temperatures, which degrades the efficiency of the PV panels remarkably. To overcome this issue, an aluminum heat sink was used to dissipate unwanted heat from PV cells. The dimensions of the heat sink were determined considering the optimal fin spacing that fulfils hot climatic conditions. In this study, the effects of cooling on the efficiency and power output of a PV panel were studied experimentally. Two PV modules were used: one without and one with a heat sink. The experiments ran for 11 hours from 6:00 a.m. to 5:30 p.m. where temperature readings in the rear and front of both PV modules were recorded at an interval of 15 minutes using sensors and an Arduino microprocessor. Results are recorded for both panels simultaneously for analysis, temperate comparison, and for power and efficiency calculations. A maximum increase in the solar to electrical conversion efficiency of 35% and almost 55% in the power output were achieved with the use of a heat sink, while temperatures at the front and back of the panel were reduced by 9% and 11%, respectively.Keywords: Photovoltaic cell, natural convection, heat sink, efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7245418 Power Optimization Techniques in FPGA Devices: A Combination of System- and Low-Levels
Authors: Pawel P. Czapski, Andrzej Sluzek
Abstract:
This paper presents preliminary results regarding system-level power awareness for FPGA implementations in wireless sensor networks. Re-configurability of field programmable gate arrays (FPGA) allows for significant flexibility in its applications to embedded systems. However, high power consumption in FPGA becomes a significant factor in design considerations. We present several ideas and their experimental verifications on how to optimize power consumption at high level of designing process while maintaining the same energy per operation (low-level methods can be used additionally). This paper demonstrates that it is possible to estimate feasible power consumption savings even at the high level of designing process. It is envisaged that our results can be also applied to other embedded systems applications, not limited to FPGA-based.
Keywords: Power optimization, FPGA, system-level designing, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22305417 Robust Power System Stabilizer Design Using Particle Swarm Optimization Technique
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to design a robust power system stabilizer (PSS). The design problem of the proposed controller is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. Further, all the simulations results are compared with a conventionally designed power system stabilizer to show the superiority of the proposed design approach.
Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23585416 Artificial Intelligence Techniques for Controlling Spacecraft Power System
Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah
Abstract:
Advancements in the field of artificial intelligence (AI) made during this decade have forever changed the way we look at automating spacecraft subsystems including the electrical power system. AI have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. In this paper, a mathematical modeling and MATLAB–SIMULINK model for the different components of the spacecraft power system is presented. Also, a control system, which includes either the Neural Network Controller (NNC) or the Fuzzy Logic Controller (FLC) is developed for achieving the coordination between the components of spacecraft power system as well as control the energy flows. The performance of the spacecraft power system is evaluated by comparing two control systems using the NNC and the FLC.Keywords: Spacecraft, Neural network, Fuzzy logic control, Photovoltaic array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19495415 Exciting Voltage Control for Efficiency Maximization for 2-D Omni-Directional Wireless Power Transfer Systems
Authors: Masato Sasaki, Masayoshi Yamamoto
Abstract:
The majority of wireless power transfer (WPT) systems transfer power in a directional manner. This paper describes a discrete exciting voltage control technique for WPT via magnetic resonant coupling with two orthogonal transmitter coils (2D omni-directional WPT system) which can maximize the power transfer efficiency in response to the change of coupling status. The theory allows the equations of the efficiency of the system to be determined at all the rate of the mutual inductance. The calculated results are included to confirm the advantage to one directional WPT system and the validity of the theory and the equations.
Keywords: Wireless power transfer, orthogonal, omni-directional, efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942