
A Scalable Media Job Framework for an Open
Source Search Engine

Pooja Mishra, Chris Pollett

Abstract—This paper explores efficient ways to implement various
media-updating features like news aggregation, video conversion,
and bulk email handling. All of these jobs share the property
that they are periodic in nature, and they all benefit from being
handled in a distributed fashion. The data for these jobs also often
comes from a social or collaborative source. We isolate the class of
periodic, one round map reduce jobs as a useful setting to describe
and handle media updating tasks. As such tasks are simpler than
general map reduce jobs, programming them in a general map
reduce platform could easily become tedious. This paper presents
a MediaUpdater module of the Yioop Open Source Search Engine
Web Portal designed to handle such jobs via an extension of a
PHP class. We describe how to implement various media-updating
tasks in our system as well as experiments carried out using these
implementations on an Amazon Web Services cluster.

Keywords—Distributed jobs framework, news aggregation, video
conversion, email.

I. INTRODUCTION

AN important aspect of creating a modern search engine

is the ability to display various media sources in an

appropriate way. These media sources include news feeds,

videos, images, group discussions, blogs, etc. Often this

data coming from users of these systems sharing videos or

collaborating on ideas on these sites. Many search engines

such as Google, Yahoo, and Bing have these features

incorporated and customized according to the needs of their

users. These tasks are often too slow to be done online within

a web application, but using traditional big data algorithms

such as Map Reduce might be overkill. In this paper, we

describe an extension to the Open Source Search Engine Yioop

that allows efficient handling of these tasks. We then look

at three tasks: news aggregation, video recoding, and bulk

email and describe how they can be handled by our system.

We provide benchmarks comparing our approach to earlier

implementations of these tasks in Yioop.

As an introductory example to the issues we are trying

to address with our system, consider news aggregation. A

news aggregator is a site where a user can go to see news

headlines from a variety of news sources on the web. If, when

a user came to a news aggregator site, an aggregator had to

go out and download each news source’s web page, group

them by article kind, and display the result, the experience

would be intolerably slow. On the other hand, traditional

web crawls can take weeks or months, and this would be

Pooja Mishra is with Cisco Systems. 2534 Lagoon Way San Jose CA 95132
(e-mail:pomishra@cisco.com).

Chris Pollett is professor in the Department of Computer Science, San
Jose State University, 1 Washington Square, San Jose CA 95192 (e-mail:
chris@pollett.org).

followed by non-trivial indexing and data processing. News

is supposed to be timely, and so traditional web crawling is

not immediately suited to this task. Further, the importance

of various news sites, the categories of news they relate, and

so on are relatively unchanging, so complicated re-ranking

tasks, which may require heavy duty map-reduce jobs such as

page rank, might be unnecessary. One could imagine trying to

solve the problem by just having a cron job that periodically

downloads web pages from a fixed list of web sites and

does simple indexing on them. To some degree this solves

the problem if the number of news sites is on the order of

thousands or tens of thousands, but if we try aggregating

news from millions of sites, feeds, etc. this quickly becomes

unwieldy. What is needed is a more distributed approach.

From the above, we can identity three properties of a robust

solution to the news aggregation task:

1) It runs periodically with a period measured in seconds,

minutes, or hours.

2) Data processing on given news sources should be

light-weight.

3) It should scale to handle as many news sites, or feeds as

desired. To do this, it probably needs to be distributed.

By distributed in the above we mean the same solution or

job should be run by multiple machines but using different

input news sites. This entails we need some mechanism for

combining the results to get the single experience the end user

sees. Framed in terms of the Map Reduce model, we have a

Mapper that maps different news sites to different machines

for download, followed by a Reducer, which can in this case

even be at query time, which combines the results. Traditional

Map Reduce allows for multiple rounds of a map followed by

a reduce. In our case, we only need one round. So we can

solve the problem of news aggregation, with a periodically

run, single-round map reduce job.

It turns out this news aggregation is not the only task that

can be solved by such jobs. In this paper, we consider two

other such tasks: video recoding and bulk emailing. For video

recoding, we imagine that videos are being uploaded to a web

site in a variety of video file formats (.asf , .flv, .ogv, .mpg,

.webm, etc) and we want to convert them to a common format

(.mp4) for the purpose of streaming them. Recoding can be

a computationally intensive task, so one would like to spread

the task among several machines to allow greater recoding

throughput. Additionally, uploaded files can be of a variety

of lengths, it can make sense to split longer files into files of

a common length to do better load balancing. So the video

recoding tasks becomes a periodic job which checks for new

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:10, No:5, 2016 

876International Scholarly and Scientific Research & Innovation 10(5) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
5,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
59

5.
pd

f



videos, then for each video splits the video and distributes its

part to recoding machines, and finally, receives and assembles

the results into whole recoded videos.

Bulk emailing, for this paper, is the task of sending out

notification emails (for instance, saying there is a new post),

to all members subscribed to a group or following a thread

on a discussion board. If the size of the group is large, then it

is not practical to send out these emails during a single web

request. On the other hand, queueing the emails and sending

them from a single mail server has scaling limits. So we can

imagine a periodic job where every so many minute we split

the mails across several machines and have each machine send

out their allotment of email.

Several periodic, task-oriented, variants of Map Reduce

have been considered previously. Oozie [8] is a workflow

engine that allows one to schedule Hadoop Map/Reduces jobs.

Workflows are specified as XML documents and allow one to

run a sequence of jobs contingent on earlier jobs successes

and at given times. This allows for the scheduling of periodic

jobs but programming for Hadoop is non-trivial representing a

barrier to use such jobs for system maintenance task like those

described above. To some degree, job task implementation

can be simplified by using map reduce streaming jobs, but

then one ends up with a hodgepodge of some things being

from the Hadoop framework, some things not. For simple map

reduce jobs involving Unix system commands, one can use the

system bash-reduce [2]. This tool allows a sequence of shell

commands to be mapped out to several machines, or cores

on the same machine, and the results of these commands can

then be fed to a reducer script. Bash-reduce is light-weight,

and shell scripting does encourage rapid development for

tasks such as those described above. Combined with a cron

jobs to allow tasks to be carried out in a periodic fashion

this could solve the problems we are trying to address. The

drawback of course is that shell programming is somewhat

limited compared to a full-fledged programming language,

and if we start coding some of our tasks to be executed in

a general purpose language such as C, then the system could

quickly become unmaintainable. Our media updater for the

Yioop Open Source search engine, we feel provides the ease

of development that a system like bash reduce offers, but

with the benefits of being part of single framework like an

Oozie/Hadoop set-up.

Real-time, stream-oriented data processing and complex

event processing systems are also closely related to our

system. An example of such a system might be Yahoo’s S4

system described in Neumeyer, et al [6]. Such systems are

designed to consume a stream of real time data, compute

intermediate values on it, and possibly emit new streams.

Neumeyer, et al [6]’s paper described using such a system

on stream of incoming words to find the top k most frequent

words. We could imagine these words coming from feeds. In

complex event processing, one might imagine having feeds

of financial information, and the processing on the feed

stream as performing tasks like buy and sell orders. Data

mining of streams with map reduce has been considered

previously. For example, Walmart’s Muppet system [5] can

perform MapUpdate tasks on incoming streams, which is

very similar to the kind of one-round map reduce, we are

considering above. The Muppet system paper [5] describes

using the system to monitor check-ins by retailers, to detect hot

Twitter topics, and to keep Twitter reputation score up to date.

These systems though rely on having a relatively heavy-weight

architecture already deployed in-order for their frameworks

to run. We hope our system is in some sense simpler for a

small to medium scale enterprise to deploy, yet garners to

such an enterprise, the same kinds of abilities as these more

heavy-weight systems.

As we have stated, our system is coded as a component of

the Yioop search engine [9]. This is an open-source search

engine created by the second author, Chris Pollett. The engine

was designed to allow it do web-scale crawls with minimal

dependencies on other projects, the main dependency being

just PHP 5.4 or higher. It is written in a scripting language

which tends to make extending and tinkering with it easier,

further the source code is thoroughly documented. Yioop

has been used in billion page web crawls, and has been

used in numerous master’s student projects at San Jose State

University. Prior to the work described in this paper, the Yioop

engine did have a news aggregator feature, did allow for video

uploads, and did support emails in response to group posts.

However, each of these features was restricted to the scale of

what could be handled by a single machine, and these tasks

were not abstracted out as jobs to be handled by a general

media handler.

We now discuss the organization of the rest of this paper.

In Section II, we give some background on Yioop software

and describe our media updater framework in Yioop. This is

followed by Section III with a description of our News Update

Job. Then in Section IV, we describe our video conversion

job, and in Section V we describe our bulk email job. Each

of these sections include some performance experiments. The

last section, Section VI, then summarizes our results and draws

conclusions.

II. BACKGROUND

In this section, we provide details on Yioop software needed

to understand its media updater system.

When deployed in a distributed setting, identical copies

of the Yioop software are installed on multiple machines or

virtual machines. Each machine is configured with the address

of a name server machine – the machine responsible for

coordinating the activities of the other machines. On a given

machine, five different kinds of Yioop processes might be run:

A web app used to handle web requests to the search engine,

a queue server for maintaining a by-document partition of

search indexes and queues of what to crawl next, a mirror

process which might be used to mirror an index held by

a different machine, a fetcher process for downloading and

performing initial processing of crawl documents, and a media

updater process for handling the kinds of jobs described in the

introduction. We list all the processes for completeness, but

the jobs we will write only involve the web app on the name

server and the media updater.

The name server itself runs the same software as all

the other machines, however, it stores in its database what

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:10, No:5, 2016 

877International Scholarly and Scientific Research & Innovation 10(5) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
5,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
59

5.
pd

f



machines make up the cluster and what activities are currently

being run by the cluster. The web interface of the name server

can be used by an administrator to configure the machine list

and the active activities.

Each of the five processes except the web app mentioned

above has a basic event loop. As part of the event loop, a given

process uses an HTTP request to the name server to find out

what activities it should be performing. For example, a fetcher

process might contact the name server to find out what is the

current web crawl being performed, and what are the urls of

the queue servers involved in this crawl. Given this information

the fetcher might contact the web app on the machine with a

running queue server to get a list of urls to download next.

A queue server process might use information from the name

server to know what url hash ranges it is responsible. A mirror

process similar gets information from the name server to know

what machine it is mirroring.

Prior to the work of the present paper, the media updater

process was run only on the name server and was only used to

periodically download feed urls specified in the name server’s

database. Our first enhancement was to allow this media

updater process to run on all machines in a Yioop cluster.

As part of its event loop, the media updater contacts the name

server for a list of jobs that should be run. In what follows,

we assume we have a media updater running on the server

together with media updaters running on client machines.

Media updater jobs are specified as a subclass of a PHP

MediaJob class. This class has eight main methods which may

be overridden:

init() is run after the class’ constructor and is intended to be

what the user uses as a constructor.

checkPrerequisites() returns a boolean about whether the job

should be run. It allows the job coder to check things like

the system time to determine when a job should run.

nondistributedTasks() is run only on the name server when

the Yioop administrator has specified that the media

updater should run in non-distributed mode.

prepareTasks() is run on the name server’s media updater

only. It gets the data needed by the job ready before it is

mapped to a client machine.

getTasks() is run by the name server web app when a client

makes an HTTP request for data for the MediaJob. It is

supposed to take data output by prepareTasks() and

send the client its portion of this data.

doTasks() is run after the client media updater has received

the getTasks() data. It then does processing on this

data.

putTasks() is run by the name server web app when a client

makes an HTTP request to send processed information

back to the web server.

finishTasks() is run on the name server’s media updater only.

It applies a reduce operation, or final computations, after

the data has been sent back to name server.

The media updater’s event loop, after finding out a list

of MediaJob’s to runs, invokes each found job’s init()
method, then periodically cycles through the job list calling

each job’s run() method. This method of the base MediaJob

class calls checkPrerequisites(), and if this returns

true, calls the other methods listed above, depending on if the

job is being run in a distributed or non-distributed context,

and depending on whether it is being run on the name server

or a client. Given this background, we now discuss our three

example jobs built using this framework.

III. NEWS UPDATE JOB

Let’s consider what properties might be expected of a

news handler in a search engine, taking our inspiration from

two of the most-known news aggregators, Yahoo News and

Google News. As early as the mid-nineties, Yahoo had a

headlines section obtaining news from Reuters [11]. Over

time additional news feed sources have been added, and Yahoo

also began creating its own news content. In addition, different

mechanisms to rank the popularity of news items, for example,

via link clicks or frequency emailed, have been deployed [7].

User personalizations, such as the ability to follow selected

news streams, have been provided [10]. Google News was

created more recently than Yahoo. It was first released in

beta in 2002 and officially in 2006 [3]. It uses automated

story selection, but where humans could add sources. Both

Yahoo and Google integrate news as part of search results

and also allow users to search within news. Since the same

or related news story may come from multiple sources, both

systems also support grouping and deduplicating news stories.

From examining these systems, one can come up with a list

of features we would like of a web-based news aggregating

system:

1) Integrates external news feeds and internally generated

content.

2) Refreshes frequently so that news stays current.

3) Is searchable and allows content to appear within general

search engine search results.

4) Uses a ranking mechanism that can be meshed with the

ranking mechanism of the standard search results.

Even before the work of the current paper, Yioop had facilities

to accomplish the above. We outline how these facilities work

in order to understand what the distributed news updater

job needs to do. In the administrative web panels of Yioop,

administrative users can add and delete RSS, Atom, JSON,

or HTML scrape pages. Url’s and relevant XPath’s entered

for these pages are then stored in the Yioop database. This

allows an administrator to manage external news feeds. The

Yioop search engine comes with the ability for user’s to create

groups with varying levels of editing privileges. Each group

has associated with it a feed and this feed can be output in

RSS if desired. Using this mechanism, popular feeds can be

added to the list of news feed sources. User groups also have

a mechanism for voting up or down particular feed items.

Prior to this project, the media updater on the name server

would once an hour download the search sources that the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:10, No:5, 2016 

878International Scholarly and Scientific Research & Innovation 10(5) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
5,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
59

5.
pd

f



administrator had specified. It would then compare feed items

both based on hashes of content as well as GUIDs to determine

which items had not been previously stored and then add them

to a table in the Yioop database. Items greater than a week in

age would be deleted. Finally, an inverted index of the rows

of the feed item table would be created to facilitate search.

Since early in the development of the Yioop project, Yioop

has supported crawling and storing web crawl indexes across

several machines. Indexes are partitioned across machines

using document partitioning: A given machine in the Yioop

cluster will store the inverted index for all documents in the

web crawl whose URLs were in a particular hash range. When

a query is processed from the web interface, the same query

is then run on each partition making up the index, and the

results are combined. Originally, news results were stored

only on the name server. When a query was processed, the

query was processed against the name server news results and

combined with any index results on the name server, this in

turn was combined with query results from other machines in

the cluster. A special “meta word”, media:news, is added to

all news documents, so that if a user wants to search just news

results this meta word can be added to the query to perform

the desired restriction. Since each Yioop machine in a cluster

has the same code base, and does a check for news to combine

with existing query results, to make the original news updater

distributed, one could imagine by hand evenly allocating the

feed source urls between the machines in the cluster, and then

running news media updaters on each machine using only

its allocated sources. The distributed query mechanism from

before could then be used to serve news in search results. To

implement this in an automated fashion using the new Yioop

media job framework, we make a subclass NewUpdateJob of

MediaJob. The administrator is responsible for adding feeds

only to the name server and we assume that this has been done

prior to running this job. Then when a MediaUpdater runs its

NewUpdateJob, its run() method detects if it is being run

on the name server or client. In the former case, its behavior

is as in Fig. 1.

Notice that NewUpdateJob does not override

prepareTasks(), putTasks(), or finishTasks(),

and these would be inherited as empty methods from the base

class. On a client, NewUpdateJob’s behavior is an in Fig. 2.

If the Yioop cluster administrator decides to configure

their site so as not to use a distributed media updater,

and only runs the media updater on the name server,

then the nondistributedTasks() method of

NewsUpdateJob is used. The run() method in this

case, first calls checkPrerequisite() to determine if

it is time to time download feeds again, and if so, calls

nondistributedTasks() . This in turn obtains all

the feed urls from the name server’s database and calls

doTask($tasks) with this information.

As we indicated in the introduction of this paper, the two

listings above can be viewed as carrying out the “mapping

portion” of a map reduce algorithm. The pre-existing query

mechanism which runs the same query on each machine then

merges the results could be viewed as playing something-like

the role of a query time “reduce operation”.

A. News Update Job Performance Testing

Performance experiments for our news update job conducted

on a cluster on AWS machines, each with the following

specifications: 1 vCPUs, 2.5 GHz, Intel Xeon Family, 1

GiB memory, running Ubuntu Linux. A Yioop instance was

installed on one of these machines and then cloned using

the API option in AWS. After distributing the code, news

sources were added to the name server. Timing measurements

were then performed using different numbers of machines

and different numbers of news sources. The results of these

measurement are plotted in Fig. 3. As one can see, as the

number of news sources increases, the time required to build

the index shard steadily increases. However, the time can be

reduced by adding additional machines to the cluster. Two

machines in the cluster reduce the time almost exactly by

50 percent, which demonstrates that hashing sources’ urls to

machines is evenly distributing the work needed to index all

the feeds.

IV. VIDEO CONVERT JOB

The NewsUpdateJob example did not as part of the job

make use of a reduce operation. We next consider the job

of converting videos to a particular format to illustrate a

MediaJob that does this.

Many search engines have the capability to upload videos

and view them later. One popular example is Google

subsidiary, YouTube. Calculation of relevance of a video to

a search query can be done by looking at graphs such as

those based off co-viewed videos of users and may involve a

map reduce algorithm not unlike page rank [1]. In the Yioop

search engine, videos can be uploaded to group wiki pages

and to posts in a group’s feed. There is also built-in public

group wiki which can be used to configure the overall look

and feel of a Yioop installation. The upload feature can be

used to display videos off arbitrary Yioop pages provided the

uploader has permissions on that page. Further wiki pages in

Yioop can be of different types one of which is a gallery type

suitable for displaying photos or videos. Videos in Yioop are

streamed using HTTP pseudo-streaming. To ensure that videos

are streamable across a wide spectrum of modern browsers,

the media job we are going to describe in this section was

created to convert uploaded videos to mp4.

Prior to the work of this paper, Yioop could be configured

to convert videos on the name server. After conversion it

would ensure that converted videos got moved to the correct

folder for the wiki page in question. This name server only

conversion was computationally intensive for the name server,

and tended to slow down other important processes such as

query processing. So on the main live test site, yioop.com, it

was turned off. To scale and make feasible video conversion,

we wrote a subclass VideoConvertJob of MediaJob. Our job

makes use of the free software project known as FFmpeg [4]

to handle video manipulation.

When a file is uploaded to a wiki page as page resource,

its media type is checked to see if it is a video file which

should be converted. If it is, and we are running is a distributed

media updater mode, then after it is moved to that wiki page’s

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:10, No:5, 2016 

879International Scholarly and Scientific Research & Innovation 10(5) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
5,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
59

5.
pd

f



getTasks ($machine i d ) :
Uses c l i e n t $machine i d to get u r l ' s o f feeds whose hash maps to $machine i d .
r e t u rn i n f o rma t i on f o r these feeds to reques t ing c l i e n t

Fig. 1 NewUpdateJob Behavior on a Name Server Web App

checkPrerequ is i te ( ) :
Checks i f i t has been more than an hour s ince news was updated . This could be made
less i f des i red .

doTasks ($ tasks ) :
$ tasks i s an ar ray o f feed in fo rma t i on got ten by an HTTP request to the name server e a r l i e r
i n the run ( ) method . On the name server , getTasks ( ) would have been invoked to f u l f i l
t h i s request .
f o r each ($ tasks as $ feed ) :

Download the page f o r $feed ' s u r l .
For each feed i tem i n downloaded page , check i f i t ' s new and not a d u p l i c a t e . I f so ,
add i t to the l o c a l database tab le f o r feed i tems .

Delete exp i red feed i tems from feed tab le
Rebui ld index shard f o r feed i tems .

Fig. 2 NewUpdateJob Behavior on a Client

Fig. 3 NewsUpdateJob Performance

resource folder, a subfolder of the convert directory is created,

and a text file with file information and another indicating that

a video needs to be split for conversion are written. All of

this processing is relatively fast, and to this point, processing

is done by the web app on a file upload. The remainder of

the processing is done by the VideoConvertJob. This job as

written has a checkPrerequisites() which only runs

the job when Yioop is in a distributed media mode setting,

and for this reason, the nondistributedTasks() is the

default do nothing method of the base MediaJob class. For

this job, there are two groups of methods on the name server:

Those that run in the media updater and those that run in the

web app. The media updater name server methods are as given

in Fig. 4.

After prepareTasks() has run on a video convert

folder, its segments will be ready to be sent to the client for

conversion. The process of segmenting a file using ffmpeg is

much faster and lightweight than the process of converting

from one video format to another, which will be seen in

our experimental results in the next section. The method

finishTasks() above handles videos after converted segments

have been sent back from clients to the name server. It

can be viewed as the “reduce step” of the Map Reduce

paradigm. It checks if all the segments of the video file have

been uploaded, and if so, concatenates them to make a final

converted video file back in the wiki page’s resource folder.

The VideoConvertJob methods that run in the name server’s

web app are responsible for getting video segments to give to

client’s for conversion, and for receiving converted segments

and moving them to the correct folder. They are given in Fig. 5

Notice, unlike the NewsUpdateJob, neither getTasks
nor putTasks makes use of its $machine id argument.

The name server methods, as we have seen, do all the

bookkeeping, which, although somewhat more intricate,

are less computationally expensive than the actual video

conversion which occurs on the client. This VideoUpdateJob

methods on the client to do the conversion are as presented in

Fig. 6.

The $sendable_file’s file name is used only for log

messages that the media updater outputs. To handle actually

sendings emails contained in an email file on the client, the

two overridden methods of Fig. 9 come into play.
1) Video Updater Performance Testing: Fig. 7 shows the

results of our performance tests for the VideoUpdateJob. To

test the VideoUpdateJob, again an AWS cluster was configured

and the time it took to convert the videos was measured,

varying the number of machines and the length of the video

to convert. The one machine case measures the original

non-distributed code. As one would expect, on any number

of machines, a longer video takes longer to convert. We also

see a similar improvement in speed going from one to two to

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:10, No:5, 2016 

880International Scholarly and Scientific Research & Innovation 10(5) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
5,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
59

5.
pd

f



prepareTasks ( ) :
f o r each video conver t sub fo lde r :

i f a s p l i t f i l e e x i s t s :
Read the f i l e i n f o f i l e to get i n f o rma t i on on the video to be converted
S p l i t the video i n t o 5 minute segments using FFmpeg .
Output segments to video conver t f o l d e r .
Remove s p l i t f i l e .
Wr i te a conver t count f i l e w i th the number o f f i l e s to conver t

f i n i shTasks ( ) :
f o r each video conver t sub fo lde r :

i f the number i n conver t count f i l e equals the number o f mp4 segments uploaded to the
video converted sub fo lde r :

Move f i l e i n f o f i l e and count f i l e to video converted f o l d e r .
Delete video conver t sub fo lde r .

f o r each video converted sub fo lde r :
i f a conver t count f i l e e x i s t s but an assemble f i l e does not :

Wr i te an assemble f i l e to i n s t r u c t FFmpeg how to concatenate video segments to
b u i l d converted f i l e

f o r each video converted sub fo lde r
i f an assemble f i l e e x i s t s :

Use assemble f i l e w i th ffmpeg to concatenate converted video segments to w i k i
resource f o l d e r
Delete video converted sub fo lde r assemble
Create a thumbnai l f o r converted video wi th FFmpeg

Fig. 4 Name Server MediaUpdater VideoUpdateJob Methods

getTasks ($machine id , $data = n u l l ) :
f o r each conver t sub fo lde r :

f o r each video segment to conver t as $ f i l e p a t h :
i f not e x i s t s timestamp f i l e f o r segment or timestamp i s exp i red :

break out o f both f o r each loops
Wri te a new timestamp f i l e f o r $ f i l e p a t h
re tu rn assoc i a t i ve ar ray w i th the f i l e name of $ f i l e p a t h , i t s sub fo lde r name,
and f i l e ' s contents .

putTasks ($machine id , $data ) :
Here $data conta ins an assoc ia t i ve ar ray w i th the converted video segment f i l e
name, the conver t subfo lder , and converted segment data
Compute converted sub fo lde r name from conver t sub fo lde r name
Create converted sub fo lde r i f i t doesn ' t e x i s t s
i f the segment name does not e x i s t i n the converted sub fo lde r :

Make f i l e i n converted sub fo lde r w i th segment f i l e name and converted segment data
Delete the o r i g i n a l , unconverted segment from the conver t sub fo lde r

Fig. 5 Name Server Web App VideoUpdateJob Methods

three machines, that we did in the news update job situation.

For a fifty minute video, on a single machine it takes about 300

seconds to convert a video, 170 seconds in the two machine

case, and 120 seconds in the three machine case. So both the

two and three machine cases and about the same amount, 20

seconds, above the ideal speed-up of a factor or 2 in the first

case, or 3 in the second. This factor can be attributed to the

bookkeeping, segmenting times, and network communication

times. These would be roughly the same for the two and three

machine case. Although it may look from the graph that there

is little advantage of our distributed set-up for shorter videos in

going from two to three machines, one has to remember the

above graph is for the conversion of a single file, averaged

several times. In a typical scenario, one would have several

outstanding files to be converted, and here having additional

machines would help.

V. BULK EMAIL JOB

Our last example is perhaps the simplest of our three

examples. Prior to our work there were several situations

in which Yioop might need to send out emails: new user

registration, password recovery, notifications of new posts in

discussion groups, and notification of membership requests to

groups. To send a single email from the web app in response to

a user’s request would in general not be very time consuming,

but to notify all members of a large discussion group of

a new post might an impractically long time. Yioop sends

emails using a MailServer class which either directly uses

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:10, No:5, 2016 

881International Scholarly and Scientific Research & Innovation 10(5) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
5,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
59

5.
pd

f



checkPrerequ is i te ( ) :
i f i n d i s t r i b u t e d mode :

r e t u r n t ru e
r e t u r n f a l s e

doTasks ($ tasks ) :
Here $ tasks conta ins an assoc ia t i ve ar ray w i th the f i l e name, conver t
sub fo lde r name, and data
f o r a video segment to conver t . doTasks ( ) i s c a l l e d from the base classes
MediaJob ' s run ( )
method a f t e r i t has made a request to the Name Server to execute getTasks ( ) .
Remove any p rev ious l y e x i s t i n g conver t sub fo lde r w i th the same name
Make a new conver t sub fo lde r
Wr i te $ task ' s data to a f i l e w i th $ task ' s f i l e name i n the f o l d e r j u s t
created .
Convert j u s t w r i t t e n video segment f i l e to mp4 using FFmpeg .
Create an assoc ia t i ve ar ray w i th the converted f i l e name, f o l d e r name, and
converted data
r e t u r n array , so run ( ) method can send i t to the name server

Fig. 6 Client MediaUpdater VideoUpdateJob Methods

Fig. 7 VideoUpdateJob Performance

PHP’s built-in mail() function or by using its own simple

implementation of SMTP.

The first step to improve the web app only approach to

sending email was to add a Server Settings activity that allows

a Yioop site administrator to choose between web app-based

emails, or media updater based emails. In the first case, the

prior email system of Yioop is used. To handle the second

situation, the MailServer class was modified so that it could

write emails into text files in a mail directory. A given text

file in this folder has its creation timestamp as its name and is

appended to for a five minute interval with all newly received

emails, after which a new text file is started. We then created

the BulkEmailJob, a subclass of MediaJob, to handle sending

the emails from the media updater. If the media mode is

non-distributed, then when this job is run, periodically, the

nondistributedTasks() method is called. It looks in the mail

directory for a file older than five minutes, read it, sends out

the emails it contains, and deletes it. In the distributed setting,

on the name server we have only the overridden method of

Fig. 9.

VI. CONCLUSION

We have presented the media updater framework for the

Yioop open-source search engine. A design goal of this

framework was to make it easier for people to code periodic

search engine, wiki, or web-site related jobs developed using

Yioop, with the intention that the execution of these jobs will

scale to larger deployment settings. Jobs in our framework

run periodically. The NewsUpdaterJob, VideoUpdateJob, and

BulkEmailJob example jobs we have explained, show that

it is relatively easy to write lightweight, distributed jobs in

our framework. The experiments we conducted with these

jobs illustrate the advantage of running these kind of periodic

jobs in a distributed setting. As the Yioop project itself has

minimal dependencies on other projects and is written in the

popular scripting language PHP, it has been relatively easy

for many students at San Jose State to get up to development

speed on this project. It seems promising that the media job

framework will facilitate future improvements to Yioop such

as the ability to periodically process movie and weather feeds,

perform traffic analytics, and to perform supplementary crawls

for the main crawl used to serve search results.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:10, No:5, 2016 

882International Scholarly and Scientific Research & Innovation 10(5) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
5,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
59

5.
pd

f



getTasks ($machine i d ) :
$sendable f i l e = f a l s e
f o r each $emai l f i l e i n mai l d i r e c t o r y :

i f o lde r than 5 minutes :
$sendable f i l e = $e m a i l f i l e
break

i f $sendable f i l e i s f a l s e :
r e t u r n f a l s e

Create an assoc ia t i ve ar ray w i th name $sendable f i l e ' s f i l e name
and wi th data i t s contents
r e t u r n ar ray

Fig. 8 Name Server Web App BulkEmailJob Methods

checkPrerequ is i te ( ) :
i f i n d i s t r i b u t e d mode or set to use mai l server i n media updater :

r e t u r n t ru e
e lse

r e t u r n f a l s e
doTasks ($ tasks ) :

$ tasks i s an assoc ia t i ve ar ray w i th the name of the to−process emai l
f i l e and i t s data contents
S p l i t data contents i n t o an ar ray o f emai ls to send
foreach emai l to send :

send emai l
r e t u r n f a l s e to i n d i c a t e no putTasks

Fig. 9 Client BulkEmailJob Methods

REFERENCES

[1] S.Baluja, R. Seth, D. Sivakumar, Y. Jing, J.Yagnik, S. Kumar, D.
Ravichandran, and M. Aly. Video Suggestion and Discovery for YouTube:
Taking Random Walks Through the View Graph. Proceeding of WWW
2008.

[2] Bash Reduce GitHub Page. Retrieved on Sep. 11, 2015 from
https://github.com/erikfrey/bashreduce.

[3] Krishna Bharat. And now, News. The Official Google Blog. Jan. 23,
2006.

[4] FFmpeg. Retrieved Dec 4., 2015 from
http://ffmpeg.org/.

[5] W.Lam, L.Liu, S.Prasad, A.Rajaraman, Z.Vacheri, and A.Doan. Muppet:
Mapreduce-style processing of fast data. Proceedings of the VLDB
Endowment (PVLDB), 5:18141825, 2012.

[6] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. S4:
Distributed Stream Computing Platform. In Data Mining Workshops,
International Conference. IEEE Computer Society. pp 170–177. 2010.

[7] P. O’Connell. New Economy; Yahoo charts the spread of the news by
e-mail, and what it finds out is itself becoming news. New York Times.
Jan. 29, 2001. http://www.nytimes.com/2001/01/29/business/
new-economy-yahoo-charts-spread-e-mail-what-it-finds-
itself-becoming.html

[8] Oozie 4.2.0 Documentation. Retrieved on Sep. 11, 2015, from,
http://oozie.apache.org/docs/4.2.0.

[9] Yioop Documentation from Seekquarry. Retrieved on Sep. 11, 2015 from
http://www.seekquarry.com/p/Documentation.

[10] A. Silberstein, J. Terrace , B. F. Cooper , R. Ramakrishnan. Feeding
Frenzy: Selectively Materializing Users Event Feeds . In SIGMOD 2010.

[11] Yahoo! Headline. Nov. 28, 1996. Internet Archive.
https://web.archive.org/web/19961128074525/http://www8.yahoo.com/
headlines/

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:10, No:5, 2016 

883International Scholarly and Scientific Research & Innovation 10(5) 2016 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

0,
 N

o:
5,

 2
01

6 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

04
59

5.
pd

f


