Search results for: Austenitic Stainless Steel AISI 304/ Mechanical Property/ Welding Gas Shield/ Gas Shield
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2414

Search results for: Austenitic Stainless Steel AISI 304/ Mechanical Property/ Welding Gas Shield/ Gas Shield

1994 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms

Authors: Alper Akın, İbrahim Aydoğdu

Abstract:

This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teachinglearning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.

Keywords: Optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
1993 Panel Zone Rigidity Effects on Special Steel Moment-Resisting Frames According to the Performance Based Design

Authors: Mahmoud Miri, Morteza Naghipour, Amir Kashiryfar

Abstract:

The unanticipated destruct of more of the steel moment frames in Northridge earthquake, altered class of regard to the beamto- column connections in moment frames. Panel zone is one the significant part of joints which, it-s stiffness and rigidity has an important effect on the behavior and ductility of the frame. Specifically that behavior of panel zone has a very significant effect on the special moment frames. In this paper , meanwhile the relations for modeling of panel zone in frames are expressed , special moment frames with different spans and stories were studied in the way of performance-based design. The frames designed in according with Iranian steel building code. The effect of panel zone is also considered and in the case of non-existence of performance level, by changing in intimacies and parameter of panel zone, performance level is considered.

Keywords: steel moment frame, panel zone, performance based design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4588
1992 Theoretical Investigation of Steel Plated Girder Resistance

Authors: J. Kala, J. Melcher, M. Škaloud, Z. Kala

Abstract:

In the paper, the results of sensitivity analysis of the influence of initial imperfections on the web stress state of a thinwalled girder are presented. The results of the study corroborate a very good and effective agreement of experiments with theory. Most input random quantities were found experimentally. The change of sensitivity coefficients in dependence on working load value is analysed. The stress was analysed by means of a geometrically and materially non-linear solution by applying the program ANSYS. This research study offers important background for theoretical studies of stability problems, post-critical effects and limit states of thin-walled steel structures.

Keywords: Buckling, Fatigue, Imperfection, Steel, Sensitivity analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
1991 Real-Time Testing of Steel Strip Welds based on Bayesian Decision Theory

Authors: Julio Molleda, Daniel F. García, Juan C. Granda, Francisco J. Suárez

Abstract:

One of the main trouble in a steel strip manufacturing line is the breakage of whatever weld carried out between steel coils, that are used to produce the continuous strip to be processed. A weld breakage results in a several hours stop of the manufacturing line. In this process the damages caused by the breakage must be repaired. After the reparation and in order to go on with the production it will be necessary a restarting process of the line. For minimizing this problem, a human operator must inspect visually and manually each weld in order to avoid its breakage during the manufacturing process. The work presented in this paper is based on the Bayesian decision theory and it presents an approach to detect, on real-time, steel strip defective welds. This approach is based on quantifying the tradeoffs between various classification decisions using probability and the costs that accompany such decisions.

Keywords: Classification, Pattern Recognition, ProbabilisticReasoning, Statistical Data Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
1990 An Improvement of Flow Forming Process for Pressure Vessels by Four Rollers Machine

Authors: P. Sawitri, S. Cdr. Sittha, T. Kritsana

Abstract:

Flow forming is widely used in many industries, especially in defence technology industries. Pressure vessels requirements are high precision, light weight, seamless and optimum strength. For large pressure vessels, flow forming by 3 rollers machine were used. In case of long range rocket motor case flow forming and welding of pressure vessels have been used for manufacturing. Due to complication of welding process, researchers had developed 4 meters length pressure vessels without weldment by 4 rollers flow forming machine. Design and preparation of preform work pieces are performed. The optimization of flow forming parameter such as feed rate, spindle speed and depth of cut will be discussed. The experimental result shown relation of flow forming parameters to quality of flow formed tube and prototype pressure vessels have been made.

Keywords: Flow forming, Pressure vessel, four rollers, feed rate, spindle speed, cold work.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790
1989 The Effects of Bolt Spacing on Composite Shear Wall Behavior

Authors: Amir Ayazi, Hamde Ahmadi, Soheil Shafaei

Abstract:

Composite steel shear wall is a lateral load resisting system which consists of a steel plate with concrete wall attached to one or both sides to prevent it from elastic buckling. The composite behavior is ensured by utilizing high-strength bolts. This paper investigates the effect of distance between bolts, and for this purpose 14 one-story one-bay specimens with various bolts spacing were modeled by finite element code which is developed by the authors. To verify the model, numerical results were compared with a valid experiment which illustrate proper agreement. Results depict increasing the distance between bolts would improve the seismic ever, this increase must be limited, because of large distances will cause widespread buckling of the steel plate in free subpanels between bolts and would result in no improvement. By comparing the results in elastic region, it was observed initial stiffness is not affected by changing the distance.

Keywords: Composite steel shear wall, bolt, buckling, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3130
1988 The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient

Authors: J. Hrabovský, M. Chabičovský, J. Horský

Abstract:

Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution lead to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers.

Keywords: Heat transfer coefficient, numerical analysis, oxide layer, spray cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2979
1987 On Convergence Property of MINRES Method for Solving a Complex Shifted Hermitian Linear System

Authors: Guiding Gu, Guo Liu

Abstract:

We discuss the convergence property of the minimum residual (MINRES) method for the solution of complex shifted Hermitian system (αI + H)x = f. Our convergence analysis shows that the method has a faster convergence than that for real shifted Hermitian system (Re(α)I + H)x = f under the condition Re(α) + λmin(H) > 0, and a larger imaginary part of the shift α has a better convergence property. Numerical experiments show such convergence properties.

Keywords: complex shifted linear system, Hermitian matrix, MINRES method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
1986 Structural Cost of Optimized Reinforced Concrete Isolated Footing

Authors: Mohammed S. Al-Ansari

Abstract:

This paper presents an analytical model to estimate the cost of an optimized design of reinforced concrete isolated footing base on structural safety. Flexural and optimized formulas for square and rectangular footingare derived base on ACI building code of design, material cost and optimization. The optimization constraints consist of upper and lower limits of depth and area of steel. Footing depth and area of reinforcing steel are to be minimized to yield the optimal footing dimensions. Optimized footing materials cost of concrete, reinforcing steel and formwork of the designed sections are computed. Total cost factor TCF and other cost factors are developed to generalize and simplify the calculations of footing material cost. Numerical examples are presented to illustrate the model capability of estimating the material cost of the footing for a desired axial load.

Keywords: Footing, Depth, Concrete, Steel, Formwork, Optimization, Material cost, Cost Factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4718
1985 Multidimensional and Data Mining Analysis for Property Investment Risk Analysis

Authors: Nur Atiqah Rochin Demong, Jie Lu, Farookh Khadeer Hussain

Abstract:

Property investment in the real estate industry has a high risk due to the uncertainty factors that will affect the decisions made and high cost. Analytic hierarchy process has existed for some time in which referred to an expert-s opinion to measure the uncertainty of the risk factors for the risk analysis. Therefore, different level of experts- experiences will create different opinion and lead to the conflict among the experts in the field. The objective of this paper is to propose a new technique to measure the uncertainty of the risk factors based on multidimensional data model and data mining techniques as deterministic approach. The propose technique consist of a basic framework which includes four modules: user, technology, end-user access tools and applications. The property investment risk analysis defines as a micro level analysis as the features of the property will be considered in the analysis in this paper.

Keywords: Uncertainty factors, data mining, multidimensional data model, risk analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2923
1984 Redundancy in Steel Frames with Masonry Infill Walls

Authors: Hosein Ghaffarzadeh, Robab Naseri Ghalghachi

Abstract:

Structural redundancy is an interesting point in seismic design of structures. Initially, the structural redundancy is described as indeterminate degree of a system. Although many definitions are presented for redundancy in structures, recently the definition of structural redundancy has been related to the configuration of structural system and the number of lateral load transferring directions in the structure. The steel frames with infill walls are general systems in the constructing of usual residential buildings in some countries. It is obviously declared that the performance of structures will be affected by adding masonry infill walls. In order to investigate the effect of infill walls on the redundancy of the steel frame which constructed with masonry walls, the components of redundancy including redundancy variation index, redundancy strength index and redundancy response modification factor were extracted for the frames with masonry infills. Several steel frames with typical storey number and various numbers of bays were designed and considered. The redundancy of frames with and without infill walls was evaluated by proposed method. The results showed the presence of infill causes increase of redundancy.

Keywords: Structural redundancy, Masonry infill walls frames.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364
1983 Vibration of Functionally Graded Cylindrical Shells under Free-Free Boundary Conditions

Authors: A.R.Tahmasebi Birgani, M.Hosseinjani Zamenjani, M.R.Isvandzibaei

Abstract:

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free boundary conditions.

Keywords: Vibration, FGM, Cylindrical shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
1982 Influence of Transverse Steel and Casting Direction on Shear Response and Ductility of Reinforced Ultra-High Performance Concrete Beams

Authors: Timothy E. Frank, Peter J. Amaddio, Elizabeth D. Decko, Alexis M. Tri, Darcy A. Farrell, Cole M. Landes

Abstract:

Ultra-high performance concrete (UHPC) is a class of cementitious composites with a relatively large percentage of cement generating high compressive strength. Additionally, UHPC contains disbursed fibers, which control crack width, carry the tensile load across narrow cracks, and limit spalling. These characteristics lend themselves to a wide range of structural applications when UHPC members are reinforced with longitudinal steel. Efficient use of fibers and longitudinal steel is required to keep lifecycle cost competitive in reinforced UHPC members; this requires full utilization of both the compressive and tensile qualities of the reinforced cementitious composite. The objective of this study is to investigate the shear response of steel-reinforced UHPC beams to guide design decisions that keep initial costs reasonable, limit serviceability crack widths, and ensure a ductile structural response and failure path. Five small-scale, reinforced UHPC beams were experimentally tested. Longitudinal steel, transverse steel, and casting direction were varied. Results indicate that an increase in transverse steel in short-spanned reinforced UHPC beams provided additional shear capacity and increased the peak load achieved. Beams with very large longitudinal steel reinforcement ratios did not achieve yield and fully utilized the tension properties of the longitudinal steel. Casting the UHPC beams from the end or from the middle affected load-carrying capacity and ductility, but image analysis determined that the fiber orientation was not significantly different. It is believed that the presence of transverse and longitudinal steel reinforcement minimized the effect of different UHPC casting directions. Results support recent recommendations in the literature suggesting that a 1% fiber volume fraction is sufficient within UHPC to prevent spalling and provide compressive fracture toughness under extreme loading conditions.

Keywords: Fiber orientation, reinforced ultra-high performance concrete beams, shear, transverse steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 216
1981 Vehicle Risk Evaluation in Low Speed Accidents: Consequences for Relevant Test Scenarios

Authors: Philip Feig, Klaus Gschwendtner, Julian Schatz, Frank Diermeyer

Abstract:

Projects of accident research analysis are mostly focused on accidents involving personal damage. Property damage only has a high frequency of occurrence combined with high economic impact. This paper describes main influencing parameters for the extent of damage and presents a repair cost model. For a prospective evaluation method of the monetary effect of advanced driver assistance systems (ADAS), it is necessary to be aware of and quantify all influencing parameters. Furthermore, this method allows the evaluation of vehicle concepts in combination with an ADAS at an early point in time of the product development process. In combination with a property damage database and the introduced repair cost model relevant test scenarios for specific vehicle configurations and their individual property damage risk may be determined. Currently, equipment rates of ADAS are low and a purchase incentive for customers would be beneficial. The next ADAS generation will prevent property damage to a large extent or at least reduce damage severity. Both effects may be a purchasing incentive for the customer and furthermore contribute to increased traffic safety.

Keywords: Property damage analysis, effectiveness, ADAS, damage risk, accident research, accident scenarios.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
1980 Analytical Prediction of Seismic Response of Steel Frames with Superelastic Shape Memory Alloy

Authors: Mohamed Omar

Abstract:

Superelastic Shape Memory Alloy (SMA) is accepted when it used as connection in steel structures. The seismic behaviour of steel frames with SMA is being assessed in this study. Three eightstorey steel frames with different SMA systems are suggested, the first one of which is braced with diagonal bracing system, the second one is braced with nee bracing system while the last one is which the SMA is used as connection at the plastic hinge regions of beams. Nonlinear time history analyses of steel frames with SMA subjected to two different ground motion records have been performed using Seismostruct software. To evaluate the efficiency of suggested systems, the dynamic responses of the frames were compared. From the comparison results, it can be concluded that using SMA element is an effective way to improve the dynamic response of structures subjected to earthquake excitations. Implementing the SMA braces can lead to a reduction in residual roof displacement. The shape memory alloy is effective in reducing the maximum displacement at the frame top and it provides a large elastic deformation range. SMA connections are very effective in dissipating energy and reducing the total input energy of the whole frame under severe seismic ground motion. Using of the SMA connection system is more effective in controlling the reaction forces at the base frame than other bracing systems. Using SMA as bracing is more effective in reducing the displacements. The efficiency of SMA is dependant on the input wave motions and the construction system as well.

Keywords: Finite element analysis, seismic response, shapesmemory alloy, steel frame, superelasticity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845
1979 Thermomechanical Damage Modeling of F114 Carbon Steel

Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi

Abstract:

The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.

Keywords: Thermomechanical fatigue, failure, numerical simulation, fracture, damages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
1978 Design and Fabrication of an Array Microejector Driven by a Shear-Mode Piezoelectric Actuator

Authors: Chiang-Ho Cheng, Hong-Yih Cheng, An-Shik Yang, Tung-Hsun Hsu

Abstract:

This paper reports a novel actuating design that uses the shear deformation of a piezoelectric actuator to deflect a bulge-diaphragm for driving an array microdroplet ejector. In essence, we employed a circular-shaped actuator poled radial direction with remnant polarization normal to the actuating electric field for inducing the piezoelectric shear effect. The array microdroplet ejector consists of a shear type piezoelectric actuator, a vibration plate, two chamber plates, two channel plates and a nozzle plate. The vibration, chamber and nozzle plate components are fabricated using nickel electroforming technology, whereas the channel plate is fabricated by etching of stainless steel. The diaphragm displacement was measured by the laser two-dimensional scanning vibrometer. The ejected droplets of the microejector were also observed via an optic visualization system.

Keywords: Actuator, nozzle, microejector, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
1977 An Algorithm for Detecting Seam Cracks in Steel Plates

Authors: Doo-chul Choi, Yong-Ju Jeon, Jong Pil Yun, Sung Wook Yun, Sang Woo Kim

Abstract:

In this study, we developed an algorithm for detecting seam cracks in a steel plate. Seam cracks are generated in the edge region of a steel plate. We used the Gabor filter and an adaptive double threshold method to detect them. To reduce the number of pseudo defects, features based on the shape of seam cracks were used. To evaluate the performance of the proposed algorithm, we tested 989 images with seam cracks and 9470 defect-free images. Experimental results show that the proposed algorithm is suitable for detecting seam cracks. However, it should be improved to increase the true positive rate.

Keywords: Defect detection, Gabor filter, machine vision, surface inspection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
1976 Detection of Concrete Reinforcement Damage Using Piezoelectric Materials - Analytical and Experimental Study

Authors: C. P. Providakis, G. M. Angeli, M. J. Favvata, N. A. Papadopoulos, C. E. Chalioris, C. G. Karayannis

Abstract:

An effort for the detection of damages in the  reinforcement bars of reinforced concrete members using PZTs is  presented. The damage can be the result of excessive elongation of  the steel bar due to steel yielding or due to local steel corrosion. In  both cases the damage is simulated by considering reduced diameter  of the rebar along the damaged part of its length. An integration  approach based on both electromechanical admittance methodology  and guided wave propagation technique is used to evaluate the  artificial damage on the examined longitudinal steel bar. Two  actuator PZTs and a sensor PZT are considered to be bonded on the  examined steel bar. The admittance of the Sensor PZT is calculated  using COMSOL 3.4a. Fast Furrier Transformation for a better  evaluation of the results is employed. An effort for the quantification  of the damage detection using the root mean square deviation  (RMSD) between the healthy condition and damage state of the  sensor PZT is attempted. The numerical value of the RSMD yields a  level for the difference between the healthy and the damaged  admittance computation indicating this way the presence of damage  in the structure. Experimental measurements are also presented.

 

Keywords: Concrete reinforcement, damage detection, electromechanical admittance, experimental measurements, finite element method, guided waves, PZT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2655
1975 Weyl Type Theorem and the Fuglede Property

Authors: M. H. M. Rashid

Abstract:

Given H a Hilbert space and B(H) the algebra of bounded linear operator in H, let δAB denote the generalized derivation defined by A and B. The main objective of this article is to study Weyl type theorems for generalized derivation for (A,B) satisfying a couple of Fuglede.

Keywords: Fuglede Property, Weyl’s theorem, generalized derivation, Aluthge Transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 555
1974 Metal Inert Gas Welding-Based-Shaped Metal Deposition in Additive Layered Manufacturing: A Review

Authors: Adnan A. Ugla, Hassan J. Khaudair, Ahmed R. J. Almusawi

Abstract:

Shaped Metal Deposition (SMD) in additive layered manufacturing technique is a promising alternative to traditional manufacturing used for manufacturing large, expensive metal components with complex geometry in addition to producing free structures by building materials in a layer by layer technique. The present paper is a comprehensive review of the literature and the latest rapid manufacturing technologies of the SMD technique. The aim of this paper is to comprehensively review the most prominent facts that researchers have dealt with in the SMD techniques especially those associated with the cold wire feed. The intent of this study is to review the literature presented on metal deposition processes and their classifications, including SMD process using Wire + Arc Additive Manufacturing (WAAM) which divides into wire + tungsten inert gas (TIG), metal inert gas (MIG), or plasma. This literary research presented covers extensive details on bead geometry, process parameters and heat input or arc energy resulting from the deposition process in both cases MIG and Tandem-MIG in SMD process. Furthermore, SMD may be done using Single Wire-MIG (SW-MIG) welding and SMD using Double Wire-MIG (DW-MIG) welding. The present review shows that the method of deposition of metals when using the DW-MIG process can be considered a distinctive and low-cost method to produce large metal components due to high deposition rates as well as reduce the input of high temperature generated during deposition and reduce the distortions. However, the accuracy and surface finish of the MIG-SMD are less as compared to electron and laser beam.

Keywords: Shaped metal deposition, additive manufacturing, double-wire feed, cold feed wire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
1973 Crack Opening Investigation in Fiberconcrete

Authors: Arturs Macanovskis, Vitalijs Lusis, Andrejs Krasnikovs

Abstract:

This work had three stages. In the first stage was examined pull-out process for steel fiber was embedded into a concrete by one end and was pulled out of concrete under the angle to pulling out force direction. Angle was varied. On the obtained forcedisplacement diagrams were observed jumps. For such mechanical behavior explanation, fiber channel in concrete surface microscopical experimental investigation, using microscope KEYENCE VHX2000, was performed. At the second stage were obtained diagrams for load- crack opening displacement for breaking homogeneously reinforced and layered fiberconcrete prisms (with dimensions 10x10x40cm) subjected to 4-point bending. After testing was analyzed main crack. At the third stage elaborated prediction model for the fiberconcrete beam, failure under bending, using the following data: a) diagrams for fibers pulling out at different angles; b) experimental data about steel-straight fibers locations in the main crack. Experimental and theoretical (modeling) data were compared.

Keywords: Fiberconcrete, pull-out, fiber channel, layered fiberconcrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
1972 Effect of Steel Fibers on Flexural Behavior of Normal and High Strength Concrete

Authors: K. M. Aldossari, W. A. Elsaigh, M. J. Shannag

Abstract:

An experimental study was conducted to investigate the effect of hooked-end steel fibers on the flexural behavior of normal and high strength concrete matrices. The fibers content appropriate for the concrete matrices investigated was also determined based on flexural tests on standard prisms. Parameters investigated include: matrix compressive strength ranging from 45 MPa to 70 MPa, corresponding to normal and high strength concrete matrices respectively; fibers volume fraction including 0, 0.5%, 0.76% and 1%, equivalent to 0, 40, 60, and 80 kg/m3 of hooked-end steel fibers respectively. Test results indicated that flexural strength and toughness of normal and high strength concrete matrices were significantly improved with the increase in the fibers content added; whereas a slight improvement in compressive strength was observed for the same matrices. Furthermore, the test results indicated that the effect of increasing the fibers content was more pronounced on increasing the flexural strength of high strength concrete than that of normal concrete.

Keywords: Concrete, flexural strength, toughness, steel fibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
1971 Vibration of FGM Cylindrical Shells under Effect Clamped-simply Support Boundary Conditions using Hamilton's Principle

Authors: M.R.Isvandzibaei, E.Bidokh, M.R.Alinaghizadeh, A.Nasirian, A.Moarrefzadeh

Abstract:

In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.

Keywords: Vibration, FGM, Cylindrical shell, Hamilton'sprinciple, Ring support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
1970 Behavior of Generated Gas in Lost Foam Casting

Authors: M. Khodai, S. M. H. Mirbagheri

Abstract:

In the Lost Foam Casting process, melting point temperature of metal, as well as volume and rate of the foam degradation have significant effect on the mold filling pattern. Therefore, gas generation capacity and gas gap length are two important parameters for modeling of mold filling time of the lost foam casting processes. In this paper, the gas gap length at the liquidfoam interface for a low melting point (aluminum) alloy and a high melting point (Carbon-steel) alloy are investigated by the photography technique. Results of the photography technique indicated, that the gas gap length and the mold filling time are increased with increased coating thickness and density of the foam. The Gas gap lengths measured in aluminum and Carbon-steel, depend on the foam density, and were approximately 4-5 and 25-60 mm, respectively. By using a new system, the gas generation capacity for the aluminum and steel was measured. The gas generation capacity measurements indicated that gas generation in the Aluminum and Carbon-steel lost foam casting was about 50 CC/g and 3200 CC/g polystyrene, respectively.

Keywords: gas gap, lost foam casting, photographytechnique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3501
1969 Construction of Water Electrolyzer for Single Slice O2/H2 Polymer Electrolyte Membrane Fuel Cell

Authors: May Zin Lwin., Mya Mya Oo

Abstract:

In the first part of the research work, an electrolyzer (10.16 cm dia and 24.13 cm height) to produce hydrogen and oxygen was constructed for single slice O2/H2 fuel cell using cation exchange membrane. The electrolyzer performance was tested with 23% NaOH, 30% NaOH, 30% KOH and 35% KOH electrolyte solution with current input 4 amp and 2.84 V from the rectifier. Rates of volume of hydrogen produced were 0.159 cm3/sec, 0.155 cm3/sec, 0.169 cm3/sec and 0.163 cm3/sec respectively from 23% NaOH, 30% NaOH, 30% KOH and 35% KOH solution. Rates of volume of oxygen produced were 0.212 cm3/sec, 0.201 cm3/sec, 0.227 cm3/sec and 0.219 cm3/sec respectively from 23% NaOH, 30% NaOH, 30% KOH and 35% KOH solution (1.5 L). In spite of being tested the increased concentration of electrolyte solution, the gas rate does not change significantly. Therefore, inexpensive 23% NaOH electrolyte solution was chosen to use as the electrolyte in the electrolyzer. In the second part of the research work, graphite serpentine flow plates, fiberglass end plates, stainless steel screen electrodes, silicone rubbers were made to assemble the single slice O2/H2 polymer electrolyte membrane fuel cell (PEMFC).

Keywords: electrolyzer, electrolyte solution, fuel cell, rectifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
1968 Vibration Damping of High-Chromium Ferromagnetic Steel

Authors: Satish BM, Girish BM , Mahesh K

Abstract:

The aim of the present work is to study the effect of annealing on the vibration damping capacity of high-chromium (16%) ferromagnetic steel. The alloys were prepared from raw materials of 99.9% purity melted in a high frequency induction furnace under high vacuum. The samples were heat-treated in vacuum at various temperatures (800 to 1200ºC) for 1 hour followed by slow cooling (120ºC/h). The inverted torsional pendulum method was used to evaluate the vibration damping capacity. The results indicated that the vibration damping capacity of the alloys is influenced by annealing and there exists a critical annealing temperature after 1000ºC. The damping capacity increases quickly below the critical temperature since the magnetic domains move more easily.

Keywords: Vibration, Damping, Ferromagnetic, Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
1967 Stress Analysis of Spider Gear Using Structural Steel on ANSYS

Authors: Roman Kalvin, Anam Nadeem, Shahab Khushnood

Abstract:

Differential is an integral part of four wheeled vehicle, and its main function is to transmit power from drive shaft to wheels. Differential assembly allows both rear wheels to turn at different speed along curved paths. It consists of four gears which are assembled together namely pinion, ring, spider and bevel gears. This research focused on the spider gear and its static structural analysis using ANSYS. The main aim was to evaluate the distribution of stresses on the teeth of the spider gear. This study also analyzed total deformation that may occur during its working along with bevel gear that is meshed with spider gear. Structural steel was chosen for spider gear in this research. Modeling and assembling were done on SolidWorks for both spider and bevel gear. They were assembled exactly same as in a differential assembly. This assembly was then imported to ANSYS. After observing results that maximum amount of stress and deformation was produced in the spider gear, it was concluded that structural steel material for spider gear possesses greater amount of strength to bear maximum stress.

Keywords: Differential, spider gear, ANSYS, structural steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072
1966 Tensile Test of Corroded Strand and Maintenance of Corroded Prestressed Concrete Girders

Authors: Jeon Chi-Ho, Lee Jae-Bin, Shim Chang-Su

Abstract:

National bridge inventory in Korea shows that the number of old prestressed concrete (PSC) bridgeover 30 years of service life is rapidly increasing. Recently tendon corrosion is one of the most critical issues in the maintenance of PSC bridges. In this paper, mechanical properties of corroded strands, which were removed from old bridges, were evaluated using tensile test. In the result, the equations to express the mechanical behavior of corroded strand were derived and compared to existing equation. For the decision of tendon replacement, it is necessary to evaluate the effect of corrosion level on strength and ductility of the structure. Considerations on analysis of PSC girders were introduced, and decision making on tendon replacement was also proposed.

Keywords: Prestressed concrete bridge, prestressing steel, corrosion, strength, ductility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
1965 Investigation on an Innovative Way to Connect RC Beam and Steel Column

Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil

Abstract:

An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.

Keywords: Composite column, reinforced concrete beam, Steel Column, Transfer Part.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5310