Search results for: Linear transfer function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4649

Search results for: Linear transfer function

359 The Balance between the Two Characters of the Night: A Study on the Nightscape of Pei Ho Street and Yen Chow Street West in Sham Shui Po

Authors: Lei Danyang, Lu Jialiang

Abstract:

As nightlife is getting richer in urban area, urban nightscape has become an increasingly important part of the urban landscape. Understanding urban nightscape from the perspec­tive of pedestrian perception is very important to improve the livability and walkability of a city. The purpose of this study is to analyze the nightscapes of two different urban forms. The research methods are literature investigation and field investigation. From analyzing the lighting, sensory ex­perience, and night activities, this research studies the two streets, Pei Ho Street and Yen Chow Street West in Sham Shui Po. Results revealed that the two streets are on the two extremes of the two characters of the night and a better balance needs to be found between them. Because of the different land usage and stakeholders, the two streets should play different roles in the nightscape, so their balance points are also different. On the one hand, Pei Ho Street, which has a strong commercial atmos­phere, should not only retain its vitality and diversity but also ensure its function of relaxation at night; on the other hand, in Yen Chow Street West, it is necessary to develop its potential of reconnecting people with the darkness of the night while ensur­ing its safety. These findings may not only provide policymak­ers with information to help them improve the nightscape and livability of the Sham Shui Po area but also help bridge the gap between research and design. In the future, more attention should be paid to pedestrian preference and nightscape perception of vulnerable groups.

Keywords: Hong Kong, pedestrian perception, Sham Shui Po, urban form, urban nightscape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 479
358 Synthesis of Highly Sensitive Molecular Imprinted Sensor for Selective Determination of Doxycycline in Honey Samples

Authors: Nadia El Alami El Hassani, Soukaina Motia, Benachir Bouchikhi, Nezha El Bari

Abstract:

Doxycycline (DXy) is a cycline antibiotic, most frequently prescribed to treat bacterial infections in veterinary medicine. However, its broad antimicrobial activity and low cost, lead to an intensive use, which can seriously affect human health. Therefore, its spread in the food products has to be monitored. The scope of this work was to synthetize a sensitive and very selective molecularly imprinted polymer (MIP) for DXy detection in honey samples. Firstly, the synthesis of this biosensor was performed by casting a layer of carboxylate polyvinyl chloride (PVC-COOH) on the working surface of a gold screen-printed electrode (Au-SPE) in order to bind covalently the analyte under mild conditions. Secondly, DXy as a template molecule was bounded to the activated carboxylic groups, and the formation of MIP was performed by a biocompatible polymer by the mean of polyacrylamide matrix. Then, DXy was detected by measurements of differential pulse voltammetry (DPV). A non-imprinted polymer (NIP) prepared in the same conditions and without the use of template molecule was also performed. We have noticed that the elaborated biosensor exhibits a high sensitivity and a linear behavior between the regenerated current and the logarithmic concentrations of DXy from 0.1 pg.mL−1 to 1000 pg.mL−1. This technic was successfully applied to determine DXy residues in honey samples with a limit of detection (LOD) of 0.1 pg.mL−1 and an excellent selectivity when compared to the results of oxytetracycline (OXy) as analogous interfering compound. The proposed method is cheap, sensitive, selective, simple, and is applied successfully to detect DXy in honey with the recoveries of 87% and 95%. Considering these advantages, this system provides a further perspective for food quality control in industrial fields.

Keywords: Electrochemical sensor, molecular imprinted polymer, doxycycline, food control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1175
357 Study of Human Upper Arm Girth during Elbow Isokinetic Contractions Based on a Smart Circumferential Measuring System

Authors: Xi Wang, Xiaoming Tao, Raymond C. H. So

Abstract:

As one of the convenient and noninvasive sensing approaches, the automatic limb girth measurement has been applied to detect intention behind human motion from muscle deformation. The sensing validity has been elaborated by preliminary researches but still need more fundamental studies, especially on kinetic contraction modes. Based on the novel fabric strain sensors, a soft and smart limb girth measurement system was developed by the authors’ group, which can measure the limb girth in-motion. Experiments were carried out on elbow isometric flexion and elbow isokinetic flexion (biceps’ isokinetic contractions) of 90°/s, 60°/s, and 120°/s for 10 subjects (2 canoeists and 8 ordinary people). After removal of natural circumferential increments due to elbow position, the joint torque is found not uniformly sensitive to the limb circumferential strains, but declining as elbow joint angle rises, regardless of the angular speed. Moreover, the maximum joint torque was found as an exponential function of the joint’s angular speed. This research highly contributes to the application of the automatic limb girth measuring during kinetic contractions, and it is useful to predict the contraction level of voluntary skeletal muscles.

Keywords: Fabric strain sensor, muscle deformation, isokinetic contraction, joint torque, limb girth strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
356 Importance of the Green Belts to Reduce Noise Pollution and Determination of Roadside Noise Reduction Effectiveness of Bushes in Konya, Turkey

Authors: S. Onder, Z. Kocbeker

Abstract:

The impact of noise upon live quality has become an important aspect to make both urban and environmental policythroughout Europe and in Turkey. Concern over the quality of urban environments, including noise levels and declining quality of green space, is over the past decade with increasing emphasis on designing livable and sustainable communities. According to the World Health Organization, noise pollution is the third most hazardous environmental type of pollution which proceeded by only air (gas emission) and water pollution. The research carried out in two phases, the first stage of the research noise and plant types providing the suction of noise was evaluated through literature study and at the second stage, definite types (Juniperus horizontalis L., Spirea vanhouetti Briot., Cotoneaster dammerii C.K., Berberis thunbergii D.C., Pyracantha coccinea M. etc.) were selected for the city of Konya. Trials were conducted on the highway of Konya. The biggest value of noise reduction was 6.3 dB(A), 4.9 dB(A), 6.2 dB(A) value with compared to the control which includes the group that formed by the bushes at the distance of 7m, 11m, 20m from the source and 5m, 9m, 20m of plant width, respectively. In this paper, definitions regarding to noise and its sources were made and the precautions were taken against to noise that mentioned earlier with the adverse effects of noise. Plantation design approaches and suggestions concerning to the diversity to be used, which are peculiar to roadside, were developed to discuss the role and the function of plant material to reduce the noise of the traffic.

Keywords: Bushes, noise, road, Konya

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5850
355 Performance Analysis of HSDPA Systems using Low-Density Parity-Check (LDPC)Coding as Compared to Turbo Coding

Authors: K. Anitha Sheela, J. Tarun Kumar

Abstract:

HSDPA is a new feature which is introduced in Release-5 specifications of the 3GPP WCDMA/UTRA standard to realize higher speed data rate together with lower round-trip times. Moreover, the HSDPA concept offers outstanding improvement of packet throughput and also significantly reduces the packet call transfer delay as compared to Release -99 DSCH. Till now the HSDPA system uses turbo coding which is the best coding technique to achieve the Shannon limit. However, the main drawbacks of turbo coding are high decoding complexity and high latency which makes it unsuitable for some applications like satellite communications, since the transmission distance itself introduces latency due to limited speed of light. Hence in this paper it is proposed to use LDPC coding in place of Turbo coding for HSDPA system which decreases the latency and decoding complexity. But LDPC coding increases the Encoding complexity. Though the complexity of transmitter increases at NodeB, the End user is at an advantage in terms of receiver complexity and Bit- error rate. In this paper LDPC Encoder is implemented using “sparse parity check matrix" H to generate a codeword at Encoder and “Belief Propagation algorithm "for LDPC decoding .Simulation results shows that in LDPC coding the BER suddenly drops as the number of iterations increase with a small increase in Eb/No. Which is not possible in Turbo coding. Also same BER was achieved using less number of iterations and hence the latency and receiver complexity has decreased for LDPC coding. HSDPA increases the downlink data rate within a cell to a theoretical maximum of 14Mbps, with 2Mbps on the uplink. The changes that HSDPA enables includes better quality, more reliable and more robust data services. In other words, while realistic data rates are only a few Mbps, the actual quality and number of users achieved will improve significantly.

Keywords: AMC, HSDPA, LDPC, WCDMA, 3GPP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
354 Fuzzy Relatives of the CLARANS Algorithm With Application to Text Clustering

Authors: Mohamed A. Mahfouz, M. A. Ismail

Abstract:

This paper introduces new algorithms (Fuzzy relative of the CLARANS algorithm FCLARANS and Fuzzy c Medoids based on randomized search FCMRANS) for fuzzy clustering of relational data. Unlike existing fuzzy c-medoids algorithm (FCMdd) in which the within cluster dissimilarity of each cluster is minimized in each iteration by recomputing new medoids given current memberships, FCLARANS minimizes the same objective function minimized by FCMdd by changing current medoids in such away that that the sum of the within cluster dissimilarities is minimized. Computing new medoids may be effected by noise because outliers may join the computation of medoids while the choice of medoids in FCLARANS is dictated by the location of a predominant fraction of points inside a cluster and, therefore, it is less sensitive to the presence of outliers. In FCMRANS the step of computing new medoids in FCMdd is modified to be based on randomized search. Furthermore, a new initialization procedure is developed that add randomness to the initialization procedure used with FCMdd. Both FCLARANS and FCMRANS are compared with the robust and linearized version of fuzzy c-medoids (RFCMdd). Experimental results with different samples of the Reuter-21578, Newsgroups (20NG) and generated datasets with noise show that FCLARANS is more robust than both RFCMdd and FCMRANS. Finally, both FCMRANS and FCLARANS are more efficient and their outputs are almost the same as that of RFCMdd in terms of classification rate.

Keywords: Data Mining, Fuzzy Clustering, Relational Clustering, Medoid-Based Clustering, Cluster Analysis, Unsupervised Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403
353 Performance Analysis of Genetic Algorithm with kNN and SVM for Feature Selection in Tumor Classification

Authors: C. Gunavathi, K. Premalatha

Abstract:

Tumor classification is a key area of research in the field of bioinformatics. Microarray technology is commonly used in the study of disease diagnosis using gene expression levels. The main drawback of gene expression data is that it contains thousands of genes and a very few samples. Feature selection methods are used to select the informative genes from the microarray. These methods considerably improve the classification accuracy. In the proposed method, Genetic Algorithm (GA) is used for effective feature selection. Informative genes are identified based on the T-Statistics, Signal-to-Noise Ratio (SNR) and F-Test values. The initial candidate solutions of GA are obtained from top-m informative genes. The classification accuracy of k-Nearest Neighbor (kNN) method is used as the fitness function for GA. In this work, kNN and Support Vector Machine (SVM) are used as the classifiers. The experimental results show that the proposed work is suitable for effective feature selection. With the help of the selected genes, GA-kNN method achieves 100% accuracy in 4 datasets and GA-SVM method achieves in 5 out of 10 datasets. The GA with kNN and SVM methods are demonstrated to be an accurate method for microarray based tumor classification.

Keywords: F-Test, Gene Expression, Genetic Algorithm, k- Nearest-Neighbor, Microarray, Signal-to-Noise Ratio, Support Vector Machine, T-statistics, Tumor Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4540
352 Finite Element Analysis of Connecting Rod

Authors: Mohammed Mohsin Ali H., Mohamed Haneef

Abstract:

The connecting rod transmits the piston load to the crank causing the latter to turn, thus converting the reciprocating motion of the piston into a rotary motion of the crankshaft. Connecting rods are subjected to forces generated by mass and fuel combustion. This study investigates and compares the fatigue behavior of forged steel, powder forged and ASTM a 514 steel cold quenched connecting rods. The objective is to suggest for a new material with reduced weight and cost with the increased fatigue life. This has entailed performing a detailed load analysis. Therefore, this study has dealt with two subjects: first, dynamic load and stress analysis of the connecting rod, and second, optimization for material, weight and cost. In the first part of the study, the loads acting on the connecting rod as a function of time were obtained. Based on the observations of the dynamic FEA, static FEA, and the load analysis results, the load for the optimization study was selected. It is the conclusion of this study that the connecting rod can be designed and optimized under a load range comprising tensile load and compressive load. Tensile load corresponds to 360o crank angle at the maximum engine speed. The compressive load is corresponding to the peak gas pressure. Furthermore, the existing connecting rod can be replaced with a new connecting rod made of ASTM a 514 steel cold quenched that is 12% lighter and 28% cheaper.

Keywords: Connecting rod, ASTM a514 cold quenched steel, static analysis, fatigue analysis, stress life approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2732
351 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty

Authors: D. S. Gomes, A. T. Silva

Abstract:

Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.

Keywords: Logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019
350 A New Fast Intra Prediction Mode Decision Algorithm for H.264/AVC Encoders

Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf

Abstract:

The H.264/AVC video coding standard contains a number of advanced features. Ones of the new features introduced in this standard is the multiple intramode prediction. Its function exploits directional spatial correlation with adjacent block for intra prediction. With this new features, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standard, but computational complexity is increased significantly when brut force rate distortion optimization (RDO) algorithm is used. In this paper, we propose a new fast intra prediction mode decision method for the complexity reduction of H.264 video coding. for luma intra prediction, the proposed method consists of two step: in the first step, we make the RDO for four mode of intra 4x4 block, based the distribution of RDO cost of those modes and the idea that the fort correlation with adjacent mode, we select the best mode of intra 4x4 block. In the second step, we based the fact that the dominating direction of a smaller block is similar to that of bigger block, the candidate modes of 8x8 blocks and 16x16 macroblocks are determined. So, in case of chroma intra prediction, the variance of the chroma pixel values is much smaller than that of luma ones, since our proposed uses only the mode DC. Experimental results show that the new fast intra mode decision algorithm increases the speed of intra coding significantly with negligible loss of PSNR.

Keywords: Intra prediction, H264/AVC, video coding, encodercomplexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2507
349 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks

Authors: Khalid Ali, Manar Jammal

Abstract:

In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.

Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541
348 Detecting Geographically Dispersed Overlay Communities Using Community Networks

Authors: Madhushi Bandara, Dharshana Kasthurirathna, Danaja Maldeniya, Mahendra Piraveenan

Abstract:

Community detection is an extremely useful technique in understanding the structure and function of a social network. Louvain algorithm, which is based on Newman-Girman modularity optimization technique, is extensively used as a computationally efficient method extract the communities in social networks. It has been suggested that the nodes that are in close geographical proximity have a higher tendency of forming communities. Variants of the Newman-Girman modularity measure such as dist-modularity try to normalize the effect of geographical proximity to extract geographically dispersed communities, at the expense of losing the information about the geographically proximate communities. In this work, we propose a method to extract geographically dispersed communities while preserving the information about the geographically proximate communities, by analyzing the ‘community network’, where the centroids of communities would be considered as network nodes. We suggest that the inter-community link strengths, which are normalized over the community sizes, may be used to identify and extract the ‘overlay communities’. The overlay communities would have relatively higher link strengths, despite being relatively apart in their spatial distribution. We apply this method to the Gowalla online social network, which contains the geographical signatures of its users, and identify the overlay communities within it.

Keywords: Social networks, community detection, modularity optimization, geographically dispersed communities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
347 Risk Assessment of Trace Element Pollution in Gymea Bay, NSW, Australia

Authors: Yasir M. Alyazichi, Brian G. Jones, Errol McLean, Hamd N. Altalyan, Ali K. M. Al-Nasrawi

Abstract:

The main purpose of this study is to assess the sediment quality and potential ecological risk in marine sediments in Gymea Bay located in south Sydney, Australia. A total of 32 surface sediment samples were collected from the bay. Current track trajectories and velocities have also been measured in the bay. The resultant trace elements were compared with the adverse biological effect values Effect Range Low (ERL) and Effect Range Median (ERM) classifications. The results indicate that the average values of chromium, arsenic, copper, zinc, and lead in surface sediments all reveal low pollution levels and are below ERL and ERM values. The highest concentrations of trace elements were found close to discharge points and in the inner bay, and were linked with high percentages of clay minerals, pyrite and organic matter, which can play a significant role in trapping and accumulating these elements. The lowest concentrations of trace elements were found to be on the shoreline of the bay, which contained high percentages of sand fractions. It is postulated that the fine particles and trace elements are disturbed by currents and tides, then transported and deposited in deeper areas. The current track velocities recorded in Gymea Bay had the capability to transport fine particles and trace element pollution within the bay. As a result, hydrodynamic measurements were able to provide useful information and to help explain the distribution of sedimentary particles and geochemical properties. This may lead to knowledge transfer to other bay systems, including those in remote areas. These activities can be conducted at a low cost, and are therefore also transferrable to developing countries. The advent of portable instruments to measure trace elements in the field has also contributed to the development of these lower cost and easily applied methodologies available for use in remote locations and low-cost economies.

Keywords: Current track velocities, Gymea Bay, surface sediments, trace elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
346 Learning Classifier Systems Approach for Automated Discovery of Crisp and Fuzzy Hierarchical Production Rules

Authors: Suraiya Jabin, Kamal K. Bharadwaj

Abstract:

This research presents a system for post processing of data that takes mined flat rules as input and discovers crisp as well as fuzzy hierarchical structures using Learning Classifier System approach. Learning Classifier System (LCS) is basically a machine learning technique that combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. Crisp description for a concept usually cannot represent human knowledge completely and practically. In the proposed Learning Classifier System initial population is constructed as a random collection of HPR–trees (related production rules) and crisp / fuzzy hierarchies are evolved. A fuzzy subsumption relation is suggested for the proposed system and based on Subsumption Matrix (SM), a suitable fitness function is proposed. Suitable genetic operators are proposed for the chosen chromosome representation method. For implementing reinforcement a suitable reward and punishment scheme is also proposed. Experimental results are presented to demonstrate the performance of the proposed system.

Keywords: Hierarchical Production Rule, Data Mining, Learning Classifier System, Fuzzy Subsumption Relation, Subsumption matrix, Reinforcement Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
345 Asynchronous Parallel Distributed Genetic Algorithm with Elite Migration

Authors: Kazunori Kojima, Masaaki Ishigame, Goutam Chakraborty, Hiroshi Hatsuo, Shozo Makino

Abstract:

In most of the popular implementation of Parallel GAs the whole population is divided into a set of subpopulations, each subpopulation executes GA independently and some individuals are migrated at fixed intervals on a ring topology. In these studies, the migrations usually occur 'synchronously' among subpopulations. Therefore, CPUs are not used efficiently and the communication do not occur efficiently either. A few studies tried asynchronous migration but it is hard to implement and setting proper parameter values is difficult. The aim of our research is to develop a migration method which is easy to implement, which is easy to set parameter values, and which reduces communication traffic. In this paper, we propose a traffic reduction method for the Asynchronous Parallel Distributed GA by migration of elites only. This is a Server-Client model. Every client executes GA on a subpopulation and sends an elite information to the server. The server manages the elite information of each client and the migrations occur according to the evolution of sub-population in a client. This facilitates the reduction in communication traffic. To evaluate our proposed model, we apply it to many function optimization problems. We confirm that our proposed method performs as well as current methods, the communication traffic is less, and setting of the parameters are much easier.

Keywords: Parallel Distributed Genetic Algorithm (PDGA), asynchronousPDGA, Server-Client configuration, Elite Migration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
344 Identification of Microbial Community in an Anaerobic Reactor Treating Brewery Wastewater

Authors: Abimbola M. Enitan, John O. Odiyo, Feroz M. Swalaha

Abstract:

The study of microbial ecology and their function in anaerobic digestion processes are essential to control the biological processes. This is to know the symbiotic relationship between the microorganisms that are involved in the conversion of complex organic matter in the industrial wastewater to simple molecules. In this study, diversity and quantity of bacterial community in the granular sludge taken from the different compartments of a full-scale upflow anaerobic sludge blanket (UASB) reactor treating brewery wastewater was investigated using polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR). The phylogenetic analysis showed three major eubacteria phyla that belong to Proteobacteria, Firmicutes and Chloroflexi in the full-scale UASB reactor, with different groups populating different compartment. The result of qPCR assay showed high amount of eubacteria with increase in concentration along the reactor’s compartment. This study extends our understanding on the diverse, topological distribution and shifts in concentration of microbial communities in the different compartments of a full-scale UASB reactor treating brewery wastewater. The colonization and the trophic interactions among these microbial populations in reducing and transforming complex organic matter within the UASB reactors were established.

Keywords: Bacteria, brewery wastewater, real-time quantitative PCR, UASB reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
343 Surface Flattening Assisted with 3D Mannequin Based On Minimum Energy

Authors: Shih-Wen Hsiao, Rong-Qi Chen, Chien-Yu Lin

Abstract:

The topic of surface flattening plays a vital role in the field of computer aided design and manufacture. Surface flattening enables the production of 2D patterns and it can be used in design and manufacturing for developing a 3D surface to a 2D platform, especially in fashion design. This study describes surface flattening based on minimum energy methods according to the property of different fabrics. Firstly, through the geometric feature of a 3D surface, the less transformed area can be flattened on a 2D platform by geodesic. Then, strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. When this methodology is applied to a 3D mannequin constructed with feature lines, it enhances the level of computer-aided fashion design. Besides, when different fabrics are applied to fashion design, it is necessary to revise the shape of a 2D pattern according to the properties of the fabric. With this model, the outline of 2D patterns can be revised by distributing the strain energy with different results according to different fabric properties. Finally, this research uses some common design cases to illustrate and verify the feasibility of this methodology.

Keywords: Surface flattening, Strain energy, Minimum energy, approximate implicit method, Fashion design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599
342 Mathematical Modeling of the AMCs Cross-Contamination Removal in the FOUPs: Finite Element Formulation and Application in FOUP’s Decontamination

Authors: N. Santatriniaina, J. Deseure, T.Q. Nguyen, H. Fontaine, C. Beitia, L. Rakotomanana

Abstract:

Nowadays, with the increasing of the wafer's size and the decreasing of critical size of integrated circuit manufacturing in modern high-tech, microelectronics industry needs a maximum attention to challenge the contamination control. The move to 300 [mm] is accompanied by the use of Front Opening Unified Pods for wafer and his storage. In these pods an airborne cross contamination may occur between wafers and the pods. A predictive approach using modeling and computational methods is very powerful method to understand and qualify the AMCs cross contamination processes. This work investigates the required numerical tools which are employed in order to study the AMCs cross-contamination transfer phenomena between wafers and FOUPs. Numerical optimization and finite element formulation in transient analysis were established. Analytical solution of one dimensional problem was developed and the calibration process of physical constants was performed. The least square distance between the model (analytical 1D solution) and the experimental data are minimized. The behavior of the AMCs intransient analysis was determined. The model framework preserves the classical forms of the diffusion and convection-diffusion equations and yields to consistent form of the Fick's law. The adsorption process and the surface roughness effect were also traduced as a boundary condition using the switch condition Dirichlet to Neumann and the interface condition. The methodology is applied, first using the optimization methods with analytical solution to define physical constants, and second using finite element method including adsorption kinetic and the switch of Dirichlet to Neumann condition.

Keywords: AMCs, FOUP, cross-contamination, adsorption, diffusion, numerical analysis, wafers, Dirichlet to Neumann, finite elements methods, Fick’s law, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3176
341 The Light-Effect in Cylindrical Quantum Wire with an Infinite Potential for the Case of Electrons: Optical Phonon Scattering

Authors: Hoang Van Ngoc, Nguyen Vu Nhan, Nguyen Quang Bau

Abstract:

The light-effect in cylindrical quantum wire with an infinite potential for the case of electrons, optical phonon scattering, is studied based on the quantum kinetic equation. The density of the direct current in a cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field, and an intense laser field is calculated. Analytic expressions for the density of the direct current are studied as a function of the frequency of the laser radiation field, the frequency of the linearly polarized electromagnetic wave, the temperature of system, and the size of quantum wire. The density of the direct current in cylindrical quantum wire with an infinite potential for the case of electrons – optical phonon scattering is nonlinearly dependent on the frequency of the linearly polarized electromagnetic wave. The analytic expressions are numerically evaluated and plotted for a specific quantum wire, GaAs/GaAsAl.

Keywords: The light-effect, cylindrical quantum wire with an infinite potential, the density of the direct current, electrons - optical phonon scattering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
340 Significance of Bike-Frame Geometric Factors for Cycling Efficiency and Muscle Activation

Authors: Luen Chow Chan

Abstract:

With the advocacy of green transportation and green traveling, cycling has become increasingly popular nowadays. Physiology and bike design are key factors for the influence of cycling efficiency. Therefore, this study aimed to investigate the significance of bike-frame geometric factors on cycling efficiency and muscle activation for different body sizes of non-professional Asian male cyclists. Participants who represented various body sizes, as measured by leg and back lengths, carried out cycling tests using a tailor-assembled road bike with different ergonomic design configurations including seat-height adjustments (i.e., 96%, 100%, and 104% of trochanteric height) and bike frame sizes (i.e., small and medium frames) for an assessable distance of 1 km. A specific power meter and self-developed adaptable surface electromyography (sEMG) were used to measure average pedaling power and cadence generated and muscle activation, respectively. The results showed that changing the seat height was far more significant than the body and bike frame sizes. The sEMG data evidently provided a better understanding of muscle activation as a function of different seat heights. Therefore, the interpretation of this study is that the major bike ergonomic design factor dominating the cycling efficiency of Asian participants with different body sizes was the seat height.

Keywords: Bike frame sizes, cadence rate, pedaling power, seat height.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 924
339 A Review on Medical Image Registration Techniques

Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry

Abstract:

This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.

Keywords: Image registration techniques, medical images, neural networks, optimisation, transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
338 Influence of Valve Lift Timing on Producer Gas Combustion and Its Modeling Using Two-Stage Wiebe Function

Authors: M. Sreedhar Babu, Vishal Garg, S. B. Akella, Shibu Clement, N. K. S Rajan

Abstract:

Producer gas is a biomass derived gaseous fuel which is extensively used in internal combustion engines for power generation application. Unlike the conventional hydrocarbon fuels (Gasoline and Natural gas), the combustion properties of producer gas fuel are much different. Therefore, setting of optimal spark time for efficient engine operation is required. Owing to the fluctuating tendency of producer gas composition during gasification process, the heat release patterns (dictating the power output and emissions) obtained are quite different from conventional fuels. It was found that, valve lift timing is yet another factor which influences the burn rate of producer gas fuel, and thus, the heat release rate of the engine. Therefore, the present study was motivated to estimate the influence of valve lift timing analytically (Wiebe model) on the burn rate of producer gas through curve fitting against experimentally obtained mass fraction burn curves of several producer gas compositions. Furthermore, Wiebe models are widely used in zero-dimensional codes for engine parametric studies and are quite popular. This study also addresses the influence of hydrogen and methane concentration of producer gas on combustion trends, which are known to cause dynamics in engine combustion.

Keywords: Combustion Duration, crank angle, mass fraction burnt, producer gas, wiebe combustion model, wide open throttle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
337 Obtaining High-Dimensional Configuration Space for Robotic Systems Operating in a Common Environment

Authors: U. Yerlikaya, R. T. Balkan

Abstract:

In this research, a method is developed to obtain high-dimensional configuration space for path planning problems. In typical cases, the path planning problems are solved directly in the 3-dimensional (D) workspace. However, this method is inefficient in handling the robots with various geometrical and mechanical restrictions. To overcome these difficulties, path planning may be formalized and solved in a new space which is called configuration space. The number of dimensions of the configuration space comes from the degree of freedoms of the system of interest. The method can be applied in two ways. In the first way, the point clouds of all the bodies of the system and interaction of them are used. The second way is performed via using the clearance function of simulation software where the minimum distances between surfaces of bodies are simultaneously measured. A double-turret system is held in the scope of this study. The 4-D configuration space of a double-turret system is obtained in these two ways. As a result, the difference between these two methods is around 1%, depending on the density of the point cloud. The disparity between the two forms steadily decreases as the point cloud density increases. At the end of the study, in order to verify 4-D configuration space obtained, 4-D path planning problem was realized as 2-D + 2-D and a sample path planning is carried out with using A* algorithm. Then, the accuracy of the configuration space is proved using the obtained paths on the simulation model of the double-turret system.

Keywords: A* Algorithm, autonomous turrets, high-dimensional C-Space, manifold C-Space, point clouds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 386
336 Indirect Solar Desalination: Value Engineering and Cost Benefit Analysis

Authors: Grace Rachid, Mutasem El-Fadel, Mahmoud Al-Hindi, Ibrahim Jamali, Daniel Abdel Nour

Abstract:

This study examines the feasibility of indirect solar desalination in oil producing countries in the Middle East and North Africa (MENA) region. It relies on value engineering (VE) and costbenefit with sensitivity analyses to identify optimal coupling configurations of desalination and solar energy technologies. A comparative return on investment was assessed as a function of water costs for varied plant capacities (25,000 to 75,000 m3/day), project lifetimes (15 to 25 years), and discount rates (5 to 15%) taking into consideration water and energy subsidies, land cost as well as environmental externalities in the form of carbon credit related to greenhouse gas (GHG) emissions reduction. The results showed reverse osmosis (RO) coupled with photovoltaic technologies (PVs) as the most promising configuration, robust across different prices for Brent oil, discount rates, as well as different project lifetimes. Environmental externalities and subsidies analysis revealed that a 16% reduction in existing subsidy on water tariffs would ensure economic viability. Additionally, while land costs affect investment attractiveness, the viability of RO coupled with PV remains possible for a land purchase cost <$ 80/m2 or a lease rate <$1/m2/yr. Beyond those rates, further subsidy lifting is required.

Keywords: Solar energy, desalination, value engineering, CBA, carbon credit, subsidies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
335 The Loess Regression Relationship Between Age and BMI for both Sydney World Masters Games Athletes and the Australian National Population

Authors: Joe Walsh, Mike Climstein, Ian Timothy Heazlewood, Stephen Burke, Jyrki Kettunen, Kent Adams, Mark DeBeliso

Abstract:

Thousands of masters athletes participate quadrennially in the World Masters Games (WMG), yet this cohort of athletes remains proportionately under-investigated. Due to a growing global obesity pandemic in context of benefits of physical activity across the lifespan, the BMI trends for this unique population was of particular interest. The nexus between health, physical activity and aging is complex and has raised much interest in recent times due to the realization that a multifaceted approach is necessary in order to counteract the obesity pandemic. By investigating age based trends within a population adhering to competitive sport at older ages, further insight might be gleaned to assist in understanding one of many factors influencing this relationship.BMI was derived using data gathered on a total of 6,071 masters athletes (51.9% male, 48.1% female) aged 25 to 91 years ( =51.5, s =±9.7), competing at the Sydney World Masters Games (2009). Using linear and loess regression it was demonstrated that the usual tendency for prevalence of higher BMI increasing with age was reversed in the sample. This trend in reversal was repeated for both male and female only sub-sets of the sample participants, indicating the possibility of improved prevalence of BMI with increasing age for both the sample as a whole and these individual sub-groups.This evidence of improved classification in one index of health (reduced BMI) for masters athletes (when compared to the general population) implies there are either improved levels of this index of health with aging due to adherence to sport or possibly the reduced BMI is advantageous and contributes to this cohort adhering (or being attracted) to masters sport at older ages.

Keywords: Aging, masters athlete, Quetelet Index, sport

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
334 Layer-by-Layer Deposition of Poly (Ethylene Imine) Nanolayers on Polypropylene Nonwoven Fabric. Electrostatic and Thermal Properties

Authors: Dawid Stawski, Silviya Halacheva, Dorota Zielińska

Abstract:

The surface properties of many materials can be readily and predictably modified by the controlled deposition of thin layers containing appropriate functional groups and this research area is now a subject of widespread interest. The layer-by-layer (lbl) method involves depositing oppositely charged layers of polyelectrolytes onto the substrate material which are stabilized due to strong electrostatic forces between adjacent layers. This type of modification affords products that combine the properties of the original material with the superficial parameters of the new external layers. Through an appropriate selection of the deposited layers, the surface properties can be precisely controlled and readily adjusted in order to meet the requirements of the intended application. In the presented paper a variety of anionic (poly(acrylic acid)) and cationic (linear poly(ethylene imine), polymers were successfully deposited onto the polypropylene nonwoven using the lbl technique. The chemical structure of the surface before and after modification was confirmed by reflectance FTIR spectroscopy, volumetric analysis and selective dyeing tests. As a direct result of this work, new materials with greatly improved properties have been produced. For example, following a modification process significant changes in the electrostatic activity of a range of novel nanocomposite materials were observed. The deposition of polyelectrolyte nanolayers was found to strongly accelerate the loss of electrostatically generated charges and to increase considerably the thermal resistance properties of the modified fabric (the difference in T50% is over 20oC). From our results, a clear relationship between the type of polyelectrolyte layer deposited onto the flat fabric surface and the properties of the modified fabric was identified.

Keywords: Layer-by-layer technique, polypropylene nonwoven, surface modification, surface properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2506
333 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle

Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar

Abstract:

As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the CPU, RAM, and ROM memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.

Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 352
332 Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions

Authors: Hazem M. El-Bakry

Abstract:

In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.

Keywords: Boolean Functions, Simplification, KarnoughMap, Implementation of Logic Functions, Modular NeuralNetworks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
331 Optimization of Reaction Rate Parameters in Modeling of Heavy Paraffins Dehydrogenation

Authors: Leila Vafajoo, Farhad Khorasheh, Mehrnoosh Hamzezadeh Nakhjavani, Moslem Fattahi

Abstract:

In the present study, a procedure was developed to determine the optimum reaction rate constants in generalized Arrhenius form and optimized through the Nelder-Mead method. For this purpose, a comprehensive mathematical model of a fixed bed reactor for dehydrogenation of heavy paraffins over Pt–Sn/Al2O3 catalyst was developed. Utilizing appropriate kinetic rate expressions for the main dehydrogenation reaction as well as side reactions and catalyst deactivation, a detailed model for the radial flow reactor was obtained. The reactor model composed of a set of partial differential equations (PDE), ordinary differential equations (ODE) as well as algebraic equations all of which were solved numerically to determine variations in components- concentrations in term of mole percents as a function of time and reactor radius. It was demonstrated that most significant variations observed at the entrance of the bed and the initial olefin production obtained was rather high. The aforementioned method utilized a direct-search optimization algorithm along with the numerical solution of the governing differential equations. The usefulness and validity of the method was demonstrated by comparing the predicted values of the kinetic constants using the proposed method with a series of experimental values reported in the literature for different systems.

Keywords: Dehydrogenation, Pt-Sn/Al2O3 Catalyst, Modeling, Nelder-Mead, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2746
330 Modelling Hydrological Time Series Using Wakeby Distribution

Authors: Ilaria Lucrezia Amerise

Abstract:

The statistical modelling of precipitation data for a given portion of territory is fundamental for the monitoring of climatic conditions and for Hydrogeological Management Plans (HMP). This modelling is rendered particularly complex by the changes taking place in the frequency and intensity of precipitation, presumably to be attributed to the global climate change. This paper applies the Wakeby distribution (with 5 parameters) as a theoretical reference model. The number and the quality of the parameters indicate that this distribution may be the appropriate choice for the interpolations of the hydrological variables and, moreover, the Wakeby is particularly suitable for describing phenomena producing heavy tails. The proposed estimation methods for determining the value of the Wakeby parameters are the same as those used for density functions with heavy tails. The commonly used procedure is the classic method of moments weighed with probabilities (probability weighted moments, PWM) although this has often shown difficulty of convergence, or rather, convergence to a configuration of inappropriate parameters. In this paper, we analyze the problem of the likelihood estimation of a random variable expressed through its quantile function. The method of maximum likelihood, in this case, is more demanding than in the situations of more usual estimation. The reasons for this lie, in the sampling and asymptotic properties of the estimators of maximum likelihood which improve the estimates obtained with indications of their variability and, therefore, their accuracy and reliability. These features are highly appreciated in contexts where poor decisions, attributable to an inefficient or incomplete information base, can cause serious damages.

Keywords: Generalized extreme values (GEV), likelihood estimation, precipitation data, Wakeby distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675