Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2030

Search results for: community detection

2030 A Preliminary Study on Effects of Community Structures on Epidemic Spreading and Detection in Complex Networks

Authors: Yi Yu, Gaoxi Xiao

Abstract:

Community structures widely exist in almost all real-life networks. Extensive researches have been carried out on detecting community structures in complex networks. However, many aspects of how community structures may affect the dynamics and properties of complex networks still remain unclear. In this work, we examine the impacts of community structures on the epidemic spreading and detection in complex networks. Extensive simulation results show that community structures may not help decrease the infection size at steady state, yet they could indeed help slow down the infection spreading. Also, networks with strong community structures may expect to have a smaller average infection size when equipped with a number of sparsely deployed monitors.

Keywords: Complex network, epidemic spreading, infection size, infection monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
2029 Detecting Community Structure in Amino Acid Interaction Networks

Authors: Omar GACI, Stefan BALEV, Antoine DUTOT

Abstract:

In this paper we introduce the notion of protein interaction network. This is a graph whose vertices are the protein-s amino acids and whose edges are the interactions between them. Using a graph theory approach, we observe that according to their structural roles, the nodes interact differently. By leading a community structure detection, we confirm this specific behavior and describe thecommunities composition to finally propose a new approach to fold a protein interaction network.

Keywords: interaction network, protein structure, community structure detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
2028 Svision: Visual Identification of Scanning and Denial of Service Attacks

Authors: Iosif-Viorel Onut, Bin Zhu, Ali A. Ghorbani

Abstract:

We propose a novel graphical technique (SVision) for intrusion detection, which pictures the network as a community of hosts independently roaming in a 3D space defined by the set of services that they use. The aim of SVision is to graphically cluster the hosts into normal and abnormal ones, highlighting only the ones that are considered as a threat to the network. Our experimental results using DARPA 1999 and 2000 intrusion detection and evaluation datasets show the proposed technique as a good candidate for the detection of various threats of the network such as vertical and horizontal scanning, Denial of Service (DoS), and Distributed DoS (DDoS) attacks.

Keywords: Anomaly Visualization, Network Security, Intrusion Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
2027 Detecting Geographically Dispersed Overlay Communities Using Community Networks

Authors: Madhushi Bandara, Dharshana Kasthurirathna, Danaja Maldeniya, Mahendra Piraveenan

Abstract:

Community detection is an extremely useful technique in understanding the structure and function of a social network. Louvain algorithm, which is based on Newman-Girman modularity optimization technique, is extensively used as a computationally efficient method extract the communities in social networks. It has been suggested that the nodes that are in close geographical proximity have a higher tendency of forming communities. Variants of the Newman-Girman modularity measure such as dist-modularity try to normalize the effect of geographical proximity to extract geographically dispersed communities, at the expense of losing the information about the geographically proximate communities. In this work, we propose a method to extract geographically dispersed communities while preserving the information about the geographically proximate communities, by analyzing the ‘community network’, where the centroids of communities would be considered as network nodes. We suggest that the inter-community link strengths, which are normalized over the community sizes, may be used to identify and extract the ‘overlay communities’. The overlay communities would have relatively higher link strengths, despite being relatively apart in their spatial distribution. We apply this method to the Gowalla online social network, which contains the geographical signatures of its users, and identify the overlay communities within it.

Keywords: Social networks, community detection, modularity optimization, geographically dispersed communities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
2026 The Comprehensive Study Based on Ultrasonic and X-ray Visual Technology for GIS Equipment Detection

Authors: Wei Zhang, Hong Yu, Xian-ping Zhao, Da-da Wang, Fei Xue

Abstract:

For lack of the visualization of the ultrasonic detection method of partial discharge (PD), the ultrasonic detection technology combined with the X-ray visual detection method (UXV) is proposed. The method can conduct qualitative analysis accurately and conduct reliable positioning diagnosis to the internal insulation defects of GIS, and while it could make up the blindness of the X-ray visual detection method and improve the detection rate. In this paper, an experimental model of GIS is used as the trial platform, a variety of insulation defects are set inside the GIS cavity. With the proposed method, the ultrasonic method is used to conduct the preliminary detection, and then the X-ray visual detection is used to locate and diagnose precisely. Therefore, the proposed UXV technology is feasible and practical.

Keywords: GIS, ultrasonic, visual detection, X-ray

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
2025 Community Detection-based Analysis of the Human Interactome Network

Authors: Razvan Bocu, Sabin Tabirca

Abstract:

The study of proteomics reached unexpected levels of interest, as a direct consequence of its discovered influence over some complex biological phenomena, such as problematic diseases like cancer. This paper presents a new technique that allows for an accurate analysis of the human interactome network. It is basically a two-step analysis process that involves, at first, the detection of each protein-s absolute importance through the betweenness centrality computation. Then, the second step determines the functionallyrelated communities of proteins. For this purpose, we use a community detection technique that is based on the edge betweenness calculation. The new technique was thoroughly tested on real biological data and the results prove some interesting properties of those proteins that are involved in the carcinogenesis process. Apart from its experimental usefulness, the novel technique is also computationally effective in terms of execution times. Based on the analysis- results, some topological features of cancer mutated proteins are presented and a possible optimization solution for cancer drugs design is suggested.

Keywords: Betweenness centrality, interactome networks, proteinprotein interactions, protein communities, cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089
2024 Efficient Signal Detection Using QRD-M Based On Channel Condition in MIMO-OFDM System

Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song

Abstract:

In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better tradeoff between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.

Keywords: MIMO-OFDM, QRD-M, Channel condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788
2023 Moving Vehicles Detection Using Automatic Background Extraction

Authors: Saad M. Al-Garni, Adel A. Abdennour

Abstract:

Vehicle detection is the critical step for highway monitoring. In this paper we propose background subtraction and edge detection technique for vehicle detection. This technique uses the advantages of both approaches. The practical applications approved the effectiveness of this method. This method consists of two procedures: First, automatic background extraction procedure, in which the background is extracted automatically from the successive frames; Second vehicles detection procedure, which depend on edge detection and background subtraction. Experimental results show the effective application of this algorithm. Vehicles detection rate was higher than 91%.

Keywords: Image processing, Automatic background extraction, Moving vehicle detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079
2022 Detection and Classification of Power Quality Disturbances Using S-Transform and Wavelet Algorithm

Authors: Mohamed E. Salem Abozaed

Abstract:

Detection and classification of power quality (PQ) disturbances is an important consideration to electrical utilities and many industrial customers so that diagnosis and mitigation of such disturbance can be implemented quickly. S-transform algorithm and continuous wavelet transforms (CWT) are time-frequency algorithms, and both of them are powerful in detection and classification of PQ disturbances. This paper presents detection and classification of PQ disturbances using S-transform and CWT algorithms. The results of detection and classification, provides that S-transform is more accurate in detection and classification for most PQ disturbance than CWT algorithm, where as CWT algorithm more powerful in detection in some disturbances like notching

Keywords: CWT, Disturbances classification, Disturbances detection, Power quality, S-transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366
2021 Fault Detection via Stability Analysis for the Hybrid Control Unit of HEVs

Authors: Kyogun Chang, Yoon Bok Lee

Abstract:

Fault detection determines faultexistence and detecting time. This paper discusses two layered fault detection methods to enhance the reliability and safety. Two layered fault detection methods consist of fault detection methods of component level controllers and system level controllers. Component level controllers detect faults by using limit checking, model-based detection, and data-driven detection and system level controllers execute detection by stability analysis which can detect unknown changes. System level controllers compare detection results via stability with fault signals from lower level controllers. This paper addresses fault detection methods via stability and suggests fault detection criteria in nonlinear systems. The fault detection method applies tothe hybrid control unit of a military hybrid electric vehicleso that the hybrid control unit can detect faults of the traction motor.

Keywords: Two Layered Fault Detection, Stability Analysis, Fault-Tolerant Control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
2020 Intelligent Agents for Distributed Intrusion Detection System

Authors: M. Benattou, K. Tamine

Abstract:

This paper presents a distributed intrusion detection system IDS, based on the concept of specialized distributed agents community representing agents with the same purpose for detecting distributed attacks. The semantic of intrusion events occurring in a predetermined network has been defined. The correlation rules referring the process which our proposed IDS combines the captured events that is distributed both spatially and temporally. And then the proposed IDS tries to extract significant and broad patterns for set of well-known attacks. The primary goal of our work is to provide intrusion detection and real-time prevention capability against insider attacks in distributed and fully automated environments.

Keywords: Mobile agent, specialized agent, interpreter agent, event rules, correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
2019 Efficient STAKCERT KDD Processes in Worm Detection

Authors: Madihah Mohd Saudi, Andrea J Cullen, Mike E Woodward

Abstract:

This paper presents a new STAKCERT KDD processes for worm detection. The enhancement introduced in the data-preprocessing resulted in the formation of a new STAKCERT model for worm detection. In this paper we explained in detail how all the processes involved in the STAKCERT KDD processes are applied within the STAKCERT model for worm detection. Based on the experiment conducted, the STAKCERT model yielded a 98.13% accuracy rate for worm detection by integrating the STAKCERT KDD processes.

Keywords: data mining, incident response, KDD processes, security metrics and worm detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
2018 Research on Hybrid Neural Network in Intrusion Detection System

Authors: Jianhua Wang, Yan Yu

Abstract:

This paper presents an intrusion detection system of hybrid neural network model based on RBF and Elman. It is used for anomaly detection and misuse detection. This model has the memory function .It can detect discrete and related aggressive behavior effectively. RBF network is a real-time pattern classifier, and Elman network achieves the memory ability for former event. Based on the hybrid model intrusion detection system uses DARPA data set to do test evaluation. It uses ROC curve to display the test result intuitively. After the experiment it proves this hybrid model intrusion detection system can effectively improve the detection rate, and reduce the rate of false alarm and fail.

Keywords: RBF, Elman, anomaly detection, misuse detection, hybrid neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
2017 Stochastic Resonance in Nonlinear Signal Detection

Authors: Youguo Wang, Lenan Wu

Abstract:

Stochastic resonance (SR) is a phenomenon whereby the signal transmission or signal processing through certain nonlinear systems can be improved by adding noise. This paper discusses SR in nonlinear signal detection by a simple test statistic, which can be computed from multiple noisy data in a binary decision problem based on a maximum a posteriori probability criterion. The performance of detection is assessed by the probability of detection error Per . When the input signal is subthreshold signal, we establish that benefit from noise can be gained for different noises and confirm further that the subthreshold SR exists in nonlinear signal detection. The efficacy of SR is significantly improved and the minimum of Per can dramatically approach to zero as the sample number increases. These results show the robustness of SR in signal detection and extend the applicability of SR in signal processing.

Keywords: Probability of detection error, signal detection, stochastic resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1312
2016 Multisensor Agent Based Intrusion Detection

Authors: Richard A. Wasniowski

Abstract:

In this paper we propose a framework for multisensor intrusion detection called Fuzzy Agent-Based Intrusion Detection System. A unique feature of this model is that the agent uses data from multiple sensors and the fuzzy logic to process log files. Use of this feature reduces the overhead in a distributed intrusion detection system. We have developed an agent communication architecture that provides a prototype implementation. This paper discusses also the issues of combining intelligent agent technology with the intrusion detection domain.

Keywords: Intrusion detection, fuzzy logic, agents, networksecurity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
2015 Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test

Authors: Matthias Kirmse, Uwe Petersohn, Elief Paffrath

Abstract:

As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.

Keywords: Ensemble methods, fault detection, machine learning, semiconductor test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
2014 State of the Art: A Study on Fall Detection

Authors: Goh Yongli, Ooi Shih Yin, Pang Ying Han

Abstract:

Unintentional falls are rife throughout the ages and have been the common factor of serious or critical injuries especially for the elderly society. Fortunately, owing to the recent rapid advancement in technology, fall detection system is made possible, enabling detection of falling events for the elderly, monitoring the patient and consequently provides emergency support in the event of falling. This paper presents a review of 3 main categories of fall detection techniques, ranging from year 2005 to year 2010. This paper will be focusing on discussing the techniques alongside with summary and conclusion for them.

Keywords: State of the art, fall detection, wearable devices, ambient analyser, motion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
2013 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease

Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg

Abstract:

Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.

Keywords: Contrast analysis, early fire detection, video smoke detection, video surveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
2012 Noise-Improved Signal Detection in Nonlinear Threshold Systems

Authors: Youguo Wang, Lenan Wu

Abstract:

We discuss the signal detection through nonlinear threshold systems. The detection performance is assessed by the probability of error Per . We establish that: (1) when the signal is complete suprathreshold, noise always degrades the signal detection both in the single threshold system and in the parallel array of threshold devices. (2) When the signal is a little subthreshold, noise degrades signal detection in the single threshold system. But in the parallel array, noise can improve signal detection, i.e., stochastic resonance (SR) exists in the array. (3) When the signal is predominant subthreshold, noise always can improve signal detection and SR always exists not only in the single threshold system but also in the parallel array. (4) Array can improve signal detection by raising the number of threshold devices. These results extend further the applicability of SR in signal detection.

Keywords: Probability of error, signal detection, stochasticresonance, threshold system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1163
2011 Suggestion for Malware Detection Agent Considering Network Environment

Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung

Abstract:

Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.

Keywords: Android malware detection, software-defined network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
2010 Accuracy of Divergence Measures for Detection of Abrupt Changes

Authors: P. Bergl

Abstract:

Numerous divergence measures (spectral distance, cepstral distance, difference of the cepstral coefficients, Kullback-Leibler divergence, distance given by the General Likelihood Ratio, distance defined by the Recursive Bayesian Changepoint Detector and the Mahalanobis measure) are compared in this study. The measures are used for detection of abrupt spectral changes in synthetic AR signals via the sliding window algorithm. Two experiments are performed; the first is focused on detection of single boundary while the second concentrates on detection of a couple of boundaries. Accuracy of detection is judged for each method; the measures are compared according to results of both experiments.

Keywords: Abrupt changes detection, autoregressive model, divergence measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1237
2009 Objective Evaluation of Mathematical Morphology Edge Detection on Computed Tomography (CT) Images

Authors: Emhimed Saffor, Abdelkader Salama

Abstract:

In this paper problem of edge detection in digital images is considered. Edge detection based on morphological operators was applied on two sets (brain & chest) ct images. Three methods of edge detection by applying line morphological filters with multi structures in different directions have been used. 3x3 filter for first method, 5x5 filter for second method, and 7x7 filter for third method. We had applied this algorithm on (13 images) under MATLAB program environment. In order to evaluate the performance of the above mentioned edge detection algorithms, standard deviation (SD) and peak signal to noise ratio (PSNR) were used for justification for all different ct images. The objective method and the comparison of different methods of edge detection,  shows that high values of both standard deviation and PSNR values of edge detection images were obtained. 

Keywords: Medical images, Matlab, Edge detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2412
2008 The Study of Applying Models: House, Temple and School for Sufficiency Development to Participate in ASEAN Economic Community: A Case Study of Trimitra Temple (China Town) Bangkok, Thailand

Authors: Saowapa Phaithayawat

Abstract:

The purposes of this study are 1) to study the impact of the 3-community-core model: House (H), Temple (T), and School (S) with the co-operation of official departments on community development to ASEAN economic community involvement and 2) to study the procedures and extension of the model. The research which is a qualitative research is based on the formal and informal interviews. Local people in a community are observed. Group interview is, also, operated by executors and cooperators in the school in the community. In terms of social and cultural dimension, the 3-community-core model consisting of house, temple and school is the base of Thai cultures bringing about understanding, happiness and unity to the community. The result of this research is that the official departments in accompanied with this model developers cooperatively work together in the community to support such factors as budget, plan, activities. Moreover, the need of community, and the continual result to sustain the community are satisfied by the model implementation. In terms of the procedures of the model implementation, executors and co-operators can work, coordinate, think, and launch their public relation altogether. Concerning the model development, this enables the community to achieve its goal to prepare the community’s readiness for ASEAN Economic Community involvement.

Keywords: ASEAN Economic Community, Community Development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
2007 A New Implementation of PCA for Fast Face Detection

Authors: Hazem M. El-Bakry

Abstract:

Principal Component Analysis (PCA) has many different important applications especially in pattern detection such as face detection / recognition. Therefore, for real time applications, the response time is required to be as small as possible. In this paper, new implementation of PCA for fast face detection is presented. Such new implementation is designed based on cross correlation in the frequency domain between the input image and eigenvectors (weights). Simulation results show that the proposed implementation of PCA is faster than conventional one.

Keywords: Fast Face Detection, PCA, Cross Correlation, Frequency Domain

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
2006 A Study on Roles of the Community Design in Crime Prevention: Focusing on Project called Root out Crime by Design in South Korea

Authors: Miyoun Won, Youngkyung Choi

Abstract:

In the meantime, there were lots of hardware solutions like products or urban facilities for crime prevention in the public design area. Meanwhile, people have growing interest in public design so by making a village; community design in public design is getting active by the society. The system for crime prevention is actively done by the citizens who created the community. Regarding the social situation, in this project, we saw it as a kind of community design practices and researched about 'how does community design influence Crime prevention?' The purpose of this study is to propose the community design as a way of preventing the crime in the city. First, we found out about the definition, elements and methods of community design by reviewing the theory. And then, this study analyzed the case that was enforced in Seoul and organize the elements and methods of community design. This study can be refer to Public Design based on civil participation and make the community design area contribute to expand the way of solving social problems.

Keywords: Public Design, Sustainable Community Design, Crime Prevention, Participatory Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
2005 Image Segmentation and Contour Recognition Based on Mathematical Morphology

Authors: Pinaki Pratim Acharjya, Esha Dutta

Abstract:

In image segmentation contour detection is one of the important pre-processing steps in recent days. Contours characterize boundaries and contour detection is one of the most difficult tasks in image processing. Hence it is a problem of fundamental importance in image processing. Contour detection of an image decreases the volume of data considerably and useless information is removed, but the structural properties of the image remain same. In this research, a robust and effective contour detection technique has been proposed using mathematical morphology. Three different contour detection results are obtained by using morphological dilation and erosion. The comparative analyses of three different results also have been done.

Keywords: Image segmentation, contour detection, mathematical morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550
2004 T-Wave Detection Based on an Adjusted Wavelet Transform Modulus Maxima

Authors: Samar Krimi, Kaïs Ouni, Noureddine Ellouze

Abstract:

The method described in this paper deals with the problems of T-wave detection in an ECG. Determining the position of a T-wave is complicated due to the low amplitude, the ambiguous and changing form of the complex. A wavelet transform approach handles these complications therefore a method based on this concept was developed. In this way we developed a detection method that is able to detect T-waves with a sensitivity of 93% and a correct-detection ratio of 93% even with a serious amount of baseline drift and noise.

Keywords: ECG, Modulus Maxima Wavelet Transform, Performance, T-wave detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
2003 Improvements in Edge Detection Based on Mathematical Morphology and Wavelet Transform using Fuzzy Rules

Authors: Masrour Dowlatabadi, Jalil Shirazi

Abstract:

In this paper, an improved edge detection algorithm based on fuzzy combination of mathematical morphology and wavelet transform is proposed. The combined method is proposed to overcome the limitation of wavelet based edge detection and mathematical morphology based edge detection in noisy images. Experimental results show superiority of the proposed method, as compared to the traditional Prewitt, wavelet based and morphology based edge detection methods. The proposed method is an effective edge detection method for noisy image and keeps clear and continuous edges.

Keywords: Edge detection, Wavelet transform, Mathematical morphology, Fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2138
2002 Defect Prevention and Detection of DSP-software

Authors: Deng Shiwei

Abstract:

The users are now expecting higher level of DSP(Digital Signal Processing) software quality than ever before. Prevention and detection of defect are critical elements of software quality assurance. In this paper, principles and rules for prevention and detection of defect are suggested, which are not universal guidelines, but are useful for both novice and experienced DSP software developers.

Keywords: defect detection, defect prevention, DSP-software, software development, software testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
2001 Real-time Detection of Space Manipulator Self-collision

Authors: Zhang Xiaodong, Tang Zixin, Liu Xin

Abstract:

In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder-enveloping surface, and then, a kind of detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.

Keywords: Space manipulator, Collision detection, Self-collision, the real-time collision detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768