Search results for: Voice activation detection algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4836

Search results for: Voice activation detection algorithm

636 Generalized Maximal Ratio Combining as a Supra-optimal Receiver Diversity Scheme

Authors: Jean-Pierre Dubois, Rania Minkara, Rafic Ayoubi

Abstract:

Maximal Ratio Combining (MRC) is considered the most complex combining technique as it requires channel coefficients estimation. It results in the lowest bit error rate (BER) compared to all other combining techniques. However the BER starts to deteriorate as errors are introduced in the channel coefficients estimation. A novel combining technique, termed Generalized Maximal Ratio Combining (GMRC) with a polynomial kernel, yields an identical BER as MRC with perfect channel estimation and a lower BER in the presence of channel estimation errors. We show that GMRC outperforms the optimal MRC scheme in general and we hereinafter introduce it to the scientific community as a new “supraoptimal" algorithm. Since diversity combining is especially effective in small femto- and pico-cells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to IP-based 4th generation networks.

Keywords: Bit error rate, femto-internet cells, generalized maximal ratio combining, signal-to-scattering noise ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
635 A Robust Diverged Localization and Recognition of License Registration Characters

Authors: M. Sankari, R. Bremananth, C.Meena

Abstract:

Localization and Recognition of License registration characters from the moving vehicle is a computationally complex task in the field of machine vision and is of substantial interest because of its diverse applications such as cross border security, law enforcement and various other intelligent transportation applications. Previous research used the plate specific details such as aspect ratio, character style, color or dimensions of the plate in the complex task of plate localization. In this paper, license registration character is localized by Enhanced Weight based density map (EWBDM) method, which is independent of such constraints. In connection with our previous method, this paper proposes a method that relaxes constraints in lighting conditions, different fonts of character occurred in the plate and plates with hand-drawn characters in various aspect quotients. The robustness of this method is well suited for applications where the appearance of plates seems to be varied widely. Experimental results show that this approach is suited for recognizing license plates in different external environments. 

Keywords: Character segmentation, Connectivity checking, Edge detection, Image analysis, license plate localization, license number recognition, Quality frame selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
634 An Energy Efficient Cluster Formation Protocol with Low Latency In Wireless Sensor Networks

Authors: A. Allirani, M. Suganthi

Abstract:

Data gathering is an essential operation in wireless sensor network applications. So it requires energy efficiency techniques to increase the lifetime of the network. Similarly, clustering is also an effective technique to improve the energy efficiency and network lifetime of wireless sensor networks. In this paper, an energy efficient cluster formation protocol is proposed with the objective of achieving low energy dissipation and latency without sacrificing application specific quality. The objective is achieved by applying randomized, adaptive, self-configuring cluster formation and localized control for data transfers. It involves application - specific data processing, such as data aggregation or compression. The cluster formation algorithm allows each node to make independent decisions, so as to generate good clusters as the end. Simulation results show that the proposed protocol utilizes minimum energy and latency for cluster formation, there by reducing the overhead of the protocol.

Keywords: Sensor networks, Low latency, Energy sorting protocol, data processing, Cluster formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741
633 Optimization of Thermopile Sensor Performance of Polycrystalline Silicon Film

Authors: Li Long, Thomas Ortlepp

Abstract:

A theoretical model for the optimization of thermopile sensor performance is developed for thermoelectric-based infrared radiation detection. It is shown that the performance of polycrystalline silicon film thermopile sensor can be optimized according to the thermoelectric quality factor, sensor layer structure factor and sensor layout shape factor. Based on the properties of electrons, phonons, grain boundaries and their interactions, the thermoelectric quality factor of polycrystalline silicon is analyzed with the relaxation time approximation of Boltzmann transport equation. The model includes the effects of grain structure, grain boundary trap properties and doping concentration. The layer structure factor of sensor is analyzed with respect to infrared absorption coefficient. The effect of layout design is characterized with the shape factor, which is calculated for different sensor designs. Double layer polycrystalline silicon thermopile infrared sensors on suspended support membrane have been designed and fabricated with a CMOS-compatible process. The theoretical approach is confirmed with measurement results.

Keywords: Polycrystalline silicon film, relaxation time approximation, specific detectivity, thermal conductivity, thermopile infrared sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231
632 Depth Controls of an Autonomous Underwater Vehicle by Neurocontrollers for Enhanced Situational Awareness

Authors: Igor Astrov, Andrus Pedai

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the neural control of autonomous constant depth flight of an autonomous underwater vehicle (AUV). Autonomous constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. The fundamental requirement for constant depth flight is the knowledge of the depth, and a properly designed controller to govern the process. The AUV, named VORAM, is used as a model for the verification of the proposed hybrid control algorithm. Three neural network controllers, named NARMA-L2 controllers, are designed for fast and stable diving maneuvers of chosen AUV model. This hybrid control strategy for chosen AUV model has been verified by simulation of diving maneuvers using software package Simulink and demonstrated good performance for fast SA in real-time searchand- rescue operations.

Keywords: Autonomous underwater vehicles, depth control, neurocontrollers, situational awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
631 An Improved Illumination Normalization based on Anisotropic Smoothing for Face Recognition

Authors: Sanghoon Kim, Sun-Tae Chung, Souhwan Jung, Seongwon Cho

Abstract:

Robust face recognition under various illumination environments is very difficult and needs to be accomplished for successful commercialization. In this paper, we propose an improved illumination normalization method for face recognition. Illumination normalization algorithm based on anisotropic smoothing is well known to be effective among illumination normalization methods but deteriorates the intensity contrast of the original image, and incurs less sharp edges. The proposed method in this paper improves the previous anisotropic smoothing-based illumination normalization method so that it increases the intensity contrast and enhances the edges while diminishing the effect of illumination variations. Due to the result of these improvements, face images preprocessed by the proposed illumination normalization method becomes to have more distinctive feature vectors (Gabor feature vectors) for face recognition. Through experiments of face recognition based on Gabor feature vector similarity, the effectiveness of the proposed illumination normalization method is verified.

Keywords: Illumination Normalization, Face Recognition, Anisotropic smoothing, Gabor feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
630 Harnessing the Power of AI: Transforming DevSecOps for Enhanced Cloud Security

Authors: Ashly Joseph, Jithu Paulose

Abstract:

The increased usage of cloud computing has revolutionized the IT landscape, but it has also raised new security concerns. DevSecOps emerged as a way for tackling these difficulties by integrating security into the software development process. However, the rising complexity and sophistication of cyber threats need more advanced solutions. This paper looks into the usage of artificial intelligence (AI) techniques in the DevSecOps framework to increase cloud security. This study uses quantitative and qualitative techniques to assess the usefulness of AI approaches such as machine learning, natural language processing, and deep learning in reducing security issues. This paper thoroughly examines the symbiotic relationship between AI and DevSecOps, concentrating on how AI may be seamlessly integrated into the continuous integration and continuous delivery (CI/CD) pipeline, automated security testing, and real-time monitoring methods. The findings emphasize AI's huge potential to improve threat detection, risk assessment, and incident response skills. Furthermore, the paper examines the implications and challenges of using AI in DevSecOps workflows, considering factors like as scalability, interpretability, and adaptability. This paper adds to a better understanding of AI's revolutionary role in cloud security and provides valuable insights for practitioners and scholars in the field.

Keywords: Cloud Security, DevSecOps, Artificial Intelligence, AI, Machine Learning, Natural Language Processing, NLP, cybersecurity, AI-driven Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132
629 Modified Naïve Bayes Based Prediction Modeling for Crop Yield Prediction

Authors: Kefaya Qaddoum

Abstract:

Most of greenhouse growers desire a determined amount of yields in order to accurately meet market requirements. The purpose of this paper is to model a simple but often satisfactory supervised classification method. The original naive Bayes have a serious weakness, which is producing redundant predictors. In this paper, utilized regularization technique was used to obtain a computationally efficient classifier based on naive Bayes. The suggested construction, utilized L1-penalty, is capable of clearing redundant predictors, where a modification of the LARS algorithm is devised to solve this problem, making this method applicable to a wide range of data. In the experimental section, a study conducted to examine the effect of redundant and irrelevant predictors, and test the method on WSG data set for tomato yields, where there are many more predictors than data, and the urge need to predict weekly yield is the goal of this approach. Finally, the modified approach is compared with several naive Bayes variants and other classification algorithms (SVM and kNN), and is shown to be fairly good.

Keywords: Tomato yields prediction, naive Bayes, redundancy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5109
628 Automatic Lip Contour Tracking and Visual Character Recognition for Computerized Lip Reading

Authors: Harshit Mehrotra, Gaurav Agrawal, M.C. Srivastava

Abstract:

Computerized lip reading has been one of the most actively researched areas of computer vision in recent past because of its crime fighting potential and invariance to acoustic environment. However, several factors like fast speech, bad pronunciation, poor illumination, movement of face, moustaches and beards make lip reading difficult. In present work, we propose a solution for automatic lip contour tracking and recognizing letters of English language spoken by speakers using the information available from lip movements. Level set method is used for tracking lip contour using a contour velocity model and a feature vector of lip movements is then obtained. Character recognition is performed using modified k nearest neighbor algorithm which assigns more weight to nearer neighbors. The proposed system has been found to have accuracy of 73.3% for character recognition with speaker lip movements as the only input and without using any speech recognition system in parallel. The approach used in this work is found to significantly solve the purpose of lip reading when size of database is small.

Keywords: Contour Velocity Model, Lip Contour Tracking, LipReading, Visual Character Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401
627 Analysis of Reflectance Photoplethysmograph Sensors

Authors: Fu-Hsuan Huang, Po-Jung Yuan, Kang-Ping Lin, Hen-Hong Chang, Cheng-Lun Tsai

Abstract:

Photoplethysmography is a simple measurement of the variation in blood volume in tissue. It detects the pulse signal of heart beat as well as the low frequency signal of vasoconstriction and vasodilation. The transmission type measurement is limited to only a few specific positions for example the index finger that have a short path length for light. The reflectance type measurement can be conveniently applied on most parts of the body surface. This study analyzed the factors that determine the quality of reflectance photoplethysmograph signal including the emitter-detector distance, wavelength, light intensity, and optical properties of skin tissue. Light emitting diodes (LEDs) with four different visible wavelengths were used as the light emitters. A phototransistor was used as the light detector. A micro translation stage adjusts the emitter-detector distance from 2 mm to 15 mm. The reflective photoplethysmograph signals were measured on different sites. The optimal emitter-detector distance was chosen to have a large dynamic range for low frequency drifting without signal saturation and a high perfusion index. Among these four wavelengths, a yellowish green (571nm) light with a proper emitter-detection distance of 2mm is the most suitable for obtaining a steady and reliable reflectance photoplethysmograph signal

Keywords: Reflectance photoplethysmograph, Perfusion index, Signal-to-noise ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
626 Effect of Non Uniformity Factors and Assignment Factors on Errors in Charge Simulation Method with Point Charge Model

Authors: Gururaj S Punekar, N K Kishore Senior, H S Y Shastry

Abstract:

Charge Simulation Method (CSM) is one of the very widely used numerical field computation technique in High Voltage (HV) engineering. The high voltage fields of varying non uniformities are encountered in practice. CSM programs being case specific, the simulation accuracies heavily depend on the user (programmers) experience. Here is an effort to understand CSM errors and evolve some guidelines to setup accurate CSM models, relating non uniformities with assignment factors. The results are for the six-point-charge model of sphere-plane gap geometry. Using genetic algorithm (GA) as tool, optimum assignment factors at different non uniformity factors for this model have been evaluated and analyzed. It is shown that the symmetrically placed six-point-charge models can be good enough to set up CSM programs with potential errors less than 0.1% when the field non uniformity factor is greater than 2.64 (field utilization factor less than 52.76%).

Keywords: Assignment factor, Charge Simulation Method, High Voltage, Numerical field computation, Non uniformity factor, Simulation errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
625 SNR Classification Using Multiple CNNs

Authors: Thinh Ngo, Paul Rad, Brian Kelley

Abstract:

Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.

Keywords: Classification, classifier fusion, CNN, Deep Learning, prediction, SNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720
624 OCR for Script Identification of Hindi (Devnagari) Numerals using Feature Sub Selection by Means of End-Point with Neuro-Memetic Model

Authors: Banashree N. P., R. Vasanta

Abstract:

Recognition of Indian languages scripts is challenging problems. In Optical Character Recognition [OCR], a character or symbol to be recognized can be machine printed or handwritten characters/numerals. There are several approaches that deal with problem of recognition of numerals/character depending on the type of feature extracted and different way of extracting them. This paper proposes a recognition scheme for handwritten Hindi (devnagiri) numerals; most admired one in Indian subcontinent. Our work focused on a technique in feature extraction i.e. global based approach using end-points information, which is extracted from images of isolated numerals. These feature vectors are fed to neuro-memetic model [18] that has been trained to recognize a Hindi numeral. The archetype of system has been tested on varieties of image of numerals. . In proposed scheme data sets are fed to neuro-memetic algorithm, which identifies the rule with highest fitness value of nearly 100 % & template associates with this rule is nothing but identified numerals. Experimentation result shows that recognition rate is 92-97 % compared to other models.

Keywords: OCR, Global Feature, End-Points, Neuro-Memetic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
623 Complexity Analysis of Some Known Graph Coloring Instances

Authors: Jeffrey L. Duffany

Abstract:

Graph coloring is an important problem in computer science and many algorithms are known for obtaining reasonably good solutions in polynomial time. One method of comparing different algorithms is to test them on a set of standard graphs where the optimal solution is already known. This investigation analyzes a set of 50 well known graph coloring instances according to a set of complexity measures. These instances come from a variety of sources some representing actual applications of graph coloring (register allocation) and others (mycieleski and leighton graphs) that are theoretically designed to be difficult to solve. The size of the graphs ranged from ranged from a low of 11 variables to a high of 864 variables. The method used to solve the coloring problem was the square of the adjacency (i.e., correlation) matrix. The results show that the most difficult graphs to solve were the leighton and the queen graphs. Complexity measures such as density, mobility, deviation from uniform color class size and number of block diagonal zeros are calculated for each graph. The results showed that the most difficult problems have low mobility (in the range of .2-.5) and relatively little deviation from uniform color class size.

Keywords: graph coloring, complexity, algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
622 Optimization of Machining Parametric Study on Electrical Discharge Machining

Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel

Abstract:

Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.

Keywords: Material removal rate, TWR, OC, DOE, ANOVA, MINITAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833
621 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds

Authors: Samit Ari, Goutam Saha

Abstract:

Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.

Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
620 Researches on Simulation and Validation of Airborne Enhanced Ground Proximity Warning System

Authors: Ma Shidong, He Yuncheng, Wang Zhong, Yang Guoqing

Abstract:

In this paper, enhanced ground proximity warning simulation and validation system is designed and implemented. First, based on square grid and sub-grid structure, the global digital terrain database is designed and constructed. Terrain data searching is implemented through querying the latitude and longitude bands and separated zones of global terrain database with the current aircraft position. A combination of dynamic scheduling and hierarchical scheduling is adopted to schedule the terrain data, and the terrain data can be read and delete dynamically in the memory. Secondly, according to the scope, distance, approach speed information etc. to the dangerous terrain in front, and using security profiles calculating method, collision threat detection is executed in real-time, and provides caution and warning alarm. According to this scheme, the implementation of the enhanced ground proximity warning simulation system is realized. Simulations are carried out to verify a good real-time in terrain display and alarm trigger, and the results show simulation system is realized correctly, reasonably and stable.

Keywords: enhanced ground proximity warning system, digital terrain, look-ahead terrain alarm, terrain display, simulation and validation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
619 Semi-automatic Construction of Ontology-based CBR System for Knowledge Integration

Authors: Junjie Gao, Guishi Deng

Abstract:

In order to integrate knowledge in heterogeneous case-based reasoning (CBR) systems, ontology-based CBR system has become a hot topic. To solve the facing problems of ontology-based CBR system, for example, its architecture is nonstandard, reusing knowledge in legacy CBR is deficient, ontology construction is difficult, etc, we propose a novel approach for semi-automatically construct ontology-based CBR system whose architecture is based on two-layer ontology. Domain knowledge implied in legacy case bases can be mapped from relational database schema and knowledge items to relevant OWL local ontology automatically by a mapping algorithm with low time-complexity. By concept clustering based on formal concept analysis, computing concept equation measure and concept inclusion measure, some suggestions about enriching or amending concept hierarchy of OWL local ontologies are made automatically that can aid designers to achieve semi-automatic construction of OWL domain ontology. Validation of the approach is done by an application example.

Keywords: OWL ontology, Case-based Reasoning, FormalConcept Analysis, Knowledge Integration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
618 Urban Land Cover Change of Olomouc City Using LANDSAT Images

Authors: Miloš Marjanović, Jaroslav Burian, Ja kub Miřijovský, Jan Harbula

Abstract:

This paper regards the phenomena of intensive suburbanization and urbanization in Olomouc city and in Olomouc region in general for the period of 1986–2009. A Remote Sensing approach that involves tracking of changes in Land Cover units is proposed to quantify the urbanization state and trends in temporal and spatial aspects. It actually consisted of two approaches, Experiment 1 and Experiment 2 which implied two different image classification solutions in order to provide Land Cover maps for each 1986–2009 time split available in the Landsat image set. Experiment 1 dealt with the unsupervised classification, while Experiment 2 involved semi- supervised classification, using a combination of object-based and pixel-based classifiers. The resulting Land Cover maps were subsequently quantified for the proportion of urban area unit and its trend through time, and also for the urban area unit stability, yielding the relation of spatial and temporal development of the urban area unit. Some outcomes seem promising but there is indisputably room for improvements of source data and also processing and filtering.

Keywords: Change detection, image classification, land cover, Landsat images, Olomouc city, urbanization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
617 From Victim to Ethical Agent: Oscar Wilde's The Ballad of Reading Gaol as Post-Traumatic Writing

Authors: Mona Salah El-Din Hassanein

Abstract:

Faced with a sudden, unexpected, and overwhelming event, the individual's normal cognitive processing may cease to function, trapping the psyche in "speechless terror", while images, feelings and sensations are experienced with emotional intensity. Unable to master such situation, the individual becomes a trauma victim who will be susceptible to traumatic recollections like intrusive thoughts, flashbacks, and repetitive re-living of the primal event in a way that blurs the distinction between past and present, and forecloses the future. Trauma is timeless, repetitious, and contagious; a trauma observer could fall prey to "secondary victimhood". Central to the process of healing the psychic wounds in the aftermath of trauma is verbalizing the traumatic experience (i.e., putting it into words) – an act which provides a chance for assimilation, testimony, and reevaluation. In light of this paradigm, this paper proposes a reading of Oscar Wilde's The Ballad of Reading Gaol, written shortly after his release from prison, as a post-traumatic text which traces the disruptive effects of the traumatic experience of Wilde's imprisonment for homosexual offences and the ensuing reversal of fortune he endured. Post-traumatic writing demonstrates the process of "working through" a trauma which may lead to the possibility of ethical agency in the form of a "survivor mission". This paper draws on fundamental concepts and key insights in literary trauma theory which is characterized by interdisciplinarity, combining the perspectives of different fields like critical theory, psychology, psychiatry, psychoanalysis, history, and social studies. Of particular relevance to this paper are the concepts of "vicarious traumatization" and "survivor mission", as The Ballad of Reading Gaol was written in response to Wilde's own prison trauma and the indirect traumatization he experienced as a result of witnessing the execution of a fellow prisoner whose story forms the narrative base of the poem. The Ballad displays Wilde's sense of mission which leads him to recognize the social as well as ethical implications of personal tragedy. Through a close textual analysis of The Ballad of Reading Gaol within the framework of literary trauma theory, the paper aims to: (a) demonstrate how the poem's thematic concerns, structure and rhetorical figures reflect the structure of trauma; (b) highlight Wilde's attempts to come to terms with the effects of the cataclysmic experience which transformed him into a social outcast; and (c) show how Wilde manages to transcend the victim status and assumes the role of ethical agent to voice a critique of the Victorian penal system and the standards of morality underlying the cruelties practiced against wrong doers and to solicit social action.

Keywords: Ballad of Reading Gaol, post-traumatic writing, trauma theory, Wilde.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
616 A New Reliability Based Channel Allocation Model in Mobile Networks

Authors: Anujendra, Parag Kumar Guha Thakurta

Abstract:

The data transmission between mobile hosts and base stations (BSs) in Mobile networks are often vulnerable to failure. So, efficient link connectivity, in terms of the services of both base stations and communication channels of the network, is required in wireless mobile networks to achieve highly reliable data transmission. In addition, it is observed that the number of blocked hosts is increased due to insufficient number of channels during heavy load in the network. Under such scenario, the channels are allocated accordingly to offer a reliable communication at any given time. Therefore, a reliability-based channel allocation model with acceptable system performance is proposed as a MOO problem in this paper. Two conflicting parameters known as Resource Reuse factor (RRF) and the number of blocked calls are optimized under reliability constraint in this problem. The solution to such MOO problem is obtained through NSGA-II (Non dominated Sorting Genetic Algorithm). The effectiveness of the proposed model in this work is shown with a set of experimental results.

Keywords: Base station, channel, GA, Pareto-optimal, reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
615 Robot Movement Using the Trust Region Policy Optimization

Authors: Romisaa Ali

Abstract:

The Policy Gradient approach is a subset of the Deep Reinforcement Learning (DRL) combines Deep Neural Networks (DNN) with Reinforcement Learning (RL). This approach finds the optimal policy of robot movement, based on the experience it gains from interaction with its environment. Unlike previous policy gradient algorithms, which were unable to handle the two types of error variance and bias introduced by the DNN model due to over- or underestimation, this algorithm is capable of handling both types of error variance and bias. This article will discuss the state-of-the-art SOTA policy gradient technique, trust region policy optimization (TRPO), by applying this method in various environments compared to another policy gradient method, the Proximal Policy Optimization (PPO), to explain their robust optimization, using this SOTA to gather experience data during various training phases after observing the impact of hyper-parameters on neural network performance.

Keywords: Deep neural networks, deep reinforcement learning, Proximal Policy Optimization, state-of-the-art, trust region policy optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184
614 Comparison of Different Neural Network Approaches for the Prediction of Kidney Dysfunction

Authors: Ali Hussian Ali AlTimemy, Fawzi M. Al Naima

Abstract:

This paper presents the prediction of kidney dysfunction using different neural network (NN) approaches. Self organization Maps (SOM), Probabilistic Neural Network (PNN) and Multi Layer Perceptron Neural Network (MLPNN) trained with Back Propagation Algorithm (BPA) are used in this study. Six hundred and sixty three sets of analytical laboratory tests have been collected from one of the private clinical laboratories in Baghdad. For each subject, Serum urea and Serum creatinin levels have been analyzed and tested by using clinical laboratory measurements. The collected urea and cretinine levels are then used as inputs to the three NN models in which the training process is done by different neural approaches. SOM which is a class of unsupervised network whereas PNN and BPNN are considered as class of supervised networks. These networks are used as a classifier to predict whether kidney is normal or it will have a dysfunction. The accuracy of prediction, sensitivity and specificity were found for each type of the proposed networks .We conclude that PNN gives faster and more accurate prediction of kidney dysfunction and it works as promising tool for predicting of routine kidney dysfunction from the clinical laboratory data.

Keywords: Kidney Dysfunction, Prediction, SOM, PNN, BPNN, Urea and Creatinine levels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
613 Robust Camera Calibration using Discrete Optimization

Authors: Stephan Rupp, Matthias Elter, Michael Breitung, Walter Zink, Christian Küblbeck

Abstract:

Camera calibration is an indispensable step for augmented reality or image guided applications where quantitative information should be derived from the images. Usually, a camera calibration is obtained by taking images of a special calibration object and extracting the image coordinates of projected calibration marks enabling the calculation of the projection from the 3d world coordinates to the 2d image coordinates. Thus such a procedure exhibits typical steps, including feature point localization in the acquired images, camera model fitting, correction of distortion introduced by the optics and finally an optimization of the model-s parameters. In this paper we propose to extend this list by further step concerning the identification of the optimal subset of images yielding the smallest overall calibration error. For this, we present a Monte Carlo based algorithm along with a deterministic extension that automatically determines the images yielding an optimal calibration. Finally, we present results proving that the calibration can be significantly improved by automated image selection.

Keywords: Camera Calibration, Discrete Optimization, Monte Carlo Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
612 A Distance Function for Data with Missing Values and Its Application

Authors: Loai AbdAllah, Ilan Shimshoni

Abstract:

Missing values in data are common in real world applications. Since the performance of many data mining algorithms depend critically on it being given a good metric over the input space, we decided in this paper to define a distance function for unlabeled datasets with missing values. We use the Bhattacharyya distance, which measures the similarity of two probability distributions, to define our new distance function. According to this distance, the distance between two points without missing attributes values is simply the Mahalanobis distance. When on the other hand there is a missing value of one of the coordinates, the distance is computed according to the distribution of the missing coordinate. Our distance is general and can be used as part of any algorithm that computes the distance between data points. Because its performance depends strongly on the chosen distance measure, we opted for the k nearest neighbor classifier to evaluate its ability to accurately reflect object similarity. We experimented on standard numerical datasets from the UCI repository from different fields. On these datasets we simulated missing values and compared the performance of the kNN classifier using our distance to other three basic methods. Our  experiments show that kNN using our distance function outperforms the kNN using other methods. Moreover, the runtime performance of our method is only slightly higher than the other methods.

Keywords: Missing values, Distance metric, Bhattacharyya distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2751
611 Intrinsic Electromagnetic Fields and Atom-Field Coupling in Living Cells

Authors: Masroor H. S. Bukhari, Z. H. Shah

Abstract:

The possibility of intrinsic electromagnetic fields within living cells and their resonant self-interaction and interaction with ambient electromagnetic fields is suggested on the basis of a theoretical and experimental study. It is reported that intrinsic electromagnetic fields are produced in the form of radio-frequency and infra-red photons within atoms (which may be coupled or uncoupled) in cellular structures, such as the cell cytoskeleton and plasma membrane. A model is presented for the interaction of these photons among themselves or with atoms under a dipole-dipole coupling, induced by single-photon or two-photon processes. This resonance is manifested by conspicuous field amplification and it is argued that it is possible for these resonant photons to undergo tunnelling in the form of evanescent waves to a short range (of a few nanometers to micrometres). This effect, suggested as a resonant photon tunnelling mechanism in this report, may enable these fields to act as intracellular signal communication devices and as bridges between macromolecules or cellular structures in the cell cytoskeleton, organelles or membrane. A brief overview of an experimental technique and a review of some preliminary results are presented, in the detection of these fields produced in living cell membranes under physiological conditions.

Keywords: bioelectromagnetism, cell membrane, evanescentwaves, photon tunnelling, resonance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
610 Application of Novel Conserving Immersed Boundary Method to Moving Boundary Problem

Authors: S. N. Hosseini, S. M. H. Karimian

Abstract:

A new conserving approach in the context of Immersed Boundary Method (IBM) is presented to simulate one dimensional, incompressible flow in a moving boundary problem. The method employs control volume scheme to simulate the flow field. The concept of ghost node is used at the boundaries to conserve the mass and momentum equations. The Present method implements the conservation laws in all cells including boundary control volumes. Application of the method is studied in a test case with moving boundary. Comparison between the results of this new method and a sharp interface (Image Point Method) IBM algorithm shows a well distinguished improvement in both pressure and velocity fields of the present method. Fluctuations in pressure field are fully resolved in this proposed method. This approach expands the IBM capability to simulate flow field for variety of problems by implementing conservation laws in a fully Cartesian grid compared to other conserving methods.

Keywords: Immersed Boundary Method, conservation of mass and momentum laws, moving boundary, boundary condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
609 The Influence of Beta Shape Parameters in Project Planning

Authors: Αlexios Kotsakis, Stefanos Katsavounis, Dimitra Alexiou

Abstract:

Networks can be utilized to represent project planning problems, using nodes for activities and arcs to indicate precedence relationship between them. For fixed activity duration, a simple algorithm calculates the amount of time required to complete a project, followed by the activities that comprise the critical path. Program Evaluation and Review Technique (PERT) generalizes the above model by incorporating uncertainty, allowing activity durations to be random variables, producing nevertheless a relatively crude solution in planning problems. In this paper, based on the findings of the relevant literature, which strongly suggests that a Beta distribution can be employed to model earthmoving activities, we utilize Monte Carlo simulation, to estimate the project completion time distribution and measure the influence of skewness, an element inherent in activities of modern technical projects. We also extract the activity criticality index, with an ultimate goal to produce more accurate planning estimations.

Keywords: Beta distribution, PERT, Monte Carlo Simulation, skewness, project completion time distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 770
608 Evaluation of the ANN Based Nonlinear System Models in the MSE and CRLB Senses

Authors: M.V Rajesh, Archana R, A Unnikrishnan, R Gopikakumari, Jeevamma Jacob

Abstract:

The System Identification problem looks for a suitably parameterized model, representing a given process. The parameters of the model are adjusted to optimize a performance function based on error between the given process output and identified process output. The linear system identification field is well established with many classical approaches whereas most of those methods cannot be applied for nonlinear systems. The problem becomes tougher if the system is completely unknown with only the output time series is available. It has been reported that the capability of Artificial Neural Network to approximate all linear and nonlinear input-output maps makes it predominantly suitable for the identification of nonlinear systems, where only the output time series is available. [1][2][4][5]. The work reported here is an attempt to implement few of the well known algorithms in the context of modeling of nonlinear systems, and to make a performance comparison to establish the relative merits and demerits.

Keywords: Multilayer neural networks, Radial Basis Functions, Clustering algorithm, Back Propagation training, Extended Kalmanfiltering, Mean Square Error, Nonlinear Modeling, Cramer RaoLower Bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
607 Ensuring Data Security and Consistency in FTIMA - A Fault Tolerant Infrastructure for Mobile Agents

Authors: Umar Manzoor, Kiran Ijaz, Wajiha Shamim, Arshad Ali Shahid

Abstract:

Transaction management is one of the most crucial requirements for enterprise application development which often require concurrent access to distributed data shared amongst multiple application / nodes. Transactions guarantee the consistency of data records when multiple users or processes perform concurrent operations. Existing Fault Tolerance Infrastructure for Mobile Agents (FTIMA) provides a fault tolerant behavior in distributed transactions and uses multi-agent system for distributed transaction and processing. In the existing FTIMA architecture, data flows through the network and contains personal, private or confidential information. In banking transactions a minor change in the transaction can cause a great loss to the user. In this paper we have modified FTIMA architecture to ensure that the user request reaches the destination server securely and without any change. We have used triple DES for encryption/ decryption and MD5 algorithm for validity of message.

Keywords: Distributed Transaction, Security, Mobile Agents, FTIMA Architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525