Search results for: mechanical work
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5227

Search results for: mechanical work

4837 Optimal Controller with Backstepping and BELBIC for Single-Link Flexible Manipulator

Authors: Ali Reza Sahab, Amir Gholami Pastaki

Abstract:

In this paper, backstepping method (BM) is proposed for a single-link flexible mechanical manipulator. In each step of this method a positive value is obtained. Selections of the gain factor values are very important because controller will have different behavior for each different set of values. Improper selection of these gains can lead to instability of the system. In order to choose proper values for gains BELBIC method has been used in this work. Finally, to prove the efficiency of this method, the obtained results of proposed model are compared with robust controller one. Results show that the combination of backstepping and BELBIC that is presented here, can stabilized the system with higher speed, shorter settling time and lower overshoot in than robust controller.

Keywords: single-link flexible manipulator, backstepping, BELBIC

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
4836 Applying 5S Lean Technology: An Infrastructure for Continuous Process Improvement

Authors: Raid A. Al-Aomar

Abstract:

This paper presents an application of 5S lean technology to a production facility. Due to increased demand, high product variety, and a push production system, the plant has suffered from excessive wastes, unorganized workstations, and unhealthy work environment. This has translated into increased production cost, frequent delays, and low workers morale. Under such conditions, it has become difficult, if not impossible, to implement effective continuous improvement studies. Hence, the lean project is aimed at diagnosing the production process, streamlining the workflow, removing/reducing process waste, cleaning the production environment, improving plant layout, and organizing workstations. 5S lean technology is utilized for achieving project objectives. The work was a combination of both culture changes and tangible/physical changes on the shop floor. The project has drastically changed the plant and developed the infrastructure for a successful implementation of continuous improvement as well as other best practices and quality initiatives.

Keywords: 5S Technique, Continuous Improvement, Kaizen, Lean Technology, Work Methods, Work Standards

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4875
4835 Influence of Milled Waste Glass to Clay Ceramic Foam Properties Made by Direct Foaming Route

Authors: A. Shishkin, V. Mironovs, D. Goljandin, A. Korjakins

Abstract:

The goal of this work is to develop sustainable and durable ceramic cellular structures using widely available natural resources- clay and milled waste glass. Present paper describes method of obtaining clay ceramic foam (CCF) with addition of milled waste glass in 5, 7 and 10 wt% by direct foaming with high speed mixer-disperser (HSMD). For more efficient clay and waste glass milling and mixing, the high velocity disintegrator was used. The CCF with 5, 7, and 10 wt% were obtained at 900, 950, 1000 and 1050 °C firing temperature and they have demonstrated mechanical compressive strength for all 12 samples ranging from 3.8 to 14.3 MPa and porosity 76-65%. Obtained CCF has compressive strength 14.3 MPa and porosity 65.3%.

Keywords: Ceramic foam, waste glass, clay foam, glass foam, open cell, direct foaming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
4834 Conducting Flow Measurement Laboratory Test Work

Authors: M. B. Kime

Abstract:

Mass flow measurement is the basis of most technoeconomic formulations in the chemical industry. This calls for reliable and accurate detection of mass flow. Flow measurement laboratory experiments were conducted using various instruments. These consisted of orifice plates, various sized rotameters, wet gas meter and soap bubble meter. This work was aimed at evaluating appropriate operating conditions and accuracy of the aforementioned devices. The experimental data collected were compared to theoretical predictions from Bernoulli’s equation and calibration curves supplied by the instrument’s manufacturers. The results obtained showed that rotameters were more reliable for measuring high and low flow rates; while soap-bubble meters and wet-gas meters were found to be suitable for measuring low flow rates. The laboratory procedures and findings of the actual work can assist engineering students and professionals in conducting their flow measurement laboratory test work.

Keywords: Flow measurement, orifice plates, rotameters, wet gas meter, soap bubble meter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4921
4833 Effect of Amine-Functionalized Carbon Nanotubes on the Properties of CNT-PAN Composite Nanofibers

Authors: O. Eren, N. Ucar, A. Onen, N. Kızıldag, O. F. Vurur, N. Demirsoy, I. Karacan

Abstract:

PAN nanofibers reinforced with amine functionalized carbon nanotubes. The effect of amine functionalization and the effect of concentration of CNT on the conductivity and mechanical and morphological properties of composite nanofibers were examined. 1%CNT-NH2 loaded PAN/CNT nanofiber showed the best mechanical properties. Conductivity increased with the incorporation of carbon nanotubes. While an increase of concentration of CNT increases the diameter of nanofiber, the use of functionalized CNT results to decrease of diameter of nanofiber.

Keywords: Amine functionalized carbon nanotube, electrospinning, nanofiber, polyacrylonitrile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4161
4832 Symmetry Breaking and the Emergence of Branching Structures in Morphogenesis: Minimal Conditions and Mechanical Interactions between Cells

Authors: M. Margarida Costa, Jorge Simão

Abstract:

The minimal condition for symmetry breaking in morphogenesis of cellular population was investigated using cellular automata based on reaction-diffusion dynamics. In particular, the study looked for the possibility of the emergence of branching structures due to mechanical interactions. The model used two types of cells an external gradient. The results showed that the external gradient influenced movement of cell type-I, also revealed that clusters formed by cells type-II worked as barrier to movement of cells type-I.

Keywords: Morphogenesis, branching structures, symmetrybreaking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
4831 Local Mechanical Analysis of Arch Foot of Space Y-Beam Arch Bridge

Authors: Cao Ziyuan, Luo Xuan

Abstract:

To study the local force characteristics of a spatial Y-arch bridge, a medium-bearing spatial Y-arch bridge is used as the object of study, and the finite element software FEA is used to establish a spatial finite element model and analyze the force conditions of the arch legs under different most unfavorable loading conditions. It is found that the forces on the arch foot under different conditions are mainly in the longitudinal direction and transverse direction, which should be considered for strengthening. The research results can provide reference for the design and construction of the same type of bridge.

Keywords: Bridge engineering, special-shaped arch bridge, mechanical properties, local analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 398
4830 Static Modeling of the Delamination of a Composite Material Laminate in Mode II

Authors: Y. Madani, H. Achache, B. Boutabout

Abstract:

The purpose of this paper is to analyze numerically by the three-dimensional finite element method, using ABAQUS calculation code, the mechanical behavior of a unidirectional and multidirectional delaminated stratified composite under mechanical loading in Mode II. This study consists of the determination of the energy release rate G in mode II as well as the distribution of equivalent von Mises stresses along the damaged zone by varying several parameters such as the applied load and the delamination length. It allowed us to deduce that the high energy release rate favors delamination at the free edges of a stratified plate subjected to bending.

Keywords: Delamination, energy release rate, finite element method, stratified composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687
4829 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells

Authors: Yanqin Chen, Chao Jiang, Chongdu Cho

Abstract:

This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.

Keywords: Gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912
4828 Effectiveness of Business Software Systems Development and Enhancement Projects versus Work Effort Estimation Methods

Authors: Beata Czarnacka-Chrobot

Abstract:

Execution of Business Software Systems (BSS) Development and Enhancement Projects (D&EP) is characterized by the exceptionally low effectiveness, leading to considerable financial losses. The general reason for low effectiveness of such projects is that they are inappropriately managed. One of the factors of proper BSS D&EP management is suitable (reliable and objective) method of project work effort estimation since this is what determines correct estimation of its major attributes: project cost and duration. BSS D&EP is usually considered to be accomplished effectively if product of a planned functionality is delivered without cost and time overrun. The goal of this paper is to prove that choosing approach to the BSS D&EP work effort estimation has a considerable influence on the effectiveness of such projects execution.

Keywords: Business software systems, development and enhancement projects, effectiveness, work effort estimation methods, software product size, software product functionality, project duration, project cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
4827 Progressive Strategy of Milling by means of Tool Axis Inclination Angle

Authors: Sadílek M., Čep R.

Abstract:

This work deals with problems of tool axis inclination angles in ball-end milling. Tool axis inclination angle contributes to improvement of functional surface properties (surface integrity - surface roughness, residual stress, micro hardness, etc.), decreasing cutting forces and improving production. By milling with ball-end milling tool, using standard way of cutting, when work piece and cutting tool contain right angle, we have zero cutting speed on edge. At this point cutting tool only pushes material into the work piece. Here we can observe the following undesirable effects - chip contraction, increasing of cutting temperature, increasing vibrations or creation of built-up edge. These effects have negative results – low quality of surface and decreasing of tool life (in the worse case even it is pinching out). These effects can be eliminated with the tilt of cutting tool or tilt of work piece.

Keywords: CAD/CAM system, tool axis inclination angle, ballend milling, surface roughness, cutting forces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
4826 Green Building Materials: Hemp Oil Based Biocomposites

Authors: Nathan W. Manthey, Francisco Cardona, Gaston M. Francucci, Thiru Aravinthan

Abstract:

Novel acrylated epoxidized hemp oil (AEHO) based bioresins were successfully synthesised, characterized and applied to biocomposites reinforced with woven jute fibre. Characterisation of the synthesised AEHO consisted of acid number titrations and FTIR spectroscopy to assess the success of the acrylation reaction. Three different matrices were produced (vinylester (VE), 50/50 blend of AEHO/VE and 100% AEHO) and reinforced with jute fibre to form three different types of biocomposite samples. Mechanical properties in the form of flexural and interlaminar shear strength (ILSS) were investigated and compared for the different samples. Results from the mechanical tests showed that AEHO and 50/50 based neat bioresins displayed lower flexural properties compared with the VE samples. However when applied to biocomposites and compared with VE based samples, AEHO biocomposites demonstrated comparable flexural performance and improved ILSS. These results are attributed to improved fibre-matrix interfacial adhesion due to surface-chemical compatibility between the natural fibres and bioresin.

Keywords: Biocomposite, hemp oil based bioresin, green building materials, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3438
4825 Thermal Effect on Wave Interaction in Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry

Abstract:

There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.

Keywords: Temperature dependent mechanical characteristics, wave propagation properties, damage detection, wave finite element, composite structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
4824 Development of New Cooling System using Nacelle Duct

Authors: Minho Ha, SeungHeo, Cheolung Cheong, Park K. Y.

Abstract:

In this paper, a new cooling system using a nacelle duct is proposed for the mechanical room in the household refrigerator. The conventional mechanical room consists of a condenser, a compressor and an axial fan. The axial fan is mainly responsible for cooling the condenser and the compressor. The new cooling system is developed by replacing the axial fan with the nacelle duct including the small centrifugal fan. The parametric study is carried out to find the optimum designs of the nacelle duct in terms of performance and efficiency. Through this study, it is revealed that the new system can reduce the space, electrical power and noise compared with the conventional system

Keywords: Centrifugal Fan, Cooling Fan, Nacelle Duct, Refrigerator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
4823 3D Modeling of Temperature by Finite Element in Machining with Experimental Authorization

Authors: P. Mottaghizadeh, M. Bagheri

Abstract:

In the present paper, the three-dimensional temperature field of tool is determined during the machining and compared with experimental work on C45 workpiece using carbide cutting tool inserts. During the metal cutting operations, high temperature is generated in the tool cutting edge which influence on the rate of tool wear. Temperature is most important characteristic of machining processes; since many parameters such as cutting speed, surface quality and cutting forces depend on the temperature and high temperatures can cause high mechanical stresses which lead to early tool wear and reduce tool life. Therefore, considerable attention is paid to determine tool temperatures. The experiments are carried out for dry and orthogonal machining condition. The results show that the increase of tool temperature depends on depth of cut and especially cutting speed in high range of cutting conditions.

Keywords: Finite element method, Machining, Temperature measurement, Thermal fields

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
4822 Theory and Reality on Working Life of People with Disability: The Case in Poland

Authors: Dorota Kobus-Ostrowska

Abstract:

Work for everyone, especially for person with disability is a condition in independence; it secures basic needs and develops manual and intellectual capabilities. The work is a source of income, and it builds and strengthens of self-esteem and competence. The purpose of this article is to identify work as an important factor in everyone’s life, despite Polish disabled persons rarely having the chance to undertake a job. In order to achieve this purpose, two methods were used: comparative and qualitative. The theoretical part of this article is based on studies of a wide range of Polish and foreign literature devoted to the issue of the occupational development of people with disabilities. The article was also enriched with the institutional and legal analysis types of support for people with disabilities in Poland. Currently, a Polish person with disability who wants to enter or return to the labor market is under a special protection. Those entities employing workers with disabilities may obtain a subsidy for the salary of a person with disabilities. Unfortunately, people with disability in Poland rarely participate in the workforce. The factors that contribute to this include the difficulty in obtaining work, the uncertainty of keeping it, and the low salary offered. Despite that domestic and foreign literature highlight the important role of disabled people as a workforce, very few people with disability in Poland are economically active.

Keywords: Disabled person, work, employer, rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791
4821 Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Additive manufacturing gains the popularity in recent times, due to its capability to create prototype as well functional as end use product directly from CAD data without any specific requirement of tooling. Fused deposition modeling (FDM) is one of the widely used additive manufacturing techniques that are used to create functional end use part of polymer that is comparable with the injection-molded parts. FDM printed part has an application in various fields such as automobile, aerospace, medical, electronic, etc. However, application of FDM part is greatly affected by poor mechanical properties. Proper selection of the process parameter could enhance the mechanical performance of the printed part. In the present study, experimental investigation has been carried out to study the behavior of the mechanical performance of the printed part with respect to process variables. Three process variables viz. raster angle, raster width and layer height have been varied to understand its effect on tensile strength. Further, effect of process variables on fractured surface has been also investigated.

Keywords: 3D printing, fused deposition modeling, layer height, raster angle, raster width, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
4820 Analytical and Statistical Study of the Parameters of Expansive Soil

Authors: A. Medjnoun, R. Bahar

Abstract:

The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.

Keywords: Analysis, estimated model, parameter identification, Swelling of clay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
4819 Sandwich Structure Composites: Effect of Kenaf on Mechanical Properties

Authors: M. N. Othman, M. Bukhari, Z. Halim, S. A. Mohammad, K. Khalid

Abstract:

Sandwich structure composites produced by epoxy core and aluminium skin were developed as potential building materials. Interface bonding between core and skin was controlled by varying kenaf content. Five different weight percentage of kenaf loading ranging from 10 wt% to 50 wt% were employed in the core manufacturing in order to study the mechanical properties of the sandwich composite. Properties of skin aluminium with epoxy were found to be affected by drying time of the adhesive. Mechanical behavior of manufactured sandwich composites in relation with properties of constituent materials was studied. It was found that 30 wt% of kenaf loading contributed to increase the flexural strength and flexural modulus up to 102 MPa and 32 GPa, respectively. Analysis were done on the flatwise and edgewise compression test. For flatwise test, it was found that 30 wt% of fiber loading could withstand maximum force until 250 kN, with compressive strength results at 96.94 MPa. However, at edgewise compression test, the sandwich composite with same fiber loading only can withstand 31 kN of the maximum load with 62 MPa of compressive strength results.

Keywords: Aluminium, kenaf fiber epoxy, sandwich structure composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
4818 Thermal and Mechanical Properties of Basalt Fibre Reinforced Concrete

Authors: Tumadhir M., Borhan

Abstract:

In this study, the thermal and mechanical properties of basalt fibre reinforced concrete were investigated. The volume fractions of basalt fibre of (0.1, 0.2, 0.3, and 0.5% by total mix volume) were used. Properties such as heat transfer, compressive and splitting tensile strengths were examined. Results indicated that the strength increases with increase the fibre content till 0.3% then there is a slight reduction when 0.5% fibre used. Lower amount of heat conducted through the thickness of concrete specimens than the conventional concrete was also recorded.

Keywords: Chopped basalt fibre, Compressive strength, Splitting tensile strength, Heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5889
4817 Thermomechanical and Metallurgical Analysis of SMA and GTA Welded Low Carbon Steel Butt Joints

Authors: J. Dutta, P. Pranith Kumar Reddy

Abstract:

This research paper portrays a comparative analysis of thermomechanical behaviour of Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) of low carbon steel of AISI 1020 grade butt joints. The thermal history has been obtained by experimental work. We have focused on temperature dependent cooling rate as depicted by Adam’s two-dimensional model. The effect of moving point heat source of SMAW and GTAW on mechanical properties has been judged by optical and scanning electron micrographs of different regions in weld joints. The microhardness study has been carried to visualize the joint strength due to formation of different phases.

Keywords: Shielded metal arc welding, gas tungsten arc welding, low carbon steel, microhardness study, thermal history, microscopic morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
4816 Relationship between Functional Gastrointestinal Disorders and Risk Factors: A Biomechanical Analysis

Authors: Dae Gon Woo, Han Sung Kim, Dohyung Lim, Dong Jin Seo, In Deok Kong, Chang Yong Ko

Abstract:

Functional gastrointestinal disorders (FGID) affect millions of people spread all age regardless of race and sex. Emotional stress and obesity have been associated with increased reporting of gastrointestinal (GI) symptoms, but the relationship between FGID and risk factors (emotional stress or obesity) is unclear. Our aim was to assess the changes of the mechanical characteristics on the gastrointestinal tracts of the mentally fatigued obese and normal rat models. Finally, using the physical characteristics with micro-indentation test, we made a close investigation into the relation between FGID and risk factors quantitatively.

Keywords: Functional gastrointestinal disorders, Risk Factors, Mechanical Characteristics, Gastrointestinal Tract.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
4815 Mechanical Modeling Issues in Optimization of Dynamic Behavior of RF MEMS Switches

Authors: Suhas K, Sripadaraja K

Abstract:

This paper details few mechanical modeling and design issues of RF MEMS switches. We concentrate on an electrostatically actuated broad side series switch; surface micromachined with a crab leg membrane. The same results are extended to any complex structure. With available experimental data and fabrication results, we present the variation in dynamic performance and compliance of the switch with reference to few design issues, which we find are critical in deciding the dynamic behavior of the switch, without compromise on the RF characteristics. The optimization of pull in voltage, transient time and resonant frequency with regard to these critical design parameters are also presented.

Keywords: Microelectromechanical Systems (MEMS), RadioFrequency MEMS, Modeling, Actuators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
4814 Thermo-mechanical Deformation Behavior of Functionally Graded Rectangular Plates Subjected to Various Boundary Conditions and Loadings

Authors: Mohammad Talha, B. N. Singh

Abstract:

This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in the thickness direction according to a powerlaw distribution in terms of the volume fractions of the constituents. The temperature field is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. The fundamental equations for the FGM plates are obtained using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite element with thirteen degrees of freedom per node have been employed to accomplish the results. Convergence and comparison studies have been performed to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index and temperature rise with different loading and boundary conditions. Numerical results for the FGM plates are provided in dimensionless tabular and graphical forms. The results proclaim that the temperature field and the gradient in the material properties have significant role on the thermo-mechanical deformation behavior of the FGM plates.

Keywords: Functionally graded material, higher order shear deformation theory, finite element method, independent field variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
4813 Variability of Soil Strength Parameters and its Effect on the Slope Stability of the Želazny Most Tailing Dam

Authors: Stella A. Arnaouti, Demos C. Angelides, Theodoros N. Chatzigogos, Witold M. Pytel

Abstract:

The Želazny Most tailing pond is one of the largest facilities worldwide for waste disposal from the copper mines located in South-West Poland. A potential failure of the dam would allow more than 10 million cubic meters of contaminated slurry to flow to the valley, causing immense environmental problems to the surrounding area. Thus, the determination of the strength properties of the dam's soils and their variability is of utmost importance. An extensive site investigation consisting of more than 480 cone penetration tests (CPTs) with or without pore water pressure measurements were conducted within a period of 13 years to study the mechanical properties of the tailings body. The present work investigates the point variability of the soil strength parameters (effective friction angle

Keywords: Soil strength variability, friction angle spatial variability, Želazny Most tailing dam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4151
4812 Smart Power Scheduling to Reduce Peak Demand and Cost of Energy in Smart Grid

Authors: Hemant I. Joshi, Vivek J. Pandya

Abstract:

This paper discusses the simulation and experimental work of small Smart Grid containing ten consumers. Smart Grid is characterized by a two-way flow of real-time information and energy. RTP (Real Time Pricing) based tariff is implemented in this work to reduce peak demand, PAR (peak to average ratio) and cost of energy consumed. In the experimental work described here, working of Smart Plug, HEC (Home Energy Controller), HAN (Home Area Network) and communication link between consumers and utility server are explained. Algorithms for Smart Plug, HEC, and utility server are presented and explained in this work. After receiving the Real Time Price for different time slots of the day, HEC interacts automatically by running an algorithm which is based on Linear Programming Problem (LPP) method to find the optimal energy consumption schedule. Algorithm made for utility server can handle more than one off-peak time period during the day. Simulation and experimental work are carried out for different cases. At the end of this work, comparison between simulation results and experimental results are presented to show the effectiveness of the minimization method adopted.

Keywords: Smart Grid, Real Time Pricing, Peak to Average Ratio, Home Area Network, Home Energy Controller, Smart Plug, Utility Server, Linear Programming Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
4811 Job Stressors and Coping Mechanisms among Emergency Department Nurses in the Armed Force Hospitals of Taiwan

Authors: Wei-Wen Liu, Feng-Chuan Pan, Pei-Chi Wen, Sen-Ji Chen, Su-Hui Lin

Abstract:

Nurses in an Armed Force Hospital (AFH) expose to stronger stress than those in a civil hospital, especially in an emergency department (ED). Ironically, stresses of these nurses received few if any attention in academic research in the past. This study collects 227 samples from the emergency departments of four armed force hospitals in central and southern Taiwan. The research indicates that the top five stressors are a massive casualty event, delayed physician support, overloads of routine work, overloads of assignments, and annoying paper work. Excessive work loading was found to be the primary source of stress. Nurses who were perceived to have greater stress levels were more inclined to deploy emotion-oriented approaches and more likely to seek job rotations. Professional stressors and problem-oriented approaches were positively correlated. Unlike other local studies, this study concludes that the excessive work-loading is more stressful in an AFH.

Keywords: Emergency nurse, Job stressor, Coping behavior, Armed force hospital.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2924
4810 Acceptance and Commitment Therapy for Work Stress: Variation in Perceived Group Process and Outcomes

Authors: William H. O'Brien, Erin Bannon, M.A., Heather McCarren, Eileen Delaney

Abstract:

Employees commonly encounter unpredictable and unavoidable work related stressors. Exposure to such stressors can evoke negative appraisals and associated adverse mental, physical, and behavioral responses. Because Acceptance and Commitment Therapy (ACT) emphasizes acceptance of unavoidable stressors and diffusion from negative appraisals, it may be particularly beneficial for work stress. Forty-five workers were randomly assigned to an ACT intervention for work stress (n = 21) or a waitlist control group (n = 24). The intervention consisted of two 3-hour sessions spaced one week apart. An examination of group process and outcomes was conducted using the Revised Sessions Rating Scale. Results indicated that the ACT participants reported that they perceived the intervention to be supportive, task focused, and without adverse therapist behaviors (e.g., feelings of being criticized or discounted). Additionally, the second session (values clarification and commitment to action) was perceived to be more supportive and task focused than the first session (mindfulness, defusion). Process ratings were correlated with outcomes. Results indicated that perceptions of therapy supportiveness and task focus were associated with reduced psychological distress and improved perceived physical health.

Keywords: Work stress, Acceptance and Commitment Therapy, therapy process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
4809 Large-Scale Production of High-Performance Fiber-Metal-Laminates by Prepreg-Press-Technology

Authors: Christian Lauter, Corin Reuter, Shuang Wu, Thomas Troester

Abstract:

Lightweight construction became more and more important over the last decades in several applications, e.g. in the automotive or aircraft sector. This is the result of economic and ecological constraints on the one hand and increasing safety and comfort requirements on the other hand. In the field of lightweight design, different approaches are used due to specific requirements towards the technical systems. The use of endless carbon fiber reinforced plastics (CFRP) offers the largest weight saving potential of sometimes more than 50% compared to conventional metal-constructions. However, there are very limited industrial applications because of the cost-intensive manufacturing of the fibers and production technologies. Other disadvantages of pure CFRP-structures affect the quality control or the damage resistance. One approach to meet these challenges is hybrid materials. This means CFRP and sheet metal are combined on a material level. Therefore, new opportunities for innovative process routes are realizable. Hybrid lightweight design results in lower costs due to an optimized material utilization and the possibility to integrate the structures in already existing production processes of automobile manufacturers. In recent and current research, the advantages of two-layered hybrid materials have been pointed out, i.e. the possibility to realize structures with tailored mechanical properties or to divide the curing cycle of the epoxy resin into two steps. Current research work at the Chair for Automotive Lightweight Design (LiA) at the Paderborn University focusses on production processes for fiber-metal-laminates. The aim of this work is the development and qualification of a large-scale production process for high-performance fiber-metal-laminates (FML) for industrial applications in the automotive or aircraft sector. Therefore, the prepreg-press-technology is used, in which pre-impregnated carbon fibers and sheet metals are formed and cured in a closed, heated mold. The investigations focus e.g. on the realization of short process chains and cycle times, on the reduction of time-consuming manual process steps, and the reduction of material costs. This paper gives an overview over the considerable steps of the production process in the beginning. Afterwards experimental results are discussed. This part concentrates on the influence of different process parameters on the mechanical properties, the laminate quality and the identification of process limits. Concluding the advantages of this technology compared to conventional FML-production-processes and other lightweight design approaches are carried out.

Keywords: Composite material, Fiber metal laminate, Lightweight construction, Prepreg press technology, Large-series production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1861
4808 An Antibacterial Dental Restorative Containing 3,4-Dichlorocrotonolactone: Synthesis, Formulation and Evaluation

Authors: Dong Xie, Leah Howard, Yiming Weng

Abstract:

The objective of this study was to synthesize and characterize 5-acryloyloxy-3,4-dichlorocrotonolactone (a furanone derivative), use this derivative to modify a dental restorative, and study the effect of the derivative on the antibacterial activity and compressive strength of the formed restorative. In this study, a furanone derivative was synthesized, characterized, and used to formulate a dental restorative. Compressive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the formed restorative. The fabricated restorative specimens were photocured and conditioned in distilled water at 37oC for 24 h, followed by direct testing for CS or/and incubating with S. mutans for 48 h for antibacterial testing. The results show that the modified dental restorative showed a significant antibacterial activity without substantially decreasing the mechanical strengths. With addition of the antibacterial derivative up to 30%, the restorative kept its original CS nearly unchanged but showed a significant antibacterial activity with 68% reduction in the S. mutans viability. Furthermore, the antibacterial function of the modified restorative was not affected by human saliva. The aging study also indicates that the modified restorative may have a long-lasting antibacterial function. It is concluded that this experimental antibacterial restorative may potentially be developed into a clinically attractive dental filling restorative due to its high mechanical strength and antibacterial function.

Keywords: Antibacterial, dental filling restorative, compressive strength, S. mutans viability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922