Search results for: Low temperature heat engine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3414

Search results for: Low temperature heat engine

3024 Investigation of Heat Loss in Ethanol-Water Distillation Column with Direct Vapour Recompression Heat Pump

Authors: Christopher C. Enweremadu, Hilary L. Rutto

Abstract:

Vapour recompression system has been used to enhance reduction in energy consumption and improvement in energy effectiveness of distillation columns. However, the effects of certain parameters have not been taken into consideration. One of such parameters is the column heat loss which has either been assumed to be a certain percent of reboiler heat transfer or negligible. The purpose of this study was to evaluate the heat loss from an ethanol-water vapour recompression distillation column with pressure increase across the compressor (VRCAS) and compare the results obtained and its effect on some parameters in similar system (VRCCS) where the column heat loss has been assumed or neglected. Results show that the heat loss evaluated was higher when compared with that obtained for the column VRCCS. The results also showed that increase in heat loss could have significant effect on the total energy consumption, reboiler heat transfer, the number of trays and energy effectiveness of the column.

Keywords: Compressor, distillation column, heat loss, vapourrecompression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4942
3023 Influence of Orientation in Complex Building Architecture in Various Climatic Regions in Winter

Authors: M. Alwetaishi, Giulia Sonetti

Abstract:

It is architecturally accepted that building form and design is considered as one of the most important aspects in affecting indoor temperature. The total area of building plan might be identical, but the design will have a major influence on the total area of external walls. This will have a clear impact on the amount of heat exchange with outdoor. Moreover, it will affect the position and area of glazing system. This has not received enough consideration in research by the specialists, since most of the publications are highlighting the impact of building envelope in terms of physical heat transfer in buildings. This research will investigate the impact of orientation of various building forms in various climatic regions. It will be concluded that orientation and glazing to wall ratio were recognized to be the most effective variables despite the shape of the building. However, linear ad radial forms were found more appropriate shapes almost across the continent.

Keywords: Architectural building design, building form, indoor air temperature, building design in different climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1100
3022 Simulation of Fluid Flow and Heat Transfer in Inclined Cavity using Lattice Boltzmann Method

Authors: Arash Karimipour, A. Hossein Nezhad, E. Shirani, A. Safaei

Abstract:

In this paper, Lattice Boltzmann Method (LBM) is used to study laminar flow with mixed convection heat transfer inside a two-dimensional inclined lid-driven rectangular cavity with aspect ratio AR = 3. Bottom wall of the cavity is maintained at lower temperature than the top lid, and its vertical walls are assumed insulated. Top lid motion results in fluid motion inside the cavity. Inclination of the cavity causes horizontal and vertical components of velocity to be affected by buoyancy force. To include this effect, calculation procedure of macroscopic properties by LBM is changed and collision term of Boltzmann equation is modified. A computer program is developed to simulate this problem using BGK model of lattice Boltzmann method. The effects of the variations of Richardson number and inclination angle on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles, stream function contours and isotherms. It is concluded that LBM has good potential to simulate mixed convection heat transfer problems.

Keywords: gravity, inclined lid driven cavity, lattice Boltzmannmethod, mixed convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
3021 Simulation Study of Radial Heat and Mass Transfer Inside a Fixed Bed Catalytic Reactor

Authors: K. Vakhshouri, M.M. Y. Motamed Hashemi

Abstract:

A rigorous two-dimensional model is developed for simulating the operation of a less-investigated type steam reformer having a considerably lower operating Reynolds number, higher tube diameter, and non-availability of extra steam in the feed compared with conventional steam reformers. Simulation results show that reasonable predictions can only be achieved when certain correlations for wall to fluid heat transfer equations are applied. Due to severe operating conditions, in all cases, strong radial temperature gradients inside the reformer tubes have been found. Furthermore, the results show how a certain catalyst loading profile will affect the operation of the reformer.

Keywords: Steam reforming, direct reduction, heat transfer, two-dimensional model, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3602
3020 Aeroelasticity Analysis of Rotor Blades in the First Two Stages of Axial Compressor in the Case of a Bird Strike

Authors: R. Rzadkowski, V. Gnesin, M. Drewczyński, R. Szczepanik

Abstract:

A bird strike can cause damage to stationary and rotating aircraft engine parts, especially the engine fan. This paper presents a bird strike simulated by blocking four stator blade passages. It includes the numerical results of the unsteady lowfrequency aerodynamic forces and the aeroelastic behaviour caused by a non-symmetric upstream flow affecting the first two rotor blade stages in the axial-compressor of a jet engine. The obtained results show that disturbances in the engine inlet strongly influence the level of unsteady forces acting on the rotor blades. With a partially blocked inlet the whole spectrum of low-frequency harmonics is observed. Such harmonics can lead to rotor blade damage. The lowfrequency amplitudes are higher in the first stage rotor blades than in the second stage. In both rotor blades stages flutter appeared as a result of bird strike.

Keywords: Flutter, unsteady forces, rotor blades.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
3019 Thermodynamic Analysis of R507A-R23 Cascade Refrigeration System

Authors: A. D. Parekh, P. R. Tailor

Abstract:

The present work deals with thermodynamic analysis of cascade refrigeration system using ozone friendly refrigerants pair R507A and R23. R507A is azeotropic mixture composed of HFC refrigerants R125/R143a (50%/50% wt.). R23 is a single component HFC refrigerant used as replacement to CFC refrigerant R13 in low temperature applications. These refrigerants have zero ozone depletion potential and are non-flammable and as R507A an azeotropic mixture there is no problem of temperature glide. This study thermodynamically analyzed R507A-R23 cascade refrigeration system to optimize the design and operating parameters of the system. The design and operating parameters include: Condensing, evaporating, subcooling and superheating temperatures in the high temperature circuit, temperature difference in the cascade heat exchanger, Condensing, evaporating, subcooling and superheating temperatures in the low temperature circuit.

Keywords: COP, R507A, R23, cascade refrigeration system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2902
3018 Optimizing of Gas Consumption in Gas-burner Space Heater

Authors: Saead Negahdari, Davood Jalali Vahid

Abstract:

Nowadays, the importance of energy saving is clearance to everyone. By attention to increasing price of fuels and also the problems of environment pollutions, there are the most efforts for using fuels littler and more optimum in everywhere. This essay studies optimizing of gas consumption in gas-burner space heaters. In oven of each gas-burner space heaters there is two snags to prevent the hot air (the result of combustion of natural gas) to go out of oven of the gas-burner space heaters directly without delivering its heat to the space of favorite environment like a room. These snags cause a excess circulating that helps hot air deliver its heat to the space of favorite environment. It means the exhaust air temperature will be decreased then when there are no snags. This is the aim of this essay to use maximum potential energy of the natural gas to make heat. In this study, by the help of a finite volume software (FLUENT) consumption of the gas-burner space heaters is simulated and optimized. At the end of this writing, by comparing the results of software and experimental results, it will be proved the authenticity of this method.

Keywords: FLUENT, Heat transfer, Oven of Gas-burner spaceheaters, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
3017 Temperature Evolution, Microstructure and Mechanical Properties of Heat-Treatable Aluminum Alloy Welded by Friction Stir Welding: Comparison with Tungsten Inert Gas

Authors: Saliha Gachi, Mouloud Aissani, Fouad Boubenider

Abstract:

Friction Stir Welding (FSW) is a solid-state welding technique that can join material without melting the plates to be welded. In this work, we are interested to demonstrate the potentiality of FSW for joining the heat-treatable aluminum alloy 2024-T3 which is reputed as difficult to be welded by fusion techniques. Thereafter, the FSW joint is compared with another one obtained from a conventional fusion process Tungsten Inert Gas (TIG). FSW welds are made up using an FSW tool mounted on a milling machine. Single pass welding was applied to fabricated TIG joint. The comparison between the two processes has been made on the temperature evolution, mechanical and microstructure behavior. The microstructural examination revealed that FSW weld is composed of four zones: Base metal (BM), Heat affected zone (HAZ), Thermo-mechanical affected zone (THAZ) and the nugget zone (NZ). The NZ exhibits a recrystallized equiaxed refined grains that induce better mechanical properties and good ductility compared to TIG joint where the grains have a larger size in the welded region compared with the BM due to the elevated heat input. The microhardness results show that, in FSW weld, the THAZ contains the lowest microhardness values and increase in the NZ; however, in TIG process, the lowest values are localized on the NZ.

Keywords: Friction stir welding, tungsten inert gaz, aluminum, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 738
3016 Influence of Artificial Roughness on Heat Transfer in the Rotating Flow

Authors: T. Magrakvelidze, N. Bantsadze, N. Lekveishvili, Kh. Lomidze

Abstract:

The results of an experimental study of the process of convective and boiling heat transfer in the vessel with stirrer for smooth and rough ring-shaped pipes are presented. It is established that creation of two-dimensional artificial roughness on the heated surface causes the essential (~100%) intensification of convective heat transfer. In case of boiling the influence of roughness appears on the initial stage of boiling and in case of fully developed nucleate boiling there was no intensification of heat transfer. The similitude equation for calculating convective heat transfer coefficient, which generalizes well experimental data both for the smooth and the rough surfaces is proposed.

Keywords: boiling, heat transfer, roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
3015 Numerical Investigation of Natural Convection of Pine, Olive, and Orange Leaves

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Behnam Amiri

Abstract:

Heat transfer of leaves is a crucial factor in optimal operation of metabolic functions in plants. In order to quantify this phenomenon in different leaves and investigate the influence of leaf shape on heat transfer, natural convection for pine, orange and olive leaves was simulated as representatives of different groups of leaf shapes. CFD techniques were used in this simulation with the purpose to calculate heat transfer of leaves in similar environmental conditions. The problem was simulated for steady state and threedimensional conditions. From obtained results, it was concluded that heat fluxes of all three different leaves are almost identical, however, total rate of heat transfer have highest and lowest values for orange leaves, and pine leaves, respectively.

Keywords: Computational fluid dynamic, heat flux, heat transfer, natural convection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1628
3014 Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production

Authors: Liubov Magerramova, Eugene Kratt, Pavel Presniakov

Abstract:

A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and costly design and manufacture of casting molds. Moreover, traditional manufacturing methods limit the design possibilities of complex critical parts of engine, so capabilities of Powder Metallurgy Techniques (PMT) were analyzed to manufacture the turbine wheel with air-cooled blades. PMT dramatically reduce time needed for such production and allow creating new complex design solutions aimed at improving the technical characteristics of the engine: improving fuel efficiency and environmental performance, increasing reliability, and reducing weight. To accelerate and simplify the blades manufacturing process, several options based on additive technologies were used. The options were implemented in the form of various casting equipment for the manufacturing of blades. Methods of powder metallurgy were applied for connecting the blades with the disc. The optimal production scheme and a set of technologies for the manufacturing of blades and turbine wheel and other parts of the engine can be selected on the basis of the options considered.

Keywords: Additive technologies, gas turbine engine, powder technology, turbine wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1879
3013 Hall Effect on MHD Mixed Convection Flow of Viscous-Elastic Incompressible Fluid Past of an Infinite Porous Medium

Authors: T. K. Das, N. Senapatil, R. K. Dhal

Abstract:

An unsteady mixed free convection MHD flow of elastic-viscous incompressible fluid past an infinite vertical porous flat plate is investigated when the presence of heat Source/sink, temperature and concentration are assumed to be oscillating with time and hall effect. The governing equations are solved by complex variable technique. The expressions for the velocity field, temperature field and species concentration are demonstrated in graphs. The effects of the Prandtl number, the Grashof number, modified Grashof number, the Schimidt number, the Hall parameter, Elastic parameter & Magnetic parameter are discussed.

Keywords: MHD, Mixed convective, Elastic-viscous incompressible, rotational, heat transfer, mass transfer, suction and injection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
3012 Integral Methods in the Determination of Temperature Fields of Cooled Blades of Gas Turbines

Authors: C. Ardil

Abstract:

A mathematical model and an effective numerical method for calculating the temperature field of the profile part of convection cooled blades have been developed. The theoretical substantiation of the method is proved by corresponding theorems. To this end, convergent quadrature processes were developed and error estimates were obtained in terms of the Zygmund continuity moduli.The boundary conditions for heat exchange are determined from the solution of the corresponding integral equations and empirical relations.The reliability of the developed methods is confirmed by the calculation-experimental studies of the thermohydraulic characteristics of the nozzle apparatus of the first stage of a gas turbine.

Keywords: Integral methods, determination of temperature fields, cooled blades, gas turbines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 712
3011 Comparative Parametric and Emission Characteristics of Single Cylinder Spark Ignition Engine Using Gasoline, Ethanol, and H₂O as Micro Emulsion Fuels

Authors: Ufaith Qadri, M Marouf Wani

Abstract:

In this paper, the performance and emission characteristics of a Single Cylinder Spark Ignition engine have been investigated. The research is based on micro emulsion application as fuel in a gasoline engine. We have analyzed many micro emulsion compositions in various proportions, for predicting the performance of the Spark Ignition engine. This new technology of fuel modifications is emerging very rapidly as lot of research is going on in the field of micro emulsion fuels in Compression Ignition engines, but the micro emulsion fuel used in a Gasoline engine is very rare. The use of micro emulsion as fuel in a Spark Ignition engine is virtually unexplored. So, our main goal is to see the performance and emission characteristics of micro emulsions as fuel, in Spark Ignition engines, and finding which composition is more efficient. In this research, we have used various micro emulsion fuels whose composition varies for all the three blends, and their performance and emission characteristic were predicted in AVL Boost software. Conventional Gasoline fuel 90%, 80% and 85% were blended with co-surfactant Ethanol in different compositions, and water was used as an additive for making it crystal clear transparent micro emulsion fuel, which is thermodynamically stable. By comparing the performances of engines, the power has shown similarity for micro emulsion fuel and conventional Gasoline fuel. On the other hand, Torque and BMEP shows increase for all the micro emulsion fuels. Micro emulsion fuel shows higher thermal efficiency and lower Specific Fuel Consumption for all the compositions as compared to the Gasoline fuel. Carbon monoxide and Hydro carbon emissions were also measured. The result shows that emissions decrease for all the composition of micro emulsion fuels, and proved to be the most efficient fuel both in terms of performance and emission characteristics.

Keywords: AVL Boost, emissions, micro emulsion, performance, SI engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 812
3010 Effect of Flowrate and Coolant Temperature on the Efficiency of Progressive Freeze Concentration on Simulated Wastewater

Authors: M. Jusoh, R. Mohd Yunus, M. A. Abu Hassan

Abstract:

Freeze concentration freezes or crystallises the water molecules out as ice crystals and leaves behind a highly concentrated solution. In conventional suspension freeze concentration where ice crystals formed as a suspension in the mother liquor, separation of ice is difficult. The size of the ice crystals is still very limited which will require usage of scraped surface heat exchangers, which is very expensive and accounted for approximately 30% of the capital cost. This research is conducted using a newer method of freeze concentration, which is progressive freeze concentration. Ice crystals were formed as a layer on the designed heat exchanger surface. In this particular research, a helical structured copper crystallisation chamber was designed and fabricated. The effect of two operating conditions on the performance of the newly designed crystallisation chamber was investigated, which are circulation flowrate and coolant temperature. The performance of the design was evaluated by the effective partition constant, K, calculated from the volume and concentration of the solid and liquid phase. The system was also monitored by a data acquisition tool in order to see the temperature profile throughout the process. On completing the experimental work, it was found that higher flowrate resulted in a lower K, which translated into high efficiency. The efficiency is the highest at 1000 ml/min. It was also found that the process gives the highest efficiency at a coolant temperature of -6 °C.

Keywords: Freeze concentration, progressive freeze concentration, freeze wastewater treatment, ice crystals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
3009 Biodiesel from Coconut Oil: A Renewable Alternative Fuel for Diesel Engine

Authors: Md A. Hossain, Shabab M. Chowdhury, Yamin Rekhu, Khandakar S. Faraz, Monzur Ul Islam

Abstract:

With the growth of modern civilization and industrialization in worldwide, the demand for energy is increasing day by day. Majority of the world-s energy needs are met through fossil fuels and natural gas. As a result the amount of fossil fuels is on diminishing from year to year. Since the fossil fuel is nonrenewable, so fuel price is gouging as a consequence of spiraling demand and diminishing supply. At present the power generation of our country is mainly depends on imported fossil fuels. To reduce the dependency on imported fuel, the use of renewable sources has become more popular. In Bangladesh coconut is widely growing tree. Especially in the southern part of the country a large area will be found where coconut tree is considered as natural asset. So, our endeavor was to use the coconut oil as a renewable and alternative fuel. This article shows the prospect of coconut oil as a renewable and alternative fuel of diesel fuel. Since diesel engine has a versatile uses including small electricity generation, an experimental set up is then made to study the performance of a small diesel engine using different blends of bio diesel converted from coconut oil. It is found that bio diesel has slightly different properties than diesel. With biodiesel the engine is capable of running without difficulty. Different blends of bio diesel (i.e. B80, B60, and B 50 etc.) have been used to avoid complicated modification of the engine or the fuel supply system. Finally, a comparison of engine performance for different blends of biodiesel has been carried out to determine the optimum blend for different operating conditions.

Keywords: Biodiesel, Bio-fuel, Renewable Energy, Transesterification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9719
3008 Numerical Study of Natural Convection Effects in Latent Heat Storage using Aluminum Fins and Spiral Fillers

Authors: Lippong Tan, Yuenting Kwok, Ahbijit Date, Aliakbar Akbarzadeh

Abstract:

A numerical investigation has carried out to understand the melting characteristics of phase change material (PCM) in a fin type latent heat storage with the addition of embedded aluminum spiral fillers. It is known that melting performance of PCM can be significantly improved by increasing the number of embedded metallic fins in the latent heat storage system but to certain values where only lead to small improvement in heat transfer rate. Hence, adding aluminum spiral fillers within the fin gap can be an option to improve heat transfer internally. This paper presents extensive computational visualizations on the PCM melting patterns of the proposed fin-spiral fillers configuration. The aim of this investigation is to understand the PCM-s melting behaviors by observing the natural convection currents movement and melting fronts formation. Fluent 6.3 simulation software was utilized in producing twodimensional visualizations of melting fractions, temperature distributions and flow fields to illustrate the melting process internally. The results show that adding aluminum spiral fillers in Fin type latent heat storage can promoted small but more active natural convection currents and improve melting of PCM.

Keywords: Phase change material, thermal enhancement, aluminum spiral fillers, fins

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3374
3007 Numerical Modeling of Temperature Fields in Aviation Gas Turbine Elements

Authors: A. M. Pashaev, R. A. Sadihov, A. S. Samedov, C. Ardil

Abstract:

A mathematical model and a numerical method for computing the temperature field of the profile part of convectionally cooled blades are developed. The theoretical substantiation of the method is proved by corresponding theorems. To this end, convergent quadrature processes were developed and error estimates were obtained in terms of the Zygmund continuity moduli. The boundary conditions for heat exchange are determined from the solution of the corresponding integral equations and empirical relations. The reliability of the developed methods is confirmed by calculation and experimental studies of the thermohydraulic characteristics of the nozzle apparatus of the first stage of the gas turbine.

Keywords: Aviation gas turbine, temperature field, cooled blades, numerical modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719
3006 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution

Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper

Abstract:

Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.

Keywords: Laser welding, metals to polymers joining, process monitoring, temperature profile, thermography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
3005 The High Temperature Damage of DV – 2 Turbine Blade Made from Ni – Base Superalloy

Authors: Juraj Belan, Lenka Hurtalová, Eva Tillová, Alan Vaško, Milan Uhríčik

Abstract:

High pressure turbine (HPT) blades of DV – 2 jet engines are made from Ni – based superalloy. This alloy was originally manufactured in the Soviet Union and referred as ŽS6K. For improving alloy’s high temperature resistance are blades coated with Al – Si diffusion layer. A regular operation temperature of HPT blades vary from 705°C to 750°C depending on jet engine regime. An overcrossing working temperature range causes degradation of the protective coating as well as base material which microstructure is formed by the gamma matrix and strengthening phase gamma prime (forming small particles in the microstructure). Diffusion processes inside the material during exposition of the material to high temperatures causes mainly coarsening of the gamma prime particles, thus decreasing its strengthening effect. Degradation of the Al – Si coating caused its thickness growth. All the microstructure changes and coating layer thickness growth results in decreasing of the turbine blade operation lifetime.

Keywords: Alitize coating layer, gamma prime phase, high temperature degradation, Ni – base superalloy ŽS6K, turbine blade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148
3004 Solid Particle Erosion of Heat Treated TNB-V4 at Ambient and Elevated Temperatures

Authors: Muhammad Naveed, Richard Stechow, Sebastian Bolz, Katharina Hobusch, Sabine Weiß

Abstract:

Solid particle erosion has been identified as a critical wear phenomenon which takes place during operation of aeroengines in dusty environment. The present work discusses the erosion behavior of Ti-44.5Al-6.25Nb-0.8Mo-0.1B alloy (TNB-V4) which finds its application in low pressure gas turbines and can be used for high pressure compressors too. Prior to the erosion tests, the alloy was heat treated to improve the mechanical properties. Afterwards, specimens were eroded at impact angles of 30° and 90° at room and high temperatures (100 °C-400 °C). Volume loss and erosion behavior are studied through gravimetric analysis, whereas erosion mechanisms are characterized through scanning electron microscopy. The results indicate a clear difference in the erosion mechanism for different impact angles. The influence of the test temperature on the erosion behavior of the alloy is also discussed in the present contribution.

Keywords: Solid particle erosion, gamma TiAl, TNB-V4, high temperature erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
3003 Magnetohydrodynamic Free Convection in a Square Cavity Heated from Below and Cooled from Other Walls

Authors: S. Jani, M. Mahmoodi, M. Amini

Abstract:

Magnetohydrodynamic free convection fluid flow and heat transfer in a square cavity filled with an electric conductive fluid with Prandtl number of 0.7 has been investigated numerically. The horizontal bottom wall of the cavity was kept at Th while the side and the top walls of the cavity were maintained at a constant temperature Tc with Th>Tc. The governing equations written in terms of the primitive variables were solved numerically using the finite volume method while the SIMPLER algorithm was used to couple the velocity and pressure fields. Using the developed code, a parametric study was performed, and the effects of the Rayleigh number and the Hartman number on the fluid flow and heat transfer inside the cavity were investigated. The obtained results showed that temperature distribution and flow pattern inside the cavity depended on both strength of the magnetic field and Rayleigh number. For all cases two counter rotating eddies were formed inside the cavity. The magnetic field decreased the intensity of free convection and flow velocity. Also it was found that for higher Rayleigh numbers a relatively stronger magnetic field was needed to decrease the heat transfer through free convection.

Keywords: Free Convection, Magnetic Field, Square Cavity, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
3002 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries

Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

Abstract:

Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.

Keywords: Biomagnetic fluid, FHD, nonlinear stretching sheet, slip parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788
3001 Using Hybrid System of Ground Heat Exchanger and Evaporative Cooler in Arid Weather Condition

Authors: Vahid Khalajzadeh, Ghassem Heidarinejad

Abstract:

In this paper, the feasibility study of using a hybrid system of ground heat exchangers (GHE) and direct evaporative cooling system in arid weather condition has been performed. The model is applied for Yazd and Kerman, two cities with arid weather condition in Iran. The system composed of three sections: Ground- Coupled-Circuit (GCC), Direct Evaporative Cooler (DEC) and Cooling Coil Unite (CCU). The GCC provides the necessary precooling for DEC. The GCC includes four vertical GHE which are designed in series configuration. Simulation results show that hybridization of GCC and DEC could provide comfort condition whereas DEC alone did not. Based on the results the cooling effectiveness of a hybrid system is more than unity. Thus, this novel hybrid system could decrease the air temperature below the ambient wet-bulb temperature. This environmentally clean and energy efficient system can be considered as an alternative to the mechanical vapor compression systems.

Keywords: Computational Fluid Dynamics (CFD), Cooling CoilUnit (CCU), Direct Evaporative Cooling (DEC), Ground CoupledCircuit (GCC)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
3000 Viscosity of Vegetable Oils and Biodiesel and Energy Generation

Authors: Thiago de O. Macedo, Roberto G. Pereira, Juan M. Pardal, Alexandre S. Soares, Valdir deJ. Lameira

Abstract:

The present work describes an experimental investigation concerning the determination of viscosity behavior with shear rate and temperature of edible oils: canola; sunflower; corn; soybean and the no edible oil: Jatropha curcas. Besides these, it was tested a blend of canola, corn and sunflower oils as well as sunflower and soybean biodiesel. Based on experiments, it was obtained shear stress and viscosity at different shear rates of each sample at 40ºC, as well as viscosity of each sample at various temperatures in the range of 24 to 85ºC. Furthermore, it was compared the curves obtained for the viscosity versus temperature with the curves obtained by modeling the viscosity dependency on temperature using the Vogel equation. Also a test in a stationary engine was performed in order to study the energy generation using blends of soybean oil and soybean biodiesel with diesel.

Keywords: Biofuel, energy generation, vegetable oil, viscosity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9556
2999 Analysis of Drying Kinetics of a Slurry Droplet in the Falling Rate Period of Spray Drying

Authors: Boris Golman, Wittaya Julklang

Abstract:

The heat and mass transfer was investigated during the falling rate period of spray drying of a slurry droplet. The effect of the porosity of crust layer formed from primary particles during liquid evaporation was studied numerically using the developed mathematical model which takes into account the heat and mass transfer in the core and crust regions, the movement of the evaporation interface, and the external heat and mass transfer between the drying air and the droplet surface. It was confirmed that the heat transfer through the crust layer was more intense in the case of the dense droplet than the loose one due to the enhanced thermal conduction resulting in the higher average droplet temperature. The mass transfer was facilitated in the crust layer of loose droplet owing to the large pore space available for diffusion of water vapor from the evaporation interface to the outer droplet surface. The longer drying time is required for the droplet of high porosity to reach the final moisture content than that for the dense one due to the larger amount of water to be evaporated during the falling rate.

Keywords: Spray Drying, Slurry Droplet, Heat and Mass Transfer, Crust Layer Porosity, Mathematical Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3579
2998 Experimental Evaluation of Methane Adsorptionon Granular Activated Carbon (GAC) and Determination of Model Isotherm

Authors: M. Delavar, A.A. Ghoreyshi, M. Jahanshahi, M. Irannejad

Abstract:

This study investigates the capacity of granular activated carbon (GAC) for the storage of methane through the equilibrium adsorption. An experimental apparatus consist of a dual adsorption vessel was set up for the measurement of equilibrium adsorption of methane on GAC using volumetric technique (pressure decay). Experimental isotherms of methane adsorption were determined by the measurement of equilibrium uptake of methane in different pressures (0-50 bar) and temperatures (285.15-328.15°K). The experimental data was fitted to Freundlich and Langmuir equations to determine the model isotherm. The results show that the experimental data is equally well fitted by the both model isotherms. Using the experimental data obtained in different temperatures the isosteric heat of methane adsorption was also calculated by the Clausius-Clapeyron equation from the Sips isotherm model. Results of isosteric heat of adsorption show that decreasing temperature or increasing methane uptake by GAC decrease the isosteric heat of methane adsorption.

Keywords: Methane adsorption, Activated carbon, Modelisotherm, Isosteric heat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2445
2997 Modeling of Gas Turbine Cooled Blades

Authors: A. Pashayev, D. Askerov, R. Sadiqov, A. Samedov, C. Ardil

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasi-stationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Gas turbine, cooled blade, nozzle blade, temperature field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
2996 Application of Adaptive Neuro-Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel ASTM A516 Grade 70

Authors: Omar Al Denali, Abdelaziz Badi

Abstract:

The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of PWHT experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556%, which confirms the high accuracy of the model.

Keywords: Prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, ANFIS, mean absolute percentage error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 344
2995 A CFD Study of Turbulent Convective Heat Transfer Enhancement in Circular Pipeflow

Authors: Perumal Kumar, Rajamohan Ganesan

Abstract:

Addition of milli or micro sized particles to the heat transfer fluid is one of the many techniques employed for improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. Nanoparticles also increase the viscosity of the basefluid resulting in higher pressure drop for the nanofluid compared to the base fluid. So it is imperative that the Reynolds number (Re) and the volume fraction have to be optimum for better thermal hydraulic effectiveness. In this work, the heat transfer enhancement using aluminium oxide nanofluid using low and high volume fraction nanofluids in turbulent pipe flow with constant wall temperature has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach. Nanofluid, up till a volume fraction of 1% is found to be an effective heat transfer enhancement technique. The Nusselt number (Nu) and friction factor predictions for the low volume fractions (i.e. 0.02%, 0.1 and 0.5%) agree very well with the experimental values of Sundar and Sharma (2010). While, predictions for the high volume fraction nanofluids (i.e. 1%, 4% and 6%) are found to have reasonable agreement with both experimental and numerical results available in the literature. So the computationally inexpensive single phase approach can be used for heat transfer and pressure drop prediction of new nanofluids.

Keywords: Heat transfer intensification, nanofluid, CFD, friction factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844