Search results for: Corrugated composite specimens
654 Out-of-Plane Bending Properties of Out-of-Autoclave Thermosetting Prepregs during Forming Processes
Authors: Hassan A. Alshahrani, Mehdi H. Hojjati
Abstract:
In order to predict and model wrinkling which is caused by out of plane deformation due to compressive loading in the plane of the material during composite prepregs forming, it is necessary to quantitatively understand the relative magnitude of the bending stiffness. This study aims to examine the bending properties of out-of-autoclave (OOA) thermosetting prepreg under vertical cantilever test condition. A direct method for characterizing the bending behavior of composite prepregs was developed. The results from direct measurement were compared with results derived from an image-processing procedure that analyses the captured image during the vertical bending test. A numerical simulation was performed using ABAQUS to confirm the bending stiffness value.Keywords: Bending stiffness, out of autoclave prepreg, forming process, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689653 Thermal Fracture Analysis of Fibrous Composites with Variable Fiber Spacing Using Jk-Integral
Authors: Farid Saeidi, Serkan Dag
Abstract:
In this study, fracture analysis of a fibrous composite laminate with variable fiber spacing is carried out using Jk-integral method. The laminate is assumed to be under thermal loading. Jk-integral is formulated by using the constitutive relations of plane orthotropic thermoelasticity. Developed domain independent form of the Jk-integral is then integrated into the general purpose finite element analysis software ANSYS. Numerical results are generated so as to assess the influence of variable fiber spacing on mode I and II stress intensity factors, energy release rate, and T-stress. For verification, some of the results are compared to those obtained using displacement correlation technique (DCT).Keywords: Jk-integral, variable fiber spacing, thermoelasticity, t-stress, finite element method, fibrous composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1011652 Effect of Cow bone and Groundnut Shell Reinforced in Epoxy Resin on the Mechanical Properties and Microstructure of the Composites
Authors: O. I. Rufai, G. I. Lawal, B. O. Bolasodun, S. I. Durowaye, J. O. Etoh
Abstract:
It is an established fact that polymers have several physical limitations such as low stiffness and low resistance to impact on loading. Hence, polymers do not usually have requisite mechanical strength for application in various fields. The reinforcement by high strength fibers provides the polymer substantially enhanced mechanical properties and makes them more suitable for a large number of diverse applications. This research evaluates the effects of particulate Cow bone and Groundnut shell additions on the mechanical properties and microstructure of cow bone and groundnut shell reinforced epoxy composite in order to assess the possibility of using it as a material for engineering applications. Cow bone and groundnut shell particles reinforced with epoxy (CBRPC and GSRPC) was prepared by varying the cow bone and groundnut shell particles from 0-25 wt% with 5 wt% intervals. A Hybrid of the Cow bone and Groundnut shell (HGSCB) reinforce with epoxy was also prepared. The mechanical properties of the developed composites were investigated. Optical microscopy was used to examine the microstructure of the composites. The results revealed that mechanical properties did not increase uniformly with additions in filler but exhibited maximum properties at specific percentages of filler additions. From the Microscopic evaluation, it was discovered that homogeneity decreases with increase in % filler, this could be due to poor interfacial bonding.Keywords: Groundnut shell reinforced polymer composite (GSRPC), Cow bone reinforced polymer composite (CBRPC), Hybrid of ground nutshell and cowbone (HGSCB).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3067651 Optimization of Biodiesel Production from Sunflower Oil Using Central Composite Design
Authors: Pascal Mwenge, Jefrey Pilusa, Tumisang Seodigeng
Abstract:
The current study investigated the effect of catalyst ratio and methanol to oil ratio on biodiesel production by using central composite design. Biodiesel was produced by transesterification using sodium hydroxide as a homogeneous catalyst, a laboratory scale reactor consisting of flat bottom flask mounts with a reflux condenser and a heating plate was used to produce biodiesel. Key parameters, including, time, temperature and mixing rate were kept constant at 60 minutes, 60 oC and 600 RPM, respectively. From the results obtained, it was observed that the biodiesel yield depends on catalyst ratio and methanol to oil ratio. The highest yield of 50.65% was obtained at catalyst ratio of 0.5 wt.% and methanol to oil mole ratio 10.5. The analysis of variances of biodiesel yield showed the R Squared value of 0.8387. A quadratic mathematical model was developed to predict the biodiesel yield in the specified parameters ranges.
Keywords: ANOVA, biodiesel, catalyst, CCD, transesterification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1107650 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method
Authors: Mohammed T. Hayajneh
Abstract:
Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.
Keywords: Composite, fuzzy, tool life, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092649 Polymer Modification of Fine Grained Concretes Used in Textile Reinforced Cementitious Composites
Authors: Esma Gizem Daskiran, Mehmet Mustafa Daskiran, Mustafa Gencoglu
Abstract:
Textile reinforced cementitious composite (TRCC) is a development of a composite material where textile and fine-grained concrete (matrix) materials are used in combination. These matrices offer high performance properties in many aspects. To achieve high performance, polymer modified fine-grained concretes were used as matrix material which have high flexural strength. In this study, ten latex polymers and ten powder polymers were added to fine-grained concrete mixtures. These latex and powder polymers were added to the mixtures at different rates related to binder weight. Mechanical properties such as compressive and flexural strength were studied. Results showed that latex polymer and redispersible polymer modified fine-grained concretes showed different mechanical performance. A wide range of both latex and redispersible powder polymers were studied. As the addition rate increased compressive strength decreased for all mixtures. Flexural strength increased as the addition rate increased but significant enhancement was not observed through all mixtures.
Keywords: Textile reinforced composite, cement, fine grained concrete, latex, redispersible powder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 928648 Post-Cracking Behaviour of High Strength Fiber Concrete Prediction and Validation
Authors: Andrejs Krasnikovs, Olga Kononova, Amjad Khabbaz, Edgar Machanovsky, Artur Machanovsky
Abstract:
Fracture process in mechanically loaded steel fiber reinforced high-strength (SFRHSC) concrete is characterized by fibers bridging the crack providing resistance to its opening. Structural SFRHSC fracture model was created; material fracture process was modeled, based on single fiber pull-out laws, which were determined experimentally (for straight fibers, fibers with end hooks (Dramix), and corrugated fibers (Tabix)) as well as obtained numerically ( using FEM simulations). For this purpose experimental program was realized and pull-out force versus pull-out fiber length was obtained (for fibers embedded into concrete at different depth and under different angle). Model predictions were validated by 15x15x60cm prisms 4 point bending tests. Fracture surfaces analysis was realized for broken prisms with the goal to improve elaborated model assumptions. Optimal SFRHSC structures were recognized.Keywords: crack, fiber concrete, fiber pull-out, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102647 A Review on Natural Fibre Reinforced Polymer Composites
Authors: C. W. Nguong, S. N. B. Lee, D. Sujan
Abstract:
Renewable natural fibres such as oil palm, flax, and pineapple leaf can be utilized to obtain new high performance polymer materials. The reuse of waste natural fibres as reinforcement for polymer is a sustainable option to the environment. However, due to its high hydroxyl content of cellulose, natural fibres are susceptible to absorb water that affects the composite mechanical properties adversely. Research found that Nano materials such as Nano Silica Carbide (n-SiC) and Nano Clay can be added into the polymer composite to overcome this problem by enhancing its mechanical properties in wet condition. The addition of Nano material improves the tensile and wear properties, flexural stressstrain behaviour, fracture toughness, and fracture strength of polymer natural composites in wet and dry conditions.Keywords: Natural fibres, Nano Silica Carbide, Nano Clay, Wet Condition, Polymer Composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8575646 Carbon-Based Electrodes for Parabens Detection
Authors: Aniela Pop, Ianina Birsan, Corina Orha, Rodica Pode, Florica Manea
Abstract:
Carbon nanofiber-epoxy composite electrode has been investigated through voltammetric and amperometric techniques in order to detect parabens from aqueous solutions. The occurrence into environment as emerging pollutants of these preservative compounds has been extensively studied in the last decades, and consequently, a rapid and reliable method for their quantitative quantification is required. In this study, methylparaben (MP) and propylparaben (PP) were chosen as representatives for paraben class. The individual electrochemical detection of each paraben has been successfully performed. Their electrochemical oxidation occurred at the same potential value. Their simultaneous quantification should be assessed electrochemically only as general index of paraben class as a cumulative signal corresponding to both MP and PP from solution. The influence of pH on the electrochemical signal was studied. pH ranged between 1.3 and 9.0 allowed shifting the detection potential value to smaller value, which is very desired for the electroanalysis. Also, the signal is better-defined and higher sensitivity is achieved. Differential-pulsed voltammetry and square-wave voltammetry were exploited under the optimum pH conditions to improve the electroanalytical performance for the paraben detection. Also, the operation conditions were selected, i.e., the step potential, modulation amplitude and the frequency. Chronomaprometry application as the easiest electrochemical detection method led to worse sensitivity, probably due to a possible fouling effect of the electrode surface. The best electroanalytical performance was achieved by pulsed voltammetric technique but the selection of the electrochemical technique is related to the concrete practical application. A good reproducibility of the voltammetric-based method using carbon nanofiber-epoxy composite electrode was determined and no interference effect was found for the cation and anion species that are common in the water matrix. Besides these characteristics, the long life-time of the electrode give to carbon nanofiber-epoxy composite electrode a great potential for practical applications.
Keywords: Carbon nanofiber-epoxy composite electrode, electroanalysis, methylparaben, propylparaben.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117645 Using 3-Glycidoxypropyltrimethoxysilane Functionalized SiO2 Nanoparticles to Improve Flexural Properties of Glass Fibers/Epoxy Grid-Stiffened Composite Panels
Authors: Reza Eslami-Farsani, Hamed Khosravi, Saba Fayazzadeh
Abstract:
Lightweight and efficient structures have the aim to enhance the efficiency of the components in various industries. Toward this end, composites are one of the most widely used materials because of durability, high strength and modulus, and low weight. One type of the advanced composites is grid-stiffened composite (GSC) structures, which have been extensively considered in aerospace, automotive, and aircraft industries. They are one of the top candidates for replacing some of the traditional components, which are used here. Although there are a good number of published surveys on the design aspects and fabrication of GSC structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Matrix modification using nanoparticles is an effective method to enhance the flexural properties of the fibrous composites. In the present study, a silanecoupling agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was introduced onto the silica (SiO2) nanoparticle surface and its effects on the three-point flexural response of isogrid E-glass/epoxy composites were assessed. Based on the Fourier Transform Infrared Spectrometer (FTIR) spectra, it was inferred that the 3-GPTS coupling agent was successfully grafted onto the surface of SiO2 nanoparticles after modification. Flexural test revealed an improvement of 16%, 14%, and 36% in stiffness, maximum load and energy absorption of the isogrid specimen filled with 3 wt.% 3- GPTS/SiO2 compared to the neat one. It would be worth mentioning that in these structures, considerable energy absorption was observed after the primary failure related to the load peak. In addition, 3- GPTMS functionalization had a positive effect on the flexural behavior of the multiscale isogrid composites. In conclusion, this study suggests that the addition of modified silica nanoparticles is a promising method to improve the flexural properties of the gridstiffened fibrous composite structures.Keywords: Isogrid-stiffened composite panels, silica nanoparticles, surface modification, flexural properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3013644 Aerodynamic Performance of a Pitching Bio-Inspired Corrugated Airfoil
Authors: Hadi Zarafshani, Shidvash Vakilipour, Shahin Teimori, Sara Barati
Abstract:
In the present study, the aerodynamic performance of a rigid two-dimensional pitching bio-inspired corrugate airfoil was numerically investigated at Reynolds number of 14000. The Open Field Operations And Manipulations (OpenFOAM) computational fluid dynamic tool is used to solve flow governing equations numerically. The k-ω SST turbulence model with low Reynolds correction (k-ω SST LRC) and the pimpleDyMFOAM solver are utilized to simulate the flow field around pitching bio-airfoil. The lift and drag coefficients of the airfoil are calculated at reduced frequencies k=1.24-4.96 and the angular amplitude of A=5°-20°. Results show that in a fixed reduced frequency, the absolute value of the sectional lift and drag coefficients increase with increasing pitching amplitude. In a fixed angular amplitude, the absolute value of the lift and drag coefficients increase as the pitching reduced frequency increases.
Keywords: Bio-inspired pitching airfoils, OpenFOAM, low Reynolds k-ω SST model, lift and drag coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908643 Vickers Indentation Simulation of Buffer Layer Thickness Effect for DLC Coated Materials
Authors: Abdul Wasy, Balakrishnan G., Yi Qi Wang, Atta Ur Rehman, Jung Il Song
Abstract:
Vickers indentation is used to measure the hardness of materials. In this study, numerical simulation of Vickers indentation experiment was performed for Diamond like Carbon (DLC) coated materials. DLC coatings were deposited on stainless steel 304 substrates with Chromium buffer layer using RF Magnetron and T-shape Filtered Cathodic Vacuum Arc Dual system The objective of this research is to understand the elastic plastic properties, stress strain distribution, ring and lateral crack growth and propagation, penetration depth of indenter and delamination of coating from substrate with effect of buffer layer thickness. The effect of Poisson-s ratio of DLC coating was also analyzed. Indenter penetration is more in coated materials with thin buffer layer as compared to thicker one, under same conditions. Similarly, the specimens with thinner buffer layer failed quickly due to high residual stress as compared to the coated materials with reasonable thickness of 200nm buffer layer. The simulation results suggested the optimized thickness of 200 nm among the prepared specimens for durable and long service.Keywords: Thin film, buffer layer. Diamond like Carbon, Vickers indentation, Poisson's ratio, Finite element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2937642 Statistical Optimization of the Enzymatic Saccharification of the Oil Palm Empty Fruit Bunches
Authors: Rashid S. S., Alam M. Z.
Abstract:
A statistical optimization of the saccharification process of EFB was studied. The statistical analysis was done by applying faced centered central composite design (FCCCD) under response surface methodology (RSM). In this investigation, EFB dose, enzyme dose and saccharification period was examined, and the maximum 53.45% (w/w) yield of reducing sugar was found with 4% (w/v) of EFB, 10% (v/v) of enzyme after 120 hours of incubation. It can be calculated that the conversion rate of cellulose content of the substrate is more than 75% (w/w) which can be considered as a remarkable achievement. All the variables, linear, quadratic and interaction coefficient, were found to be highly significant, other than two coefficients, one quadratic and another interaction coefficient. The coefficient of determination (R2) is 0.9898 that confirms a satisfactory data and indicated that approximately 98.98% of the variability in the dependent variable, saccharification of EFB, could be explained by this model.Keywords: Face centered central composite design (FCCCD), Liquid state bioconversion (LSB), Palm oil mill effluent, Trichoderma reesei RUT C-30.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2253641 Fast Generation of High-Performance Driveshafts: A Digital Approach to Automated Linked Topology and Design Optimization
Authors: Willi Zschiebsch, Alrik Dargel, Sebastian Spitzer, Philipp Johst, Robert Böhm, Niels Modler
Abstract:
In this article, we investigate an approach that digitally links individual development process steps by using the drive shaft of an aircraft engine as representative example of a fiber polymer composite. Such high-performance lightweight composite structures have many adjustable parameters that influence the mechanical properties. Only a combination of optimal parameter values can lead to energy efficient lightweight structures. The development tools required for the Engineering Design Process (EDP) are often isolated solutions and their compatibility with each other is limited. A digital framework is presented in this study, which allows individual specialised tools to be linked via the generated data in such a way that automated optimization across programs becomes possible. This is demonstrated using the example of linking geometry generation with numerical structural analysis. The proposed digital framework for automated design optimization demonstrates the feasibility of developing a complete digital approach to design optimization. The methodology shows promising potential for achieving optimal solutions in terms of mass, material utilization, eigenfrequency and deformation under lateral load with less development effort. The development of such a framework is an important step towards promoting a more efficient design approach that can lead to stable and balanced results.
Keywords: Digital Linked Process, composite, CFRP, multi-objective, EDP, NSGA-2, NSGA-3, TPE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168640 Micromechanical Modeling of Fiber-Matrix Debonding in Unidirectional Composites
Authors: M. Palizvan, M. T. Abadi, M. H. Sadr
Abstract:
Due to variations in damage mechanisms in the microscale, the behavior of fiber-reinforced composites is nonlinear and difficult to model. To make use of computational advantages, homogenization method is applied to the micro-scale model in order to minimize the cost at the expense of detail of local microscale phenomena. In this paper, the effective stiffness is calculated using the homogenization of nonlinear behavior of a composite representative volume element (RVE) containing fiber-matrix debonding. The damage modes for the RVE are considered by using cohesive elements and contacts for the cohesive behavior of the interface between fiber and matrix. To predict more realistic responses of composite materials, different random distributions of fibers are proposed besides square and hexagonal arrays. It was shown that in some cases, there is quite different damage behavior in different fiber distributions. A comprehensive comparison has been made between different graphs.
Keywords: Homogenization, cohesive zone model, fiber-matrix debonding, RVE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791639 Investigation of Fire Damaged Reinforced Concrete Walls with Axial Force
Authors: Hyun Ah Yoon, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin
Abstract:
Reinforced concrete (RC) shear wall system of residential buildings is popular in South Korea. RC walls are subjected to axial forces in common and the effect of axial forces on the strength loss of the fire damaged walls has not been investigated. This paper aims at investigating temperature distribution on fire damaged concrete walls having different axial loads. In the experiments, a variable of specimens is axial force ratio. RC walls are fabricated with 150mm of wall thicknesses, 750mm of lengths and 1,300mm of heights having concrete strength of 24MPa. After curing, specimens are heated on one surface with ISO-834 standard time-temperature curve for 2 hours and temperature distributions during the test are measured using thermocouples inside the walls. The experimental results show that the temperature of the RC walls exposed to fire increases as axial force ratio increases. To verify the experiments, finite element (FE) models are generated for coupled temperature-structure analyses. The analytical results of thermal behaviors are in good agreement with the experimental results. The predicted displacement of the walls decreases when the axial force increases.
Keywords: Axial force ratio, coupled analysis, fire, reinforced concrete wall, temperature distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741638 Study of Coupled Lateral-Torsional Free Vibrations of Laminated Composite Beam: Analytical Approach
Authors: S.H. Mirtalaie, M.A. Hajabasi
Abstract:
In this paper, an analytical approach is used to study the coupled lateral-torsional vibrations of laminated composite beam. It is known that in such structures due to the fibers orientation in various layers, any lateral displacement will produce a twisting moment. This phenomenon is modeled by the bending-twisting material coupling rigidity and its main feature is the coupling of lateral and torsional vibrations. In addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies. Then, the governing differential equations are derived using the Hamilton-s principle and the mathematical model matches the Timoshenko beam model when neglecting the effect of bending-twisting rigidity. The equations of motion which form a system of three coupled PDEs are solved analytically to study the free vibrations of the beam in lateral and rotational modes due to the bending, as well as the torsional mode caused by twisting. The analytic solution is carried out in three steps: 1) assuming synchronous motion for the kinematic variables which are the lateral, rotational and torsional displacements, 2) solving the ensuing eigenvalue problem which contains three coupled second order ODEs and 3) imposing different boundary conditions related to combinations of simply, clamped and free end conditions. The resulting natural frequencies and mode shapes are compared with similar results in the literature and good agreement is achieved.
Keywords: Free vibration, laminated composite beam, material coupling, state space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295637 Influence of Single and Multiple Skin-Core Debonding on Free Vibration Characteristics of Innovative GFRP Sandwich Panels
Authors: Indunil Jayatilake, Warna Karunasena, Weena Lokuge
Abstract:
An Australian manufacturer has fabricated an innovative GFRP sandwich panel made from E-glass fiber skin and a modified phenolic core for structural applications. Debonding, which refers to separation of skin from the core material in composite sandwiches, is one of the most common types of damage in composites. The presence of debonding is of great concern because it not only severely affects the stiffness but also modifies the dynamic behaviour of the structure. Generally it is seen that the majority of research carried out has been concerned about the delamination of laminated structures whereas skin-core debonding has received relatively minor attention. Furthermore it is observed that research done on composite slabs having multiple skin-core debonding is very limited. To address this gap, a comprehensive research investigating dynamic behaviour of composite panels with single and multiple debonding is presented. The study uses finite-element modelling and analyses for investigating the influence of debonding on free vibration behaviour of single and multilayer composite sandwich panels. A broad parametric investigation has been carried out by varying debonding locations, debonding sizes and support conditions of the panels in view of both single and multiple debonding. Numerical models were developed with Strand7 finite element package by innovatively selecting the suitable elements to diligently represent their actual behavior. Three-dimensional finite element models were employed to simulate the physically real situation as close as possible, with the use of an experimentally and numerically validated finite element model. Comparative results and conclusions based on the analyses are presented. For similar extents and locations of debonding, the effect of debonding on natural frequencies appears greatly dependent on the end conditions of the panel, giving greater decrease in natural frequency when the panels are more restrained. Some modes are more sensitive to debonding and this sensitivity seems to be related to their vibration mode shapes. The fundamental mode seems generally the least sensitive mode to debonding with respect to the variation in free vibration characteristics. The results indicate the effectiveness of the developed three dimensional finite element models in assessing debonding damage in composite sandwich panels.Keywords: Debonding, free vibration behaviour, GFRP sandwich panels, three dimensional finite element modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019636 Micromechanics Modeling of 3D Network Smart Orthotropic Structures
Authors: E. M. Hassan, A. L. Kalamkarov
Abstract:
Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unitcell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.
Keywords: Asymptotic Homogenization Method, Effective Piezothermoelastic Coefficients, Finite Element Analysis, 3D Smart Network Composite Structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100635 Behavioral Studies on Multi-Directionally Reinforced 4-D Orthogonal Composites on Various Preform Configurations
Authors: Sriram Venkatesh, V. Murali Mohan, T. V. Karthikeyan
Abstract:
The main advantage of multidirectionally reinforced composites is the freedom to orient selected fiber types and hence derives the benefits of varying fibre volume fractions and there by accommodate the design loads of the final structure of composites. This technology provides the means to produce tailored composites with desired properties. Due to the high level of fibre integrity with through thickness reinforcement those composites are expected to exhibit superior load bearing characteristics with capability to carry load even after noticeable and apparent fracture. However, a survey of published literature indicates inadequacy in the design and test data base for the complete characterization of the multidirectional composites. In this paper the research objective is focused on the development and testing of 4-D orthogonal composites with different preform configurations and resin systems. A preform is the skeleton 4D reinforced composite other than the matrix. In 4-D performs fibre bundles are oriented in three directions at 1200 with respect to each other and they are on orthogonal plane with the fibre in 4th direction. This paper addresses the various types of 4-D composite manufacturing processes and the mechanical test methods followed for the material characterization. A composite analysis is also made, experiments on course and fine woven preforms are conducted and the findings of test results are discussed in this paper. The interpretations of the test results reveal several useful and interesting features. This should pave the way for more widespread use of the perform configurations for allied applications.
Keywords: Multidirectionally Reinforced Composites, 4-D Orthogonal Preform, Course weave, Fine weave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1416634 Stress Intensity Factor for Dynamic Cracking of Composite Material by X-FEM Method
Authors: S. Lecheb, A. Nour, A. Chellil, H. Mechakra, N. Hamad, H. Kebir
Abstract:
The work involves develops attended by a numerical execution of the eXtend Finite Element Method premises a measurement by the fracture process cracked so many cracked plates an application will be processed for the calculation of the stress intensity factor SIF. In the first we give in statically part the distribution of stress, displacement field and strain of composite plate in two cases uncrack/edge crack, also in dynamical part the first six modes shape. Secondly, we calculate Stress Intensity Factor SIF for different orientation angle θ of central crack with length (2a=0.4mm) in plan strain condition, KI and KII are obtained for mode I and mode II respectively using X-FEM method. Finally from crack inclined involving mixed modes results, the comparison we chose dangerous inclination and the best crack angle when K is minimal.
Keywords: Stress Intensity Factor (SIF), Crack orientation, Glass/Epoxy, natural Frequencies, X-FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2895633 Evaluation of Microleakage of a New Generation Nano-Ionomer in Class II Restoration of Primary Molars
Authors: Ghada Salem, Nihal Kabel
Abstract:
Objective: This in vitro study was carried out to assess the microleakage properties of nano-filled glass ionomer in comparison to resin-reinforced glass ionomers. Material and Methods: 40 deciduous molar teeth were included in this study. Class-II cavity was prepared in a standard form for all the specimens. The teeth were randomly distributed into two groups (20 per group) according to the restorative material used either nano-glass ionomer or Photac Fill glass ionomer restoration. All specimens were thermocycled for 1000 cycles between 5 and 55 °C. After that, the teeth were immersed in 2% methylene blue dye then sectioned and evaluated under a stereomicroscope. Microleakage was assessed using linear dye penetration and on a scale from zero to five. Results: Two way ANOVA test revealed a statistically significant lower degree of microleakage in both occlusal and gingival restorations (0.4±0.2), (0.9±0.1) for nano-filled glass ionomer group in comparison to resin modified glass ionomer (2.3±0.7), (2.4±0.5). No statistical difference was found between gingival and occlusal leakage regarding the effect of the measured site. Conclusion: Nano-filled glass ionomer shows superior sealing ability which enables this type of restoration to be used in minimum invasive treatment.Keywords: Microleakage, nano-ionomer, resin-reinforced glass ionomer, proximal cavity preparation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261632 Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite
Authors: Muhammad Shahid, Muhammad Mansoor
Abstract:
Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.
Keywords: Carbon nanotubes, induction melting, nanocomposite, strengthening mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505631 Obtaining Composite Cotton Fabric by Cyclodextrin Grafting
Authors: U. K. Sahin, N. Erdumlu, C. Saricam, I. Gocek, M. H. Arslan, H. Acikgoz-Tufan, B. Kalav
Abstract:
Finishing is an important part of fabric processing with which a wide range of features are imparted to greige or colored fabrics for various end-uses. Especially, by the addition or impartation of nano-scaled particles to the fabric structure composite fabrics, a kind of composite materials can be acquired. Composite materials, generally shortened as composites or in other words composition materials, are engineered or naturally occurring materials made from two or more component materials with significantly different physical, mechanical or chemical characteristics remaining separate and distinctive at the macroscopic or microscopic scale within the end product structure. Therefore, the technique finishing which is one of the fundamental methods to be applied on fabrics for obtainment of composite fabrics with many functionalities was used in the current study with the same purpose. However, regardless of the finishing materials applied, the efficient life of finished product on offering desired feature is low, since the durability of finishes on the material is limited. Any increase in durability of these finishes on textiles would enhance the life of use for textiles, which will result in happier users. Therefore, in this study, since higher durability was desired for the finishing materials fixed on the fabrics, nano-scaled hollow structured cyclodextrins were chemically imparted by grafting to the structure of conventional cotton fabrics by the help of finishing technique in order to be fixed permanently. By this way, a processed and functionalized base fabric having potential to be treated in the subsequent processes with many different finishing agents and nanomaterials could be obtained. Henceforth, this fabric can be used as a multi-functional fabric due to the encapturing ability of cyclodextrins to molecules/particles via physical/chemical means. In this study, scoured and rinsed woven bleached plain weave 100% cotton fabrics were utilized because textiles made of cotton are the most demanded textile products in the textile market by the textile consumers in daily life. Cotton fabric samples were immersed in treating baths containing β-cyclodextrin and 1,2,3,4-butanetetracarboxylic acid and to reduce the curing temperature the catalyst sodium hypophosphite monohydrate was used. All impregnated fabric samples were pre-dried. The reaction of grafting was performed in dry state. The treated and cured fabric samples were rinsed with warm distilled water and dried. The samples were dried for 4 h and weighed before and after finishing and rinsing. Stability and durability of β-cyclodextrins on fabric surface against external factors such as washing as well as strength of functionalized fabric in terms of tensile and tear strength were tested. Presence and homogeneity of distribution of β-cyclodextrins on fabric surface were characterized.
Keywords: Cotton fabric, cyclodextrin, improved durability, multifunctional composite textile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302630 Fatigue Strength of S275 Mild Steel under Cyclic Loading
Authors: T. Aldeeb, M. Abduelmula
Abstract:
This study examines the fatigue life of S275 mild steel at room temperature. Mechanical components can fail under cyclic loading during period of time, known as the fatigue phenomenon. In order to prevent fatigue induced failures, material behavior should be investigated to determine the endurance limit of the material for safe design and infinite life, thus leading to reducing the economic cost and loss in human lives. The fatigue behavior of S275 mild steel was studied and investigated. Specimens were prepared in accordance with ASTM E3-11, and fatigue tests of the specimen were conducted in accordance with ASTM E466-07 on a smooth plate, with a continuous radius between ends (hourglass-shaped plate). The method of fatigue testing was applied with constant load amplitude and constant frequency of 4 Hz with load ratio (Fully Reversal R= -1). Surface fractures of specimens were investigated using Scanning Electron Microscope (SEM). The experimental results were compared with the results of a Finite Element Analysis (FEA), using simulation software. The experiment results indicated that the endurance fatigue limit of S275 mild steel was 195.47 MPa.Keywords: Fatigue life, fatigue strength, finite element analysis, S275 mild steel, scanning electron microscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2458629 Numerical Investigation of Soft Clayey Soil Improved by Soil-Cement Columns under Harmonic Load
Authors: R. Ziaie Moayed, E. Ghanbari Alamouty
Abstract:
Deep soil mixing is one of the improvement methods in geotechnical engineering which is widely used in soft soils. This article investigates the consolidation behavior of a soft clay soil which is improved by soil-cement column (SCC) by numerical modeling using Plaxis2D program. This behavior is simulated under vertical static and cyclic load which is applied on the soil surface. The static load problem is the simulation of a physical model test in an axisymmetric condition which uses a single SCC in the model center. The results of numerical modeling consist of settlement of soft soil composite, stress on soft soil and column, and excessive pore water pressure in the soil show a good correspondence with the test results. The response of soft soil composite to the cyclic load in vertical direction also compared with the static results. Also the effects of two variables namely the cement content used in a SCC and the area ratio (the ratio of the diameter of SCC to the diameter of composite soil model, a) is investigated. The results show that the stress on the column with the higher value of a, is lesser compared with the stress on other columns. Different rate of consolidation and excessive pore pressure distribution is observed in cyclic load problem. Also comparing the results of settlement of soil shows higher compressibility in the cyclic load problem.
Keywords: Area ratio, consolidation behavior, cyclic load, numerical modeling, soil-cement column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836628 The Empirical Survey on the Effect of Using Media in Explosive Forming of Tubular Shells
Authors: V. Hadavi, J. Zamani, R. Hosseini
Abstract:
The special and unique advantages of explosive forming, has developed its use in different industries. Considering the important influence of improving the current explosive forming techniques on increasing the efficiency and control over the explosive forming procedure, the effects of air and water as the energy-conveying medium, and also their differences will be illustrated in this paper. Hence, a large number of explosive forming tests have been conducted on two sizes of thin walled cylindrical shells by using air and water as the working medium. Comparative diagrams of the maximum radial deflection of work-pieces of the same size, as a function of the scaled distance, show that for the points with the same values of scaled distance, the maximum radial deformation caused by the under water explosive loading is 4 to 5 times more than the deflection of the shells under explosive forming, while using air. Results of this experimental research have also been compared with other studies which show that using water as the energy conveying media increases the efficiency up to 4.8 times. The effect of the media on failure modes of the shells, and the necking mechanism of the walls of the specimens, while being explosively loaded, are also discussed in this issue. Measuring the tested specimens shows that, the increase in the internal volume has been accompanied by necking of the walls, which finally results in the radial rupture of the structure.Keywords: Explosive Forming, Energy Conveying Medium, Tubular Shell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352627 Additive Manufacturing with Ceramic Filler Concerning Filament Creation and Strength
Authors: Wolfram Irsa, Lorenz Boruch
Abstract:
Innovative solutions in additive manufacturing applying material extrusion for functional parts necessitates innovative filaments with persistent quality. Uniform homogeneity and consistent dispersion of particles embedded in filaments generally require multiple cycles of extrusion or well-prepared primal matter by injection molding, kneader machines, or mixing equipment. These technologies commit to dedicated equipment that are rarely at disposal in production laboratories unfamiliar with research in polymer materials. This stands in contrast to laboratories which investigate on complex material topics and technology science to leverage on the potential of 3-D printing. Consequently, scientific studies in labs are often constrained to compositions and concentrations of fillers offered from the market. Therefore, we present a prototypal laboratory methodology scalable to tailored primal matter for extruding ceramic composite filaments with fused filament fabrication (FFF) technology. A desktop single-screw extruder serves as core device for the experiments. Custom-made filament encapsulates the ceramic fillers and serves with polylactide (PLA), which is a thermoplastic polyester, as primal matter and is processed in the melting area of the extruder preserving the defined concentration of the fillers. Validated results demonstrate that this approach enables continuously produced and uniform composite filaments with consistent homogeneity. It is 3-D printable with controllable dimensions, which is a prerequisite for any scalable application. Additionally, digital microscopy confirms steady dispersion of the ceramic particles in the composite filament. This permits a 2D reconstruction of the planar distribution of the embedded ceramic particles in the PLA matrices. The innovation of the introduced method lies in the smart simplicity of preparing the composite primal matter. It circumvents the inconvenience of numerous extrusion operations and expensive laboratory equipment. Nevertheless, it delivers consistent filaments of controlled, predictable, and reproducible filler concentration, which is the prerequisite for any industrial application. The introduced prototypal laboratory methodology seems capable for other polymer matrices and suitable to further utilitarian particle types, beyond and above of ceramic fillers. This inaugurates a roadmap for supplementary laboratory development of peculiar composite filaments, providing value for industries and societies. This low-threshold entry of sophisticated preparation of composite filaments - enabling businesses creating their own dedicated filaments - will support the mutual efforts for establishing 3D printing to new functional devices.
Keywords: Additive manufacturing, ceramic composites, complex filament, industrial application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 414626 A Study of Indentation Energy in Three Points Bending of Sandwich beams with Composite Laminated Faces and Foam Core
Authors: M. Sadighi, H. Pouriayevali, M. Saadati
Abstract:
This paper deals with analysis of flexural stiffness, indentation and their energies in three point loading of sandwich beams with composite faces from Eglass/epoxy and cores from Polyurethane or PVC. Energy is consumed in three stages of indentation in laminated beam, indentation of sandwich beam and bending of sandwich beam. Theory of elasticity is chosen to present equations for indentation of laminated beam, then these equations have been corrected to offer better results. An analytical model has been used assuming an elastic-perfectly plastic compressive behavior of the foam core. Classical theory of beam is used to describe three point bending. Finite element (FE) analysis of static indentation sandwich beams is performed using the FE code ABAQUS. The foam core is modeled using the crushable foam material model and response of the foam core is experimentally characterized in uniaxial compression. Three point bending and indentation have been done experimentally in two cases of low velocity and higher velocity (quasi-impact) of loading. Results can describe response of beam in terms of core and faces thicknesses, core material, indentor diameter, energy absorbed, and length of plastic area in the testing. The experimental results are in good agreement with the analytical and FE analyses. These results can be used as an introduction for impact loading and energy absorbing of sandwich structures.Keywords: Three point Bending, Indentation, Foams, Composite laminated beam, Sandwich beams, Finite element
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2588625 Effect of the Truss System to the Flexural Behavior of the External Reinforced Concrete Beams
Authors: Rudy Djamaluddin, Yasser Bachtiar, Rita Irmawati, Abd. Madjid Akkas, Rusdi Usman Latief
Abstract:
The aesthetic qualities and the versatility of reinforced concrete have made it a popular choice for many architects and structural engineers. Therefore, the exploration of natural materials such as gravels and sands as well as lime-stone for cement production is increasing to produce a concrete material. The exploration must affect to the environment. Therefore, the using of the concrete materials should be as efficient as possible. According to its natural behavior of the concrete material, it is strong in compression and weak in tension. Therefore the contribution of the tensile stresses of the concrete to the flexural capacity of the beams is neglected. However, removing of concrete on tension zone affects to the decreasing of flexural capacity. Introduce the strut action of truss structures may an alternative to solve the decreasing of flexural capacity. A series of specimens were prepared to clarify the effect of the truss structures in the concrete beams without concrete on the tension zone. Results indicated that the truss system is necessary for the external reinforced concrete beams. The truss system of concrete beam without concrete on tension zone (BR) could develop almost same capacity to the normal beam (BN). It can be observed also that specimens BR has lower number of cracks than specimen BN. This may be caused by the fact that there was no bonding effect on the tensile reinforcement on specimen BR to distribute the cracks.
Keywords: External Reinforcement, Truss, Concrete Beams.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267