Search results for: Wireless Local Area Network.
2315 A new Configurable Decimation Filter using Pascal-s Triangle Theorem
Authors: A. Chahardah Cherik, E. Farshidi
Abstract:
This paper presents a new configurable decimation filter for sigma-delta modulators. The filter employs the Pascal-s triangle-s theorem for building the coefficients of non-recursive decimation filters. The filter can be connected to the back-end of various modulators with different output accuracy. In this work two methods are shown and then compared from area occupation viewpoint. First method uses the memory and the second one employs Pascal-s triangle-s method, aiming to reduce required gates. XILINX ISE v10 is used for implementation and confirmation the filter.Keywords: Decimation filter, sigma delta, Pascal's triangle'stheorem, memory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16842314 Rejuvenate: Face and Body Retouching Using Image Inpainting
Authors: H. AbdelRahman, S. Rostom, Y. Lotfy, S. Salah Eldeen, R. Yassein, N. Awny
Abstract:
People are growing more concerned with their appearance in today's society. But they are terrified of what they will look like after a plastic surgery. People's mental health suffers when they have accidents, burns, or genetic issues that cause them to cleave certain body parts, which makes them feel uncomfortable and unappreciated. The method provides an innovative deep learning-based technique for image inpainting that analyzes different picture structures and fixes damaged images. This study proposes a model based on the Stable Diffusion Inpainting method for in-painting medical images. One significant advancement made possible by deep neural networks is image inpainting, which is the process of reconstructing damaged and missing portions of an image. The patient can see the outcome more easily since the system uses the user's input of an image to identify a problem. It then modifies the image and outputs a fixed image.
Keywords: Generative Adversarial Network, GAN, Large Mask Inpainting, LAMA, Stable Diffusion Inpainting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1082313 Enhancement of a 3D Sound Using Psychoacoustics
Authors: Kyosik Koo, Hyungtai Cha
Abstract:
Generally, in order to create 3D sound using binaural systems, we use head related transfer functions (HRTF) including the information of sounds which is arrived to our ears. But it can decline some three-dimensional effects in the area of a cone of confusion between front and back directions, because of the characteristics of HRTF. In this paper, we propose a new method to use psychoacoustics theory that reduces the confusion of sound image localization. In the method, HRTF spectrum characteristic is enhanced by using the energy ratio of the bark band. Informal listening tests show that the proposed method improves the front-back sound localization characteristics much better than the conventional methodsKeywords: HRTF, 3D sound, Psychoacoustics, Localization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20252312 Verification of the Simultaneous Local Extraction Method of Base and Thermal Resistance of Bipolar Transistors
Authors: Robert Setekera, Luuk Tiemeijer, Ramses van der Toorn
Abstract:
In this paper an extensive verification of the extraction method (published earlier) that consistently accounts for self-heating and Early effect to accurately extract both base and thermal resistance of bipolar junction transistors is presented. The method verification is demonstrated on advanced RF SiGe HBTs were the extracted results for the thermal resistance are compared with those from another published method that ignores the effect of Early effect on internal base-emitter voltage and the extracted results of the base resistance are compared with those determined from noise measurements. A self-consistency of our method in the extracted base resistance and thermal resistance using compact model simulation results is also carried out in order to study the level of accuracy of the method.
Keywords: Avalanche, Base resistance, Bipolar transistor, Compact modeling, Early voltage, Thermal resistance, Self-heating, parameter extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20502311 An Enhanced Situational Awareness of AUV's Mission by Multirate Neural Control
Authors: Igor Astrov, Mikhail Pikkov
Abstract:
This paper focuses on a critical component of the situational awareness (SA), the neural control of depth flight of an autonomous underwater vehicle (AUV). Constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a multirate neural control of an AUV trajectory using neural network model reference controller for a nontrivial mid-small size AUV "r2D4" stochastic model. This control system has been demonstrated and evaluated by simulation of diving maneuvers using software package Simulink. From the simulation results it can be seen that the chosen AUV model is stable in the presence of high noise, and also can be concluded that the fast SA of similar AUV systems with economy in energy of batteries can be asserted during the underwater missions in search-and-rescue operations.
Keywords: Autonomous underwater vehicles, multirate systems, neurocontrollers, situational awareness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19462310 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks
Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia
Abstract:
This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.Keywords: Image forensics, computer graphics, classification, deep learning, convolutional neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11752309 Dynamics of a Vapour Bubble inside a Vertical Rigid Cylinder with a Deposit Rib
Authors: S. Mehran, S. Rouhi, F.Rouzbahani, E. Haghgoo
Abstract:
In this paper dynamics of a vapour bubble generated due to a local energy input inside a vertical rigid cylinder and in the absence of buoyancy forces is investigated. Different ratios of the diameter of the rigid cylinder to the maximum radius of the bubble are considered. The Boundary Integral Equation Method is employed for numerical simulation of the problem. Results show that during the collapse phase of the bubble inside a vertical rigid cylinder, two liquid micro jets are developed on the top and bottom sides of the vapour bubble and are directed inward. Results also show that existence of a deposit rib inside the vertical rigid cylinder slightly increases the life time of the bubble. It is found that by increasing the ratio of the cylinder diameter to the maximum radius of the bubble, the rate of the growth and collapse phases of the bubble increases and the life time of the bubble decreases.Keywords: Vapour bubble, Vertical rigid cylinder, Boundaryelement method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19862308 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks
Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz
Abstract:
Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.Keywords: Customer relationship management, churn prediction, telecom industry, deep learning, Artificial Neural Networks, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7602307 Performance Evaluation of Music and Minimum Norm Eigenvector Algorithms in Resolving Noisy Multiexponential Signals
Authors: Abdussamad U. Jibia, Momoh-Jimoh E. Salami
Abstract:
Eigenvector methods are gaining increasing acceptance in the area of spectrum estimation. This paper presents a successful attempt at testing and evaluating the performance of two of the most popular types of subspace techniques in determining the parameters of multiexponential signals with real decay constants buried in noise. In particular, MUSIC (Multiple Signal Classification) and minimum-norm techniques are examined. It is shown that these methods perform almost equally well on multiexponential signals with MUSIC displaying better defined peaks.
Keywords: Eigenvector, minimum norm, multiexponential, subspace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17382306 Interspecific Variation in Heat Stress Tolerance and Oxidative Damage among 15 C3 Species
Authors: Wagdi S. Soliman, Shu-ichi Sugiyama
Abstract:
The C3 plants are frequently suffering from exposure to high temperature stress which limits the growth and yield of these plants. This study seeks to clarify the physiological mechanisms of heat tolerance in relation to oxidative stress in C3 species. Fifteen C3 species were exposed to prolonged moderately high temperature stress 36/30°C for 40 days in a growth chamber. Chlorophyll fluorescence (Fv/Fm) showed great difference among species at 40 days of the stress. The species showed decreases in Fv/Fm and increases in malondialdehyde (MDA) content under stress condition as well as negative correlation between Fv/Fm and MDA (r = -0.61*) at 40 days of the stress. Hydrogen peroxide (H2O2) content before and after stress in addition to its response under stress showed great differences among species. The results suggest that the difference in heat tolerance among C3 species is closely associated with the ability to suppress oxidative damage but not with the content of reactive oxygen species (ROS) which is regulated by complex network.Keywords: C3 species, Fv/Fm, heat stress, oxidative stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17562305 Spatial Structure and Process of Arctic Warming and Land Cover Change in the Feedback Systems Framework
Authors: Eric Kojo Wu Aikins
Abstract:
This paper examines the relationships between and among the various drivers of climate change that have both climatic and ecological consequences for vegetation and land cover change in arctic areas, particularly in arctic Alaska. It discusses the various processes that have created spatial and climatic structures that have facilitated observable vegetation and land cover changes in the Arctic. Also, it indicates that the drivers of both climatic and ecological changes in the Arctic are multi-faceted and operate in a system with both positive and negative feedbacks that largely results in further increases or decreases of the initial drivers of climatic and vegetation change mainly at the local and regional scales. It demonstrates that the impact of arctic warming on land cover change and the Arctic ecosystems is not unidirectional and one dimensional in nature but it represents a multi-directional and multi-dimensional forces operating in a feedback system.Keywords: Arctic Vegetation Change, Climate Change, Feedback System, Spatial Process and Structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17482304 Intelligent Face-Up CMP System Integrated with On-Line Optical Measurements
Authors: Sheng-Ming Huang, Nan-Chyuan Tsai, Chih-Che Lin, Chun-Chi Lin
Abstract:
An innovative design for intelligent Chemical Mechanical Polishing (CMP) system is proposed and verified by experiments in this report. On-line measurement and real-time feedback are integrated to eliminate the shortcomings of traditional approaches, e.g., the batch-to-batch discrepancy of required polishing time, over consumption of chemical slurry, and non-uniformity across the wafer. The major advantage of the proposed method is that the finish of local surface roughness can be consistent, no matter where the inner-ring region or outer-ring region is concerned. Secondly, it is able to eliminate the Edge effect. Conventionally, the interfacial induced stress near the wafer edge is generally much higher than that near the wafer center. At last, by using the proposed intelligent chemical mechanical polishing strategy, the cost of the entire machining cycle can be much reduced while the quality of the finished goods certainly upgraded.
Keywords: Chemical Mechanical Polishing, Active Magnetic Actuator, On-Line Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17402303 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels
Authors: Florin Leon, Silvia Curteanu
Abstract:
The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.
Keywords: Bacterial foraging optimization, hydrogels, neural networks, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7302302 A Comparison between Heuristic and Meta-Heuristic Methods for Solving the Multiple Traveling Salesman Problem
Authors: San Nah Sze, Wei King Tiong
Abstract:
The multiple traveling salesman problem (mTSP) can be used to model many practical problems. The mTSP is more complicated than the traveling salesman problem (TSP) because it requires determining which cities to assign to each salesman, as well as the optimal ordering of the cities within each salesman's tour. Previous studies proposed that Genetic Algorithm (GA), Integer Programming (IP) and several neural network (NN) approaches could be used to solve mTSP. This paper compared the results for mTSP, solved with Genetic Algorithm (GA) and Nearest Neighbor Algorithm (NNA). The number of cities is clustered into a few groups using k-means clustering technique. The number of groups depends on the number of salesman. Then, each group is solved with NNA and GA as an independent TSP. It is found that k-means clustering and NNA are superior to GA in terms of performance (evaluated by fitness function) and computing time.Keywords: Multiple Traveling Salesman Problem, GeneticAlgorithm, Nearest Neighbor Algorithm, k-Means Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32332301 The Rank-scaled Mutation Rate for Genetic Algorithms
Authors: Mike Sewell, Jagath Samarabandu, Ranga Rodrigo, Kenneth McIsaac
Abstract:
A novel method of individual level adaptive mutation rate control called the rank-scaled mutation rate for genetic algorithms is introduced. The rank-scaled mutation rate controlled genetic algorithm varies the mutation parameters based on the rank of each individual within the population. Thereby the distribution of the fitness of the papulation is taken into consideration in forming the new mutation rates. The best fit mutate at the lowest rate and the least fit mutate at the highest rate. The complexity of the algorithm is of the order of an individual adaptation scheme and is lower than that of a self-adaptation scheme. The proposed algorithm is tested on two common problems, namely, numerical optimization of a function and the traveling salesman problem. The results show that the proposed algorithm outperforms both the fixed and deterministic mutation rate schemes. It is best suited for problems with several local optimum solutions without a high demand for excessive mutation rates.
Keywords: Genetic algorithms, mutation rate control, adaptive mutation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26692300 A Minimum Spanning Tree-Based Method for Initializing the K-Means Clustering Algorithm
Authors: J. Yang, Y. Ma, X. Zhang, S. Li, Y. Zhang
Abstract:
The traditional k-means algorithm has been widely used as a simple and efficient clustering method. However, the algorithm often converges to local minima for the reason that it is sensitive to the initial cluster centers. In this paper, an algorithm for selecting initial cluster centers on the basis of minimum spanning tree (MST) is presented. The set of vertices in MST with same degree are regarded as a whole which is used to find the skeleton data points. Furthermore, a distance measure between the skeleton data points with consideration of degree and Euclidean distance is presented. Finally, MST-based initialization method for the k-means algorithm is presented, and the corresponding time complexity is analyzed as well. The presented algorithm is tested on five data sets from the UCI Machine Learning Repository. The experimental results illustrate the effectiveness of the presented algorithm compared to three existing initialization methods.
Keywords: Degree, initial cluster center, k-means, minimum spanning tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15532299 Functioning of Turkic Elements in Modern Hindi
Authors: B. S. Bokuleva, R. A. Avakova, A. A. Sultangubieva, U. Schamiloglu
Abstract:
It is discussed about modern usage of adopted words and their vocabularies, Turkism usage fields, phonetic, grammatical and lexis-semantic assimilation of the typological-morphological structures of entering to different Hindi languages in comparative typological aspects in this scientific article. The lexis vocabulary is rich, the prevalence area is wide and it has researched the entering process of vocabulary into the great languages of Turkic elements from the speakers- numbers. The research work has worked on the base of Hindi vocabulary.Keywords: Adopted words, language communications, Turkism, Turkic languages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21662298 Political and Economic Transition of People with Disabilities Related to Globalization
Authors: Jihye Jeon
Abstract:
This paper analyzes the political and economic issues that people with disabilities face related to globalization; how people with disabilities have been adapting globalization and surviving under worldwide competition system. It explains that economic globalization exacerbates inequality and deprivation of people with disabilities. The rising tide of neo-liberal welfare policies emphasized efficiency, downsized social expenditure for people with disabilities, excluded people with disabilities against labor market, and shifted them from welfare system to nothing. However, there have been people with disabilities' political responses to globalization, which are characterized by a global network of people with disabilities as well as participation to global governance. Their resistance can be seen as an attempt to tackle the problems that economic globalization has produced. It is necessary paradigm shift of disability policy from dependency represented by disability benefits to independency represented by labor market policies for people with disabilities.
Keywords: Economic Globalization, People with Disability, Deprivation, Welfare Cut, Disability Right Movement, Resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21492297 The Influence of Directionality on the Giovanelli Illusion
Authors: Michele Sinico
Abstract:
In the Giovanelli illusion, some collinear dots appear misaligned, when each dot lies within a circle and the circles are not collinear. In this illusion, the role of the frame of reference, determined by the circles, is considered a crucial factor. Three experiments were carried out to study the influence of directionality of the circles on the misalignment. The adjustment method was used. Participants changed the orthogonal position of each dot, from the left to the right of the sequence, until a collinear sequence of dots was achieved. The first experiment verified the illusory effect of the misalignment. In the second experiment, the influence of two different directionalities of the circles (-0.58° and +0.58°) on the misalignment was tested. The results show an over-normalization on the sequences of the dots. The third experiment tested the misalignment of the dots without any inclination of the sequence of circles (0°). Only a local illusory effect was found. These results demonstrate that the directionality of the circles, as a global factor, can increase the misalignment. The findings also indicate that directionality and the frame of reference are independent factors in explaining the Giovanelli illusion.
Keywords: Giovanelli illusion, visual illusion, directionality, misalignment, frame of reference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7622296 Development Techniques of Multi-Agents Based Autonomous Railway Vehicles Control Systems
Authors: M. Saleem Khan, Khaled Benkrid
Abstract:
This paper presents the development techniques for a complete autonomous design model of an advanced train control system and gives a new approach for the implementation of multi-agents based system. This research work proposes to develop a novel control system to enhance the efficiency of the vehicles under constraints of various conditions, and contributes in stability and controllability issues, considering relevant safety and operational requirements with command control communication and various sensors to avoid accidents. The approach of speed scheduling, management and control in local and distributed environment is given to fulfill the dire needs of modern trend and enhance the vehicles control systems in automation. These techniques suggest the state of the art microelectronic technology with accuracy and stability as forefront goals.Keywords: Multi-agents, Railway vehicle control system, autonomous design, Train management, Speed scheduling andcontrol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19302295 New Multisensor Data Fusion Method Based on Probabilistic Grids Representation
Authors: Zhichao Zhao, Yi Liu, Shunping Xiao
Abstract:
A new data fusion method called joint probability density matrix (JPDM) is proposed, which can associate and fuse measurements from spatially distributed heterogeneous sensors to identify the real target in a surveillance region. Using the probabilistic grids representation, we numerically combine the uncertainty regions of all the measurements in a general framework. The NP-hard multisensor data fusion problem has been converted to a peak picking problem in the grids map. Unlike most of the existing data fusion method, the JPDM method dose not need association processing, and will not lead to combinatorial explosion. Its convergence to the CRLB with a diminishing grid size has been proved. Simulation results are presented to illustrate the effectiveness of the proposed technique.
Keywords: Cramer-Rao lower bound (CRLB), data fusion, probabilistic grids, joint probability density matrix, localization, sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18032294 A Blockchain-Based Privacy-Preserving Physical Delivery System
Authors: Shahin Zanbaghi, Saeed Samet
Abstract:
The internet has transformed the way we shop. Previously, most of our purchases came in the form of shopping trips to a nearby store. Now, it is as easy as clicking a mouse. We have to be constantly vigilant about our personal information. In this work, our proposed approach is to encrypt the information printed on the physical packages, which include personal information in plain text using a symmetric encryption algorithm; then, we store that encrypted information into a Blockchain network rather than storing them in companies or corporations centralized databases. We present, implement and assess a blockchain-based system using Ethereum smart contracts. We present detailed algorithms that explain the details of our smart contract. We present the security, cost and performance analysis of the proposed method. Our work indicates that the proposed solution is economically attainable and provides data integrity, security, transparency and data traceability.
Keywords: Blockchain, Ethereum, smart contract, commit-reveal scheme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4712293 A Social Decision Support Mechanism for Group Purchasing
Authors: Lien-Fa Lin, Yung-Ming Li, Fu-Shun Hsieh
Abstract:
With the advancement of information technology and development of group commerce, people have obviously changed in their lifestyle. However, group commerce faces some challenging problems. The products or services provided by vendors do not satisfactorily reflect customers’ opinions, so that the sale and revenue of group commerce gradually become lower. On the other hand, the process for a formed customer group to reach group-purchasing consensus is time-consuming and the final decision is not the best choice for each group members. In this paper, we design a social decision support mechanism, by using group discussion message to recommend suitable options for group members and we consider social influence and personal preference to generate option ranking list. The proposed mechanism can enhance the group purchasing decision making efficiently and effectively and venders can provide group products or services according to the group option ranking list.
Keywords: Social network, group decision, text mining, group commerce.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13902292 Compressive Strength Evaluation of Underwater Concrete Structures Integrating the Combination of Rebound Hardness and Ultrasonic Pulse Velocity Methods with Artificial Neural Networks
Authors: Seunghee Park, Junkyeong Kim, Eun-Seok Shin, Sang-Hun Han
Abstract:
In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of underwater concrete structures. A new methodology to estimate the underwater concrete strengths more effectively, named “artificial neural network (ANN) – based concrete strength estimation with the combination of rebound hardness and ultrasonic pulse velocity methods” is proposed and verified throughout a series of experimental works.
Keywords: Underwater Concrete, Rebound Hardness, Schmidt hammer, Ultrasonic Pulse Velocity, Ultrasonic Sensor, Artificial Neural Networks, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36642291 Urban Growth Prediction in Athens, Greece, Using Artificial Neural Networks
Authors: D. Triantakonstantis, D. Stathakis
Abstract:
Urban areas have been expanded throughout the globe. Monitoring and modelling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modelling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.
Keywords: Artificial Neural Networks, CORINE, Urban Atlas, Urban Growth Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34512290 Effect of Catalyst Preparation on the Performance of CaO-ZnO Catalysts for Transesterification
Authors: Pathravut Klinklom, Apanee Luengnaruemitchai, Samai Jai-In
Abstract:
In this research, CaO-ZnO catalysts (with various Ca:Zn atomic ratios of 1:5, 1:3, 1:1, and 3:1) prepared by incipientwetness impregnation (IWI) and co-precipitation (CP) methods were used as a catalyst in the transesterification of palm oil with methanol for biodiesel production. The catalysts were characterized by several techniques, including BET method, CO2-TPD, and Hemmett Indicator. The effects of precursor concentration, and calcination temperature on the catalytic performance were studied under reaction conditions of a 15:1 methanol to oil molar ratio, 6 wt% catalyst, reaction temperature of 60°C, and reaction time of 8 h. At Ca:Zn atomic ratio of 1:3 gave the highest FAME value owing to a basic properties and surface area of the prepared catalyst.Keywords: CaO, ZnO, Biodiesel, Impregnation, Coprecipitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27092289 Contribution to the Study of Thermal Conductivity of Porous Silicon Used In Thermal Sensors
Authors: A. Ould-Abbas, M. Bouchaour, , M. Madani, D. Trari, O. Zeggai, M. Boukais, N.-E.Chabane-Sari
Abstract:
The porous silicon (PS), formed from the anodization of a p+ type substrate silicon, consists of a network organized in a pseudo-column as structure of multiple side ramifications. Structural micro-topology can be interpreted as the fraction of the interconnected solid phase contributing to thermal transport. The reduction of dimensions of silicon of each nanocristallite during the oxidation induced a reduction in thermal conductivity. Integration of thermal sensors in the Microsystems silicon requires an effective insulation of the sensor element. Indeed, the low thermal conductivity of PS consists in a very promising way in the fabrication of integrated thermal Microsystems.In this work we are interesting in the measurements of thermal conductivity (on the surface and in depth) of PS by the micro-Raman spectroscopy. The thermal conductivity is studied according to the parameters of anodization (initial doping and current density. We also, determine porosity of samples by spectroellipsometry.Keywords: micro-Raman spectroscopy, mono-crysatl silicon, porous silicon, thermal conductivity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18922288 Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network
Authors: Siavash Asadi Ghajarloo
Abstract:
Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy.Keywords: Bayesian Networks, Data mining, GECRframework, Predicting political risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21742287 Anthropomorphism in Robotics Engineering for Disabled People
Abstract:
In its attempt to offer new ways into autonomy for a large population of disabled people, assistive technology has largely been inspired by robotics engineering. Recent human-like robots carry new hopes that it seems to us necessary to analyze by means of a specific theory of anthropomorphism. We propose to distinguish a functional anthropomorphism which is the one of actual wheelchairs from a structural anthropomorphism based on a mimicking of human physiological systems. If functional anthropomorphism offers the main advantage of eliminating the physiological systems interdependence issue, the highly link between the robot for disabled people and their human-built environment would lead to privilege in the future the anthropomorphic structural way. In this future framework, we highlight a general interdependence principle : any partial or local structural anthropomorphism generates new anthropomorphic needs due to the physiological systems interdependency, whose effects can be evaluated by means of specific anthropomorphic criterions derived from a set theory-based approach of physiological systems.Keywords: Anthropomorphism, Human-like machines, Systemstheory, Disability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19892286 Analysis of Trend and Variability of Rainfall in the Mid-Mahanadi River Basin of Eastern India
Authors: Rabindra K. Panda, Gurjeet Singh
Abstract:
The major objective of this study was to analyze the trend and variability of rainfall in the middle Mahandi river basin located in eastern India. The trend of variation of extreme rainfall events has predominant effect on agricultural water management and extreme hydrological events such as floods and droughts. Mahanadi river basin is one of the major river basins of India having an area of 1,41,589 km2 and divided into three regions: Upper, middle and delta region. The middle region of Mahanadi river basin has an area of 48,700 km2 and it is mostly dominated by agricultural land, where agriculture is mostly rainfed. The study region has five Agro-climatic zones namely: East and South Eastern Coastal Plain, North Eastern Ghat, Western Undulating Zone, Western Central Table Land and Mid Central Table Land, which were numbered as zones 1 to 5 respectively for convenience in reporting. In the present study, analysis of variability and trends of annual, seasonal, and monthly rainfall was carried out, using the daily rainfall data collected from the Indian Meteorological Department (IMD) for 35 years (1979-2013) for the 5 agro-climatic zones. The long term variability of rainfall was investigated by evaluating the mean, standard deviation and coefficient of variation. The long term trend of rainfall was analyzed using the Mann-Kendall test on monthly, seasonal and annual time scales. It was found that there is a decreasing trend in the rainfall during the winter and pre monsoon seasons for zones 2, 3 and 4; whereas in the monsoon (rainy) season there is an increasing trend for zones 1, 4 and 5 with a level of significance ranging between 90-95%. On the other hand, the mean annual rainfall has an increasing trend at 99% significance level. The estimated seasonality index showed that the rainfall distribution is asymmetric and distributed over 3-4 months period. The study will help to understand the spatio-temporal variation of rainfall and to determine the correlation between the current rainfall trend and climate change scenario of the study region for multifarious use.
Keywords: Eastern India, long-term variability and trends, Mann-Kendall test, seasonality index, spatio-temporal variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634